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Abstract

Anti-patterns are poor solutions to design problems that make software systems

hard to understand and extend. Entities involved in anti-patterns are reported

to be consistently related to high change and fault rates. Refactorings, which

are behavior preserving changes are often performed to remove anti-patterns

from software systems. Developers are advised to interleave refactoring activi-

ties with their regular coding tasks to remove anti-patterns, and consequently

improve software design quality. However, because the number of anti-patterns

in a software system can be very large, and their interactions can require a so-

lution in a set of conflicting objectives, the process of manual refactoring can

be overwhelming. To automate this process, previous works have modeled anti-

patterns refactoring as a batch process where a program provides a solution

for the total number of classes in a system, and the developer has to examine a

long list of refactorings, which is not feasible in most situations. Moreover, these

proposed solutions often require that developers modify classes on which they

never worked before (i.e., classes on which they have little or no knowledge).

To improve on these limitations, this paper proposes an automated refactoring

approach, ReCon (Refactoring approach based on task Context), that leverages
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information about a developer’s task (i.e., the list of code entities relevant to the

developer’s task) and metaheuristics techniques to compute the best sequence

of refactorings that affects only entities in the developer’s context. We mine

1,705 task contexts (collected using the Eclipse plug-in Mylyn) and 1,013 code

snapshots from three open-source software projects (Mylyn, PDE, Eclipse Plat-

form) to assess the performance of our proposed approach. Results show that

ReCon can remove more than 50% of anti-patterns in a software system, using

fewer resources than the traditional approaches from the literature.

Keywords: Software Maintenance, Automatic Refactoring, Task Context,

Interaction Traces, Anti-patterns, Metaheuristics.

1. Introduction

Software design matters. In a general sense, the design of a software system

models the representation of the problem, goals, constraints and the solution

proposed by the system. Studies suggest that defects related to design are orders

of magnitude more expensive to fix than those introduced during the implemen-

tation [1, 2, 3, 4]. Indeed, neglecting to carefully design a software system may

result in a highly complex implementation that is harder to maintain.

As systems evolve, they tend to grow in complexity and degrade in effec-

tiveness [5], unless the quality of the systems is controlled and continually im-

proved. Even good design solutions (e.g., design patterns) tends to decay into

anti-patterns as systems age [6, 7]. When the design of a system is poor, new

changes to the system often degrade quality instead of improving it. In addition

to this, the competition in software industry that puts pressure on companies to

deliver new products and features faster often leads development teams to adopt

poor design choices. Poor design choices increase the risk of fault [8] and the

cost of future maintenance and evolution changes; a phenomenon often referred

to as technical debt [9]. This debt increases until developers pay down the debt

by redesigning the system. It is noteworthy that the cost of removing defects

in aged systems is high [10]. To combat design decay, developers should remove
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anti-patterns, which are poor solutions to design problems [11]. They are not

technically incorrect, but result in negative consequences in the long run [12].

An example of anti-pattern is the Spaghetti Code, which is a class without

structure that declares long methods without parameters [13]. This anti-pattern

depicts an abuse of procedural programming in object-oriented systems, that

prevents code reuse. In a previous study, Bavota et al. [14] found that indus-

trial developers assign a very high severity level to this anti-pattern. Another

example of anti-pattern is the Lazy class, which is a class with few methods and

a low complexity that does not “pay off” its inclusion in the system.

Abbès et al. [15] showed that anti-patterns affect the understandability of

systems and Khomh et al. [8] found that there is a strong correlation between

the occurrence of anti-patterns and the fault-proneness of source code files. In

addition to this, anti-patterns often remain in a system for several releases [16,

17]. It is therefore essential to correct anti-patterns in a regular basis, to avoid

their negative impact on future releases of the system.

To remove anti-patterns and improve design quality, developers perform

refactoring, which is a technique that consists in reorganizing the code of a

program without altering its original behavior.

There are several studies that assessed the benefits of refactoring in: reducing

code complexity [18], inter-module dependencies and post-release faults [19]; in

improving code comprehensibility [20], and application performance [21].

Even though refactoring is now a common practice in the industry [22], man-

ual refactoring of anti-patterns is still a risky and error-prone task, especially

when it is performed by inexperienced developers, or developers who are un-

familiar with the system. Moreover, assigning resources to perform refactoring

is not always feasible, due to constraints in budget, shorter releases cycles and

staff shortage.

To overcome the burden of manual refactoring, researchers have proposed

the formulation of refactoring as an optimization problem, where a system finds

a sequence of refactoring operations that corrects most of the anti-patterns,

improving certain aspects of quality [23, 24, 25, 26]. The main problem with
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current approaches is that they rely on 1) a corpus of bad code examples which

adds a new task and responsibility to developers, to collect and manage the

aforementioned corpus, or 2) a desired design, where the developer is expected

to input the model that she wants to obtain in advance. In any case, the

developers have to accept a global solution, which might consider classes that

are not part of the scope of the maintenance task that she is performing, or in

other words, out of the context. As a result, the developer has to deal with an

long sequence of refactorings that often affect classes on which she has no prior

knowledge. Yet, previous studies have shown that developers prefer approaches

that do not disrupt their work flow. In fact, Murphy-Hill et al. report that

developers prefer approaches that suggest refactoring operations that can be

applied to the group of files that are currently active in their workspace [22].

This paper describes an automated refactoring approach that is based on

task context (we refer to our proposed approach as ReCon in the rest of the

paper) that has the following advantages over the state-of-the-art approaches:

1) it does not require a set of bad examples, as detection rules are derived from

the literature of anti-patterns; 2) it is customizable at a high-level of abstraction,

using a domain specific language, and 3) it generates a set of local refactoring

solutions, i.e., refactoring suggestions over active classes, that developers can

apply on the fly while performing his development or maintenance task.

To evaluate the performance of ReCon, we mined 1,705 Mylyn interaction

histories (IH) from three open-source projects (Mylyn, PDE, and Eclipse Plat-

form). From the IH of each task, we computed the relevant classes and entities

targeted by the developer when performing the task (this constitutes the task

context). Then we download the code snapshot for each task, from the version

control system (VCS) of the project and evaluate the quality of the project

before and after applying ReCon, considering the removal of anti-patterns and

the quality gain in terms of three desirable quality attributes: understandabil-

ity, flexibility, and reusability defined in [27]. We run our approach in two

scenarios, the refactoring of all classes in a system (root-canal), and the in-

cremental refactoring of certain classes explored during maintenance sessions
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(floss-refactoring). The remainder of this paper is organized as follows: Sec-

tion 2 provides some background information and a description of the data used

in this paper, while Section 3 describes our approach for refactoring using con-

text. Section 4 presents and discusses the evaluation of our approach. Related

work is outlined in Section 6. Section 7 discloses the threats to the validity of

our study. Finally, we present our conclusions and lay out directions for future

work in Section 8.

2. Background

In this section, we provide the background information about refactoring

(Section 2.1) and task context (Section 2.2).

2.1. Refactoring Anti-patterns to improve design quality

The process of correcting anti-patterns can be divided in three steps: 1)

determination of the classes that need to be refactored, 2) selection of appro-

priate refactorings to correct anti-patterns contained in the identified classes, 3)

application of the refactorings and evaluation of their effectiveness with respect

to some quality criteria [28]. Once a developer has determined the necessary

steps to correct an anti-pattern, she/he has to decide the order in which refac-

torings will be applied. The ordering of refactoring is not a trivial problem, as

the type and number of refactorings operations is typically high, and sometimes

conflicting with each other.

Conflicts between refactorings occurs when the application of one refactor-

ing cause elements of other refactorings disappear, invalidating their applicabil-

ity [29]. In some cases it is possible to solve this problem changing the order in

which the conflicting refactorings are applied. But in other cases it is necessary

to choose in favor of one refactoring of another (mutual exclusion).

Concerning the size of the search space, if k is the number of available

refactorings, the number of possible solutions (NS) is given by NS = (k!)k [30],

which results in a space of feasible solutions that is too large to be explored

exhaustively.
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For these reasons, we believe that an automated-refactoring approach for

refactoring suggestion could support developers to improve the design quality

of their systems, without investing too much time and effort in this task.

In general, developers follow two main refactoring strategies [31]: floss refac-

toring and root-canal refactoring. The floss refactoring strategy consists in

applying refactoring to the code while performing other development or mainte-

nance activities, e.g., adding new features, or fixing a bug. In the floss refactor-

ing strategy, the refactoring of the code is not the main goal; developers com-

bine different types of code changes with refactoring. In the case of root-canal

refactoring, developers perform the refactoring of the code exclusively. Floss

refactoring is a recommended and a common strategy followed by developers

according to previous works [31, 22]. However, automating floss refactoring

is challenging. So far, existing approaches perform anti-patterns detection on

the whole program, and provide a final solution comprised of a set of low-level

refactorings which have to be applied (sometimes on classes unknown from the

developer) in order to improve the quality [23, 24, 25]. Other approaches, con-

sider more than one objective when refactoring, e.g., semantic-similarity [26]

and historical information [32] but still propose long sequence of refactorings

that often affect classes unknown to developers. These previous approaches are

more suitable for root-canal refactoring activities. During root-canal refactor-

ing sessions, developers can work together to improve the design quality of their

system (for example by implementing the sequence of refactorings suggested by

these previous approaches.

In this work, we aim to support developers during floss refactoring per-

formed while implementing their daily development and maintenance tasks. To

guide the search of refactoring opportunities in relevant artifacts (i.e., classes

relevant to developer’s task), we leverage information provided by interaction

traces (captured using the monitoring tools) and suggest refactorings that the

developer can apply on the fly while performing his task.

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.2. Task context

This section presents in details the concept of context used in this paper.

By task context, we refer to the program entities that the developers used when

resolving a development or maintenance task. In fact, during development or

maintenance sessions, developers usually interact with program entities through

their IDE (Integrated Development Environment). The task context is accessi-

ble using monitoring tools, such as Mylyn [33], or MimEc [34]. These tools log

all developers’ interaction with the program entities (e.g., interaction trace). In

the following we use Mylyn as an example of a monitoring tool.

Mylyn is an Eclipse plug-in for task management, which introduces the con-

cept of task-focused interface [35]. When developers activate a task, Mylyn

automatically build the task context by monitoring developer’s activities. Task

context is a graph of program elements and their relationships that a developer

uses to perform a task. Mylyn builds the task context based on a degree-of-

interest model that consist of weighing the relevance of elements to the task.

A developer can create a Mylyn task to track the code changes when handling

a change request. The developer’s programming activities are monitored by

Mylyn to create a task context and predict relevant artifacts for the task. The

programming activities monitored by Mylyn include selection and edition of

files. In Mylyn, each activity is recorded as an interaction event between a

developer and the IDE. There are eight types of interaction events in Mylyn,

as described in Table 1. Three types of interaction events are triggered by a

developer, i.e., Command, Edit and Selection events.

Each Mylyn log has a task identifier, which often contains the change request

ID. A Mylyn log is stored in an XML format. Its basic element is Interaction-

Event that describes the event. The descriptions include: a starting date (i.e.,

StartDate), an end date (i.e., EndDate), an event type (i.e., Kind), the identi-

fier of the UI affordance that tracks the event (i.e., OriginId), and the names

of the files involved in the event (i.e., StructureHandle). Figure 1 presents an

example of InteractionEvent that was recorded during the correction of the bug
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#311966 1.

Table 1: Event Types from Mylyn.

Event Type Description Developer-Initiated ?

Command Click buttons, menus, and type in keyboard shortcuts. Yes

Edit Select any text in an editor. Yes

Selection Select a file in the explorer. Yes

Attention Update the meta-context of a task activity. No

Manipulation Directly manipulate the degree of interest (DOI) value

through Mylyn’ user interface.

No

Prediction Predict relevant files based on search results. No

Preference Change workbench preferences. No

Propagation Predict relevant files based on structural relationships

(e.g., the parent chain in a containment hierarchy).

No

<?xml version=”1.0" encoding=”UTF-8”?>

<InteractionHistory

     Id=”https://bugs.eclipse.org/bugs-311966”

     Version=”1">

     <InteractionEvent

          StartDate="2010-06-25 11:27:23.935 EDT"

          EndDate="2010-06-25 11:27:27.777 EDT"

          Kind="edit"

          OriginId="org.eclipse.jdt.ui.CompilationUnitEditor"

          StructureHandle="/org.eclipse.mylyn.bugzilla.ui/src/org/eclipse/mylyn/

                                       internal/bugzilla/ui/tasklist/BugzillaConnectorUi.java"

          StructureKind="resource"

          Interest="2.0"

          Delta="null"

          Navigation="null"

     />

     ...

     <InteractionEvent

     ...

     />

</InteractionHistory>

Figure 1: Structure of the Mylyn log of bug #311966.

In the rest of the paper, we refer to the set of program entities relevant to a

developer’s task as the context.

2.3. Metaheuristics techniques

One key component of our approach is a meta-heuristic technique which goes

through the set of alternative designs in the search of the optimal solution, i.e.,

1https://bugs.eclipse.org/bugs/show\_bug.cgi?id=311966
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the sequence of refactorings that corrects more anti-patterns. Depending on

the number of parameters, the scope (local or global search) and convergence

time, the results may vary and can have an impact on the execution time and

the solution’s quality. Hence, to provide an insight into which meta-heuristics

are most effective using automated refactoring, we implement three well known

techniques that are described below.

Simulated Annealing (SA). It is a meta-heuristic technique [36] that imi-

tates the process of metal annealing, by allowing movements of worse quality

than the current solution, with a probability that decreases during the search

process (when the temperature goes down), until only good quality solutions are

accepted. In the first step, the probability toward improvement is low, allowing

the exploration of the search space (consequently escaping from local optima),

but this behavior changes gradually according to the cooling schedule which is

crucial for the performance of the algorithm. The movements between designs

are achieved by perturbing the initial solution, generally a random one.

Genetic Algorithm (GA). It is an evolutionary metaheuristic [37, 38], where

a group of candidate solutions, called individuals or chromosomes, are recom-

bined through some variation operators, i.e., crossover, and mutation, in order

to select the best solutions of each iteration (generation). The process of se-

lection and recombination is guided by an evaluation function, a.k.a., fitness

function, which ensures that the best individuals have greater chances to be se-

lected in each generation. GA is a population-based algorithm, because it works

with several solutions at the same time, contrary to trajectory-based methods

like hill-climbing and simulated annealing that work with only one solution at

a time.

Variable Neighborhood Search (VNS). It consists of dynamically changing

the neighborhood structures defined at the beginning of the search [39], which

expands until a stopping condition is met. In its first step, a solution in the

kth neighborhood is randomly selected and altered (shaking phase). Then, a

process of local search starts from this point independently of the neighborhood

structures. If the outcome solution of the local search is better than the current
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solution, the first one is replaced by the new solution and the process restarts

at the first neighborhood, otherwise k is incremented and a new shaking phase

is started from a new neighborhood. The advantage of this metaheuristic is

that (1) it provides diversification when changing neighborhoods in case of no

improvement, (2) choosing a solution in the neighborhood of the best solution

yields to preserving good features of the current one. For our particular case,

the shaking phase consists of modifying i refactoring operations from the end

of the sequence, until we reach the starting point. The local search mechanism

is responsible to apply all the possible variations to the candidate solution and

select the best local optima. In our case, local search operates at the level of

the last j refactoring operations.

We selected these metaheuristics because SA and GA are well known tech-

niques that have been used in previous works on refactoring [40, 41, 42, 24, 43],

and VNS, has been applied in combinatorial optimization problems [44, 45, 46].

VNS is particular attractive to study for the reasons explained above.

3. Approach

This section presents the foundations of our proposed approach ReCon that

aims to improve the design quality of object-oriented systems in an incremental

way, relying on task context information produced by monitoring tools. We use

the occurrence of anti-patterns as a proxy for software design quality.

3.1. Approach overview

In Figure 2 we present the workflow of ReCon. ReCon takes as an input an

interaction trace generated by a monitoring tool, and a software system. We

generate an abstract model by performing a static analysis of the software sys-

tem. We identified the relevant classes from the interaction trace (task context),

and build a map of anti-patterns based in the anti-patterns detection results.

Next, we generate a list of candidate refactorings to correct the anti-patterns

detected. Next, we use a search algorithm to find the best combination of refac-

torings that remove the largest number of anti-patterns. The search algorithm
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can be any metaheuristic technique such as GA, SA, or VNS, cf. Section 2.3.

It can be argued that in tasks comprised of a few classes, a greedy algorithm,

or even applying all the candidate refactorings is more effective than running

a metaheuristic. However, the real difficulty, besides the number of refactoring

operations, is the refactorings that are conflicted, i.e., the ones that cannot be

applied together. For that reason, if we find that there is no conflict between the

refactoring operations proposed, we simply apply all the refactoring operations.

Otherwise a search algorithm is used.

The search algorithm generates a set of candidate sequences in a non-deterministic

way. The candidate sequences are evaluated using a blackbox approach, where

each candidate sequence is applied to a copy of the abstract model, and the

resultant model is evaluated in terms of anti-patterns occurrences. This process

continues until it finds a sequence that removes all anti-patterns, or the search

algorithm reaches the maximum number of iterations. The final output is a

valid (non-conflicted) sequence of refactorings to improve the design quality of

the code entities in the task context.

Interaction
trace

 Search
algorithm

Best
sequence of
refactorings

Software
System

List of Relevant
entities

Obtained from a monitoring tool, 
e.g., Mylyn, or Mimec.

Context Adaptor
Anti-patterns 

Detector

Abstract 
ModelModel generator

Map of 
anti-patterns

Generation of
refactoring
 candidates

List of 
candidate

Refactorings

Figure 2: Workflow of ReCon.

3.2. Automated-Refactoring using task context

ReCon, our novel approach, formulates the correction of anti-patterns as

a combinatorial optimization problem [47]; given a software system, with the
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help of an objective function, it selects and applies refactorings to a light-weight

representation of the system in order to move through the space of alternative

designs, until we find the design with higher quality, measured in terms of anti-

patterns correction.

The objective function that we use to guide the search for refactoring se-

quences is presented in Equation (1) [30]. It measures the number of anti-

patterns removed in comparison with the maximum number of anti-patterns

that can exist in a system. We choose this fitness function because it is easy

to implement and it is an inexpensive way to measure the effectiveness of our

approach with respect to the correction of anti-patterns.

Quality = 1 − NDC

NC ×NAT
, (1)

where NDC is the number of classes that contain anti-patterns, NC is the num-

ber of classes, and NAT is the number of anti-pattern’s types. This objective

function increases when the number of anti-patterns in the system is reduced

after applying the proposed refactoring sequence. The output value of Quality

is normalized between 0 and 1.

Note that the objective function (the number of anti-patterns removed) de-

pends in a non-trivial way on the code of the original and the refactored version.

This fact makes it difficult to model the problem using a closed algebraic expres-

sion and, thus, limits the kind of algorithms and techniques we can use to solve

the problem. In particular, mathematical programming techniques are difficult

to apply in this case, since it requires constraints and objective functions given

as closed algebraic expressions. Any algebraic model of the objective function

should probably take into account too much detail of the source code, which

would increase the number of variables and constraints of the potential mathe-

matical program up to the point that it is too large to be solved in a reasonable

time. For this reason, we follow a black box optimization approach, where the

quality of the solutions proposed is given by an objective function which detects

on-the-fly anti-patterns in the refactored code. Metaheuristic algorithms [48]
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are among the most successful techniques to apply in the context of black box

optimization. In the next paragraph we will detail the representation of the

solutions, and the parameters of the algorithms used in this paper to find the

best sequence of refactorings.

3.2.1. Solution representation

To represent a candidate solution, we use a vector representation where

each element represents a refactoring operation (RO). In Table 2 we present a

synthetic example. We include a Id field, which is an integer number assigned

to each refactoring operation in our generated list of refactoring opportunities.

The optimization algorithm uses this Id to know which refactorings have been

applied in the sequence and what ROs can be applied (valid movements in the

search space). We also include the anti-pattern’s source class, and the type of

refactoring. The type of refactoring is used for determining if there is any conflict

with any previous RO in the sequence. In addition to this, and according to

the refactoring type, we can have more fields providing additional information,

e.g., qualified name of long-parameter-list methods, in the case of LP class;

children class for a class a class containing Speculative generality anti-pattern,

etc.

Table 2: Representation of a refactoring sequence.

ID Source class Type Other fields

9 ExtWindowsMenuUI Introduce Parameter Object List of long-parameter-list methods

26 RangeSearchFromKey Inline class Target class

45 ProjectResource CollapseHierarchy Children class

16 ActivityContextManager Spaghetti code Long method(s) name

3.2.2. Variation operators

Simulated annealing. It employs one variation operator, a.k.a., perturba-

tion operator, which consists of choosing a random point in a sequence, then

we remove the refactoring operations from that point to the end, and finally we

regenerate the sequence until we cannot add more refactoring operations. To
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ilustrate this procedure consider the example show in Figure 3. We define this

strategy, because an arbitrary transformation of a refactoring operation in the

sequence, like the one implemented in binary strings, will lead to semantic incon-

sistencies given that in refactoring the order is important, e.g., one refactoring

could block further refactorings. Moreover, it is cheaper to add operations from

a starting point (in the worst case the first refactoring operation) than verifying

semantic correctness backwards, and finally, it brings more diversity which is

the ultimate goal of perturbing a sequence.

Id:701
Type: Move 
method
Source 
class...

Id:16
Type: inline 
class 
Source 
class...

Id:15
Type: move 
method
Source 
class...

Id:272
Type: move 
method
Source 
class...

Id:897
Type: inline 
class 
Source 
class...

Id:701
Type: Move 
method
Source 
class...

Id:15
Type: move 
method
Source 
class...

Id:272
Type: move 
method
Source 
class...

Id:897
Type: inline 
class 
Source 
class...

Id:701
Type: Move 
method
Source 
class...

Id:88
Type: move 
method
Source 
class...

Id:272
Type: move 
method
Source 
class...

Id:63
Type: Intr. 
Param. Obj.
Source 
class...

1. Select a 
random cut 
point for 
each parent

2. Remove 
refactorings 
after cut 

3. Add new 
refactorings 
until is not 
possible 

Figure 3: Example of perturbation operator

Genetic algorithm. It employs two variation operators, crossover and muta-

tion. To select the best individuals to perform the crossover, we use the “binary

tournament” technique. The crossover operator is “Cut and splice” [24, 49]

technique, which consists in randomly setting a cut point for each parent, and

recombining with the rest of elements of the other parent’s cut point and vice-

versa, resulting in two individuals with different lengths. An example of this

operator is shown Figure 4. Note that when a refactoring operation is conflicted

with a previous one in the sequence, we just drop it.

The mutation operator follows the same strategy than the perturbation pro-

cess implemented in our version of simulated annealing, rather than the one

proposed in in [24, 49] because we found that the former one was unable to find

complete solutions, i.e., the ones that removes all anti-patterns in a reasonable
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amount of time.

Variable neighborhood search. It uses the same perturbation operator of SA

to alter a solution in the kth neighborhood.

Id:701
Type: Move 
method
Source 
class...

Id:12
Type: Intr. 
Param. Obj.
Source 
class...

Id:392
Type: Move 
method
Source 
class...

Id:15
Type: move 
method
Source 
class...

Id:272
Type: move 
method
Source 
class...

Id:897
Type: inline 
class 
Source 
class...

Id:55
Type: Col. 
hierarchy
Source 
class...

Id:36
Type: Move 
method
Source 
class...

Id:71
Type: Intr. 
Param. Obj.
Source 
class...

Id:701
Type: Move 
method
Source 
class...

Id:15
Type: move 
method
Source 
class...

Id:272
Type: move 
method
Source 
class...

Id:897
Type: inline 
class 
Source 
class...

Id:71
Type: Intr. 
Param. Obj.
Source 
class...

Id:55
Type: Col. 
hierarchy
Source 
class...

Id:36
Type: Move 
method
Source 
class...

Id:12
Type: Intr. 
Param. Obj.
Source 
class...

Id:392
Type: Move 
method
Source 
class...

P
A
R
E
N
T
S

C
H
I
L
D
R
E
N

1. Select a 
random cut-point 
for each parent

2. For each 
parent, create a 
child combining 
the refactorings 
before the cut-
point with the 
refactorings after  
the cut-point of 
the other parent.

Figure 4: Example of crossover operator

Parameters of the metaheuristics. We use three metaheuristic techniques

in our case study. As we mentioned before, they make use of different settings to

move through the decision space in the search for an optimal solution. To deter-

mine the best parameters for the techniques employed, we run each algorithm

with different configurations 30 times, following a factorial design.

In the case of GA we test 16 combinations of mutation probability pm = (1,

0.8, 0.5, 0.2), and crossover probability pc = (1, 0.8, 0.5, 0.2), and obtained the

best results with the pair (0.8, 0.8). This is not a surprise as in [49] they

found high mutation and crossover values to be the best trade for algorithm

performance.

For SA, we set the initial temperature to 10,000,000, and tried three different

values of cooling factor (CF), CF = (0.990, 0.993, 0.996, 0.998) and found the

best results with the latter one.

For VNS we define a maximum number of neighborhoods maxK = 100.
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In the local search, we tried different values of local factor j = (2, 4, 6, 8), and

found the best results with the smallest value of 2.

For the specific problem of automated refactoring, setting the initial size

of the refactoring sequence is crucial to find the best sequence in a reasonable

time, especially when we have a huge number of candidate refactorings, because

setting a low value will lead to find poor solutions in terms of anti-patterns

correction. On the contrary, if the initial size is very large, we may obtain the

reverse effect because applying many refactorings not necessarily implies better

quality, as refactorings can improve one aspect of quality while worsen others.

Hence, we experiment running the algorithms with three relative thresholds:

25%, 50%, 75% and 100%, of the total number of refactoring opportunities. We

found that 50% give us the best results in terms of removal of anti-patterns.

Finally, the number of iterations for all the algorithms is set to 1000. The

population size for GA is set to 100 individuals as typically used value in other

refactoring works [50], and the selection operator used is binary tournament.

4. Evaluation

The goal of this case study is to assess the effectiveness of ReCon in correcting

anti-patterns in object-oriented systems (OO) during maintenance tasks. The

quality focus is the improvement of the design quality of OO systems. The

perspective is that of researchers interested in developing automated refactoring

tools, and developers interested in improving the design quality of their code.

The context consists of 1,705 task contexts, and 1,013 code snapshots from

three open-source software systems (Mylyn, PDE, and Platform), and three

metaheuristic techniques (GA, SA, VNS). In Table 3, we present relevant in-

formation about the Eclipse projects studied and the count for each type of

anti-pattern.

4.1. Dependent and Independent Variables

To assess whether automatic refactoring using context improves the quality

of a system, we consider the following dependent and independent variables:
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Table 3: Descriptive statistics of the studied projects.

Subproject Num. of classes Num. of tasks Num. of anti-patterns

Mylyn 2,365 183 167

PDE 16,045 129 3,512

Platform 20,259 213 3,558

Independent variables: The independent variables define the refactoring ap-

proaches that we performed. We use two refactoring approaches: automated

root-canal refactoring and automated floss refactoring.

Dependent variables: We use the following variables to assess whether a

refactoring approach (i.e., automated floss refactoring or automated root-canal

refactoring) improves the quality of the system.

• Number of anti-patterns removed after refactoring (#AP): For each refac-

toring approach, we compute the number of anti-patterns removed. The

number of anti-patterns removed is an indication of the improvement of

the design quality of the system. The more anti-patterns are removed, the

better is the design quality of the system.

• Design quality improvement. After finding the best refactoring solution for

each program using the proposed metaheuristics, we evaluate the resulting

design code using 5 quality functions attributes of QMOOD hierarchical

model.

4.2. Data Collection and Processing

We follow two main steps to collect and process the data of our experiment:

(1) In step one, we collect developers’ interaction traces from the Eclipse bug

repository 2. Interaction traces appear as attachments to a bug report. These

interaction traces contain program entities that developers interacted with (i.e.,

the context). When collecting an interaction trace during a bug resolution,

developers also perform modifications on the system. These modifications that

2https://bugs.eclipse.org/bugs/
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change the state of the system (and which can improve or degrade the quality

of the system) are essential for the completion of the developer’s task. Hence,

it is important to consider these developers’ modifications when looking for

refactoring opportunities. We consider a patch attached to a bug report as

the changes performed by a developer during his working session if and only

if the interaction trace and the patch are attached by the same developer at

the same time [51]. In our experiment, we consider the interaction traces and

patches of three Eclipse projects that have most interaction traces. Precisely,

we downloaded 663, 132, and 218 couples of interaction traces and patches for

Mylyn, PDE and Platform systems, respectively.

(2) In step two, we identify the start timestamp of each interaction trace.

We consider that developers checkout the system before they start to fix a bug.

Thus, we checkout the snapshot of the system from the appropriate source code

repository (i.e., the VCS of the project on which the task was performed) on

the master branch and before the start timestamp. In total we checkout 663,

132, and 218 snapshots of Mylyn, PDE and Platform projects, respectively.

Snapshots provide the states of the system used by the developers and the

patches contain the changes made by the developers.

4.3. ReCon implementation

We instantiate our generic approach ReCon, in Java. We start extracting

relevant code entities in a task from interaction traces, generated by Mylyn,

using our context adaptor. Then, we perform the static analysis of the system,

using Ptidej tool suite3. The result is a PADL Model, which is an abstract

representation of the code entities, such as classes, interfaces, methods and

attributes, and their structural relationships, e.g., inheritance, association, etc.

Next, we detect anti-patterns in the PADL model using SAD tool, which is the

implementation of DECOR [52], a well known approach to define and detect

anti-patterns, also part of Ptidej tool suite. DECOR uses a set of rules defined in

3http://www.ptidej.net/tools/designsmells/

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

a domain specific language (DSL) to characterize anti-patterns. These rules are

derived from metrics, structural and semantic properties. DECOR is recognized

to have the highest precision in detecting anti-patterns and code smells [52].

In this work, we consider four types of anti-patterns, namely Lazy Class

(LC), Long Parameter list (LP), Spaghetti Code (SC) and Specula-

tive Generality (SG). We select these anti-patterns, because (1) they are

well defined in the literature, with the recommended steps to remove them [53],

(2) they are easy to identify by developers [14], (3) they have been studied in

previous works [8, 52, 54, 55]. In Table 4, we present a brief definition of each

anti-pattern and the proposed refactoring(s) to correct them. The proposed

refactorings procedures, suggested in the literature [56, 57], aim to support de-

velopers with a previous knowledge of the system functionality that they want to

improve. To automatize this task, we have to adapt the aforementioned proce-

dures, leveraging the structural information computed from the abstract model

and the anti-pattern detection, defining a corresponding refactoring strategy for

each anti-pattern, and following the recommendations from previous works for

semantic preservation [58, 59].

Table 4: ReCon anti-patterns refactoring strategies.

Name Description Refactoring(s) strategy

LC Small classes with low complexity that do

not justify their existence in the system

Inline class

LP A class with one or more methods having

a long list of parameters

Introduce parameter object

SC A class without structure that declares

long methods without parameters

Replace method with method object

SG An abstract class that is not actually

needed, as it is not specialized by any other

class

Collapse hierarchy

We describe the set of refactoring strategies that we implemented in our

approach to correct classes affected by the aforementioned anti-patterns.

In the case of lazy class, the proposed refactoring is inline class, which consist

of moving all the features of a LC to another class, and after that remove the LC
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class from the system. As an example, we present in Figure 5 the UML diagram

of class XMLCleaner, from Eclipse Mylyn Project. This class, which aims to

escape “&” characters from XML files, consists of only one public method with

less than 20 LOC. Hence, a candidate refactoring operation could be to inline

class XMLCleaner to another class; for example, AbstractReportFactory class

from the same package, that makes use of this class in the method collectResults.

XMLCleaner

+clean( in :Reader, tempFile: File)

AbstractReportFactory

+RETURN_ALL_HITS
-inStream
-characterEncoding

#CollectResults( contentHandle 
:DefaultHandler,  clean :boolean)

AbstractReportFactory

+RETURN_ALL_HITS
-inStream
-characterEncoding

#CollectResults( contentHandle 
:DefaultHandler,  clean :boolean)
+clean( in :Reader, tempFile:  File)

a) Original design b) Refactored design

Figure 5: An example of Lazy class and its corresponding refactoring.

As we can observe, inline class refactoring is comprised of a series of low

level refactorings that have to be applied in specific order, e.g., move method(s)

and/or attribute(s) to another class, update call sites, and delete LC class.

Unlike previous refactoring approaches where low level refactorings are com-

bined without targeting an specific anti-pattern, the sequence of refactorings

operations generated by our approach contains all necessary steps to remove

a particular type of anti-pattern. Before applying a refactoring operation, we

check if it satisfies a set of pre- and post-conditions to preserve the semantic of

the code. For example, one precondition is that we do not inline parent classes,

as inlining such classes will introduce regression in the children. An example of

post-condition is that after inlining a LC, there is no class in the system with

the same signature of the LC. Other aspects of quality, such as cohesion, are

also considered by our approach when applying a refactoring operation. For the

inline class example, we select a destiny class that is related to the LC as much

as possible. To select such a class, we iterate over all the classes in the systems,

searching for methods and attributes that access the LC features directly, or by

public accessors (getters or setters). From those classes we choose the one with
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the large number of access to the LC.

Long parameter list classes are classes that contain one or more methods

with an excessive number of parameters, in comparison with the rest of the

entities. DECOR defines a threshold to detect when a method have excess of

of parameters, based on the computation of boxplot statistics involving all the

methods in the system. For example, class RemoteIssue from mylyn project

(shown in Figure 6) has 21 parameters in its constructor, making it hard to

understand and maintain.

The refactoring strategy consists in (1) extracting a new class for each long-

parameter-list-method, that will encapsulate a group of parameters that are

often passed together, and that can be used by more than one method or classes

(improving the readability of the code); (2) updating the signature of each

method to remove the migrated parameters, and update the callers and method

body in the LP class, to instantiate and replace the parameter with the new

parameter object.

public RemoteIssue ( java . lang . St r ing id ,

org . e c l i p s e . mylyn . i n t e r n a l . j i r a . core . wsdl . beans . RemoteVersion [ ]

a f f e c t sVe r s i on s ,

java . lang . St r ing ass ignee ,

java . lang . St r ing [ ] attachmentNames ,

org . e c l i p s e . mylyn . i n t e r n a l . j i r a . core . wsdl . beans . RemoteComponent [ ] components

,

java . u t i l . Calendar created ,

org . e c l i p s e . mylyn . i n t e r n a l . j i r a . core . wsdl . beans . RemoteCustomFieldValue [ ]

customFieldValues ,

java . lang . St r ing de s c r ip t i on ,

java . u t i l . Calendar duedate ,

java . lang . St r ing environment ,

org . e c l i p s e . mylyn . i n t e r n a l . j i r a . core . wsdl . beans . RemoteVersion [ ] f i xVer s i ons ,

java . lang . St r ing key ,

java . lang . St r ing p r i o r i t y ,

java . lang . St r ing pro jec t ,

java . lang . St r ing reporte r ,

java . lang . St r ing r e so lu t i on ,

java . lang . St r ing status ,

java . lang . St r ing summary ,

java . lang . St r ing type ,

java . u t i l . Calendar updated ,

java . lang . Long votes ) { . . . }

Figure 6: An example of Long Parameter list constructor detected in Mylyn.
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Spaghetti code classes are those classes that implement long methods with

no parameters at all, abusing of old procedural programming paradigm, and ne-

glecting the advantages of object-oriented programming. Hence, the proposed

refactoring strategy includes the extraction of one or more long methods as new

objects. This requires creating a new class for each long method, where the

local variables become fields, and a constructor that takes as a parameter a

reference to the SC class; the body of the original method is copied to a new

method compute, and any invocation of the methods in the original class will

be referenced through the parameter (stored as final field) to the SC class. Fi-

nally, the original long method is replaced in the SC class by the creation of

the new object, and a call to the compute method. Note that we updated the

detection rule of spaghetti code defined in SAD to better reflect the definition

in the litterature [57], where is stated that spaghetti code is a class with no hi-

erarchy that declares long methods with no parameters. However, the detection

condition for method with many parameters in SAD is set to number of param-

eters inferior to five. We modified the condition to methods with number of

parameters equal to zero, to avoid detecting false positives of this anti-pattern.

Note that we did not find instances of this anti-pattern in any of the projects

studied, using neither the original nor the suggested fix, and for that reason we

cannot provide any example.

In the case of classes affected by speculative generality, the definition states

that there is an abstract class that is specialized only by one class, mainly for

handling future enhancements that are not currently required, and thus it is

not worthy to keep both classes in the system. We can observe this anti-pattern

when we find a subclass and superclass that look-alike. For example, consider-

ing the classes AbstractHandler from packages org.eclipse.core.commands and

org.eclipse.ui.commands in Platform project depicted in Figure 7. We can ob-

serve that these two classes are practically the same. In addition, there is no

other class that inherits from the parent class AbstractHandler (core.commands),

hence this case is candidate to apply collapse hierarchy refactoring.

To collapse hierarchy, we first pull up the methods and attributes from the
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child class to the parent class, update the constructor, remove the children class

from the system, remove the abstract modifier from the parent class and update

the call sites, and types to point to the parent class. There is one case where

we omit the application of this strategy, and it is when the child class is defined

as inner class inside another class. Inner classes are an integral part of the

event-handling mechanism in user interfaces events [60], which is far different

from the definition and application of SG anti-pattern, and moving the features

of those classes to another entities, may introduce a regression in the system,

or deviate from the designer intention.

AbstractHandler

-baseEnabled

+addhandlerListener(...)
+dispose
+execute(...)
#fireHandlerChanged(...)
#hasListeners()
+isEnabled()
+ishandled()
+removeHandlerListener(...)
+setBaseEnabled(...)
+setEnabled(...)

AbstractHandler

-handlerListeners

+addhandlerListener(...)
+dispose
+execute(...)
#fireHandlerChanged(...)
+getAttributeValuesbyName()
#hasListeners()
+isEnabled()
+ishandled()
+removeHandlerListener(...)

package
org.eclipse.core.commands

package
org.eclipse.ui.commands

Figure 7: An example of Speculative Generality anti-pattern.

With this information, the map of anti-patterns and the relevant code en-

tities, we automatically generate a list of candidate refactorings. The list of

candidate refactorings, and the abstract model are the input of the search al-

gorithm. The search algorithm generate a set of refactoring sequences. The

refactoring sequences are evolved using the corresponding variation operators.

All the candidate sequences are applied to a copy of the PADL model. Then

the number of anti-patterns in the resulting model are computed, and sequence

is evaluated using the objective function. The process finish when the stop con-

dition is met. The final output is the best refactoring sequence for the current

execution.

4.4. Analysis Method

We examine two scenarios: 1) developers perform a dedicated refactoring

session after the completion of the task (i.e., root-canal refactoring) and 2) de-
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velopers intersperse refactorings among other changes during the task activity

(i.e., floss refactoring). In the first scenario, we generate all refactoring candi-

dates in the system, while in the second scenario, we generate only refactorings

that are relevant for the classes in the developer’s context. The generated refac-

torings aim to remove the studied four anti-patterns. Note that we apply the

corresponding patch to each snapshot to ensure that the refactoring opportu-

nities generated are valid (i.e., they do not remove changes essential to the

successful completion of the task).

Due to the random nature of metaheuristic techniques employed in this

paper, it is necessary to perform several independent runs to have an idea of

the behavior of the algorithms. We execute 30 independent runs, which is a

typically used value in the search-based research community.

We also compare the performance of the metaheuristics employed with ran-

dom search to make sure that they can find better solutions than a pure random

approach.

4.5. Results of the Experiment

This section presents and discusses the results of our experiment.

4.5.1. Individual task context versus accumulated task context

After applying their corresponding patch to each task snapshot, we per-

form floss refactoring (as described in Section4.4) and compare the count of

anti-patterns before and after refactoring to assess the benefits of ReCon. We

observe a small reduction in the number of anti-patterns as we can observe

in Figure 8, where we present box plots of the 657 tasks of the Mylyn project.

This result was expected because the number of relevant files for each task (i.e.,

the developer’s context) is small in general, and consequently, the number of

refactoring opportunities too.

However, the accumulation of these small improvements (i.e., reductions

of anti-patterns occurrences) over a long period of time is likely to result in

a significant improvement of the design quality of the system. To verify this
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Figure 8: A comparison between the count of anti-patterns before and after applying floss-

refactoring for each individual task using context.

hypothesis, we accumulate the contexts of all the individual tasks from the oldest

to the most recent (ordered based on commit dates) and apply our automated

floss refactoring approach using the accumulated context. This allows us to

measure the accumulated impact of floss refactoring. We compute and compare

the count of anti-patterns for (1) the source code without refactoring, (2) the

source code after applying all the floss refactorings, and (3) the source code after

performing a root-canal refactoring. In Figure 9, we present a comparison of the

the anti-pattern’s count for our three projects before and after refactoring (floss

and root-canal). To verify if the observed differences (between the number of

corrected anti-patterns for root-canal versus floss-refactoring) are statistically

significant, we performed a Wilcoxon rank sum test [61] at 95% confidence

level (i.e., α = 5%). The test was statistically significant (i.e., p-value<0.05),

indicating that the distribution of the results is not the same for both groups.

We also evaluated the magnitude of the difference by computing the Cohen’s

d effect size [62]. The results show that the difference is large for the three
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projects (d ≥ 0.8.).�

�

�

�

Overall, we observe that our proposed automated floss refactoring ap-

proach can reduce approximately 50% of anti-patterns. This is a sig-

nificant reduction considering the fact that it does not disrupt the de-

veloper’s work flow, since it only recommends refactorings that affect

files on which the developer is already working (i.e., files from the task

context).

On the contrary, relying on root-canal refactoring is expensive. The number

of refactoring opportunities detected go from 167 (Mylyn) to 2068 (Platform).

However, applying floss refactoring with ReCon can alleviate this cost. From

the individual tasks studied in this work we found that the tasks with more

refactoring opportunities are: Mylyn task 87670, 34; PDE task 84503, 50; and

Platform task 82540, 63. These number of refactorings, which might not be

trivial to be generated manually, are feasible to be evaluated and applied for a

developer with the help of our approach.

Nevertheless, after applying ReCon during the development and mainte-

nance of a software system, developers can still perform a root-canal refactoring

prior to the release of the system to remove the remaining anti-patterns. Fig-

ure 9 shows that a root-canal refactoring can be very effective at removing

anti-patterns in a system. After the root-canal refactoring of Mylyn, PDE, and

Platform, only respectively 1, 4, and 8 anti-patterns remained in the projects.

We manually inspect these cases, and found that the anti-pattern remaining in

Mylyn, that is a LP instance, was not removed because is inside an inner class

for which our implementation of introduce parameter object is not suitable; in

PDE two instances of lazy class could not be removed due to an issue with a

missing package name; in Platform, half of the anti-patterns of SG type were

not corrected because they refer to abstract classes belonging to external APIs

(java.util, and java.io). Beside this drawbacks, we consider that the ReCon

results are stable, and not biased towards any anti-pattern type.
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Table 5: Count of anti-patterns after applying floss refactoring.

Anti-pattern Original GA RS SA VNS

MYLYN

SG 0 0 0 0 0

SC 0 0 0 0 0

LC 27 19 25 19 19

LP 140 49 94 49 49

Total 167 68 119 68 68

PDE

SG 31 2 3 2 2

SC 0 0 0 0 0

LC 1205 180 193 180 180

LP 2276 1229 1320 1229 1229

Total 3512 1411 1516 1411 1411

PLATFORM

SG 30 22 23 22 22

SC 0 0 0 0 0

LC 1242 336 341 336 336

LP 2286 1595 1651 1595 1595

Total 3558 1953 2015 1953 1953

In the following, we will analyze the performance of the metaheuristics em-

ployed in this work, and their corresponding resources consumption.

In Table 5 we present the average count of anti-patterns of the 30 inde-

pendent runs for the three metaheuristics algorithms and random search in the

accumulated floss refactoring scenario. As we can observe, the three meta-

heuristics are capable of removing the same number of anti-patterns, thought

with some variations in the amount of memory and execution time required.

With respect to the instances of anti-patterns removed, there is little differ-

ence between the refactorings solutions found by each different metaheuristic,

especially if we consider that the detection and generation of refactoring op-

erations process is the same. However, the cpu time, and to some extent the

memory consumption, that one algorithm takes to find the best combination

of the refactorings is where we found more interesting differences. To corrobo-

rate this point, we manually compare the refactorings sequences and found that

most of the differences are related to the position in which each metaheuristic
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includes them in the sequence. This is true for the set of refactorings that are

not conflicted, and do not required an specific order to be applied.

We also observe that metaheuristics overcome random search in all the

projects studied. To corroborate this result, we apply the same statistical test,

Wilcoxon rank sum and Cohen’s d effect size, and found that the results are sta-

tistically different (p-value<0.05), and that difference between the metaheuris-

tics and random search is medium (d=0.07) in terms of anti-patterns correction.

The resources usage is depicted in Figure 10 for each metaheuristic. We

can observe that SA has the fastest execution among the three metaheuristics

followed close by GA. We corroborate this result applying Wilcoxon test and

Cohen’s d size effect, and found that this result is statistically significant in

comparison with GA and VNS, and with a large difference (d = 1.09, 7.31).

Concerning memory usage, the difference is also significant, but with a small

difference for GA (d=0.037) and large for VNS (d=5.68).

In a scenario where developers are more interested in obtaining a solution

fastest, SA is the recommended algorithm. GA consumes less memory but

with more variability in the execution time. VNS report the highest values for

memory consumption and execution time, given that it has to analyze many

neighborhoods before finding an optimal solution. In any case the execution

time required to perform floss refactoring using context in each individual task

is less than 200 seconds in average (in case someone opts for VNS), which is

acceptable when performing a coding task.

4.5.2. Performance of the algorithms

Finally, in Table 6 we present the resources usage for root-canal using SA

metaheuristic, as it is the one to find solutions in the shortest time. As we

can expect, the execution time and memory required to perform is bigger for

root-canal refactoring, and these values increase proportionally to the number

of classes in the studied project. This is expected since we look for refactoring

opportunities in all the classes in the system in root-canal refactoring, while in

floss refactoring we focus only on classes that are in the developer’s context.
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Figure 9: A comparison of anti-patterns occurrences after applying floss and root canal refac-

toring.
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Figure 10: Resources consumption for each Algorithm when performing floss refactoring.

It is clear that there is a trade-off to make between the quality achieved and

resources consumed, as the number of anti-patterns removed is less for floss

refactoring.

Table 6: Resources usage for root-canal using SA.

Program Memory usage (Mb). Execution time (hh:mm:ss)

Mylyn 933.78 00:48:58

PDE 4505.83 10:44:15

Platform 5936.74 14:09:01

4.5.3. Quality evaluation

After analyzing our approach in terms of memory usage and execution time,

we also consider important to assess the impact on the quality of the programs

analyzed. For this purpose, we use the QMOOD (Quality Model for Object-

Oriented Design) model [27] to evaluate the effect of the proposed refactoring

sequences on certain quality attributes. The rational for selecting the QMOOD

model is that previous studies have used it before to assess the effect of refactor-
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ing [24, 25, 49], and it defines six desirable quality attributes (reusability, flexi-

bility, understandability, functionality, effectiveness and extendibility) based on

11 object-oriented metrics. From these six quality attributes we only consider

the following attributes:

• Reusability : the degree to which a software module or other work product

can be used in more than one computer program or software system.

• Flexibility: the ease with which a system or component can be modified

for use in applications or environments other than those for which it was

specifically designed.

• Understandability: the properties of designs that enable it to be easily

learned and comprehended. This directly relates to the complexity of

design structure.

• Effectiveness: the design’s ability to achieve desired functionality and be-

havior by using OO concepts.

• Extendibility: The degree to which a program can be modified to increase

its storage or functional capacity.

The formulas to compute the aforementioned quality attributes are presented

in Table 7, and the metrics in Table 8. We omit functionality, as by definition,

refactoring is a behavior-preserving maintenance task, so we do not expect a

raise in this quality function.

To compute the quality gain, we use the formula proposed in [63] where the

total gain in quality G for each of the considered quality attributes qi before

and after refactoring is estimated as:

Gqi = q′i − qi, (2)

where q′i and qi represents the value of the quality attribute i after and before

refactoring.
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Quality Factors Quality Index Calculation

Reusability -0.25 * DCC + 0.25 * CAM + 0.5 * CIS + 0.5 * DSC

Flexibility 0.25 * DAM - 0.25 * DCC + 0.5 * MOA +0.5 * NOP

Understandability -0.33 * ANA + 0.33 * DAM - 0.33 * DCC + 0.33 * CAM -0.33 * NOP -

0.33 * NOM - 0.33 * DSC

Effectiveness 0.2 * ANA + 0.2 * DAM + 0.2 * MOA + 0.2 * MFA + 0.2 * NOP

Extendibility 0.5 * ANA -0.5 * DCC + 0.5 * MFA + 0.5 * NOP

Table 8: QMOOD quality metrics.

Design Property Metric Description

Design size DSC Design size in classes

Complexity NOM Number of methods

Coupling DCC Direct class coupling

Polymorphism NOP Number of polymorphic methods

Hierarchies NOH Number of hierarchies

Cohesion CAM Cohesion among methods in class

Abstraction ANA Average number of ancestors

Encapsulation DAM Data access metric

Composition MOA Measure of aggregation

Inheritance MFA Measure of functional abstraction

Messaging CIS Class interface size
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In Figure 11, we can observe the quality gain obtained for each selected

QMOOD attributes after applying root-canal and accumulated floss-refactoring

using context. In both cases, the quality increases according to the five at-

tributes. Reusability is the quality attribute that has the highest gain, while

effectiveness has the lowest one (0.01,0.009), follow by flexibility (0.27, 0.19).

We suggest that the negligible gain in effectiveness is due to the combination

of metrics that does not penalize coupling like (DCC), that is impacted by the

refactorings proposed in the case study. On the contrary, we observe that ex-

tendibility, which penalizes DCC with -0.5, show better results (0.46, 0.34).

The low gain in flexibility is presumably due to the fact that a big portion of

the weight of that quality attribute is on the Number of polymorphism meth-

ods (NOP) metric. This metric refers to methods that are overridden by one

or more descendent classes. Since the refactorings applied on the programs

do not override existing methods, as it is not required by the definition of the

anti-patterns analyzed, the increment of this quality attribute is small. On the

contrary, the reusability attribute which gives a high weighing to Design Size

(Number of classes), and Messaging (communication between classes) metrics

benefits from the decomposition on long parameter list, which is one of the most

predominant anti-patterns in the three studied projects. Finally, the substantial

increment in understandability reflects a drop in the complexity of the design

structure. Understandability is one of the most desired attributes to achieve

from the point of view of developers, as it eases the addition of new features

and enhancements.�

�

�



To summarize this section, we conclude that our proposed approach

can successfully improve the quality of a software system, not only with

respect to the number of anti-patterns corrected, but also in terms of

reusability, understandability, and to a minor extent, flexibility.
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Figure 11: The impact of the best refactoring solutions on QMOOD quality attributes.

5. Discussion

Results from Section 4.5 show that our proposed approach ReCon is effective

at correcting anti-patterns in software systems. ReCon can find refactoring

solutions in a reasonable time using a reasonable amount of resources. The

main contribution of ReCon is leveraging task context information to prioritize

the refactoring of classes that undergo changes more often. This is especially

convenient if we consider that the length of the sequence of refactorings is shorter

in a floss scenario than a root canal one. The complexity of the scheduling of

the refactorings is also simplified, as the number of possible conflicts is reduced,

and finally it does not make too much sense to modify classes that do not change

very often.

By contrasting the quality of the resulting design before and after refactoring

using Recon in floss and root-canal scenarios give us an insight of the usefulness

of the refactorings proposed not only in terms of anti-patterns correction, but

in other quality attributes like coupling and design size.
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Concerning to floss and root canal scenarios, one interesting finding is the

distribution of anti-patterns among the classes that are touch by developers

during a task context. For example, for Mylyn project, which has a total of

2365 classes, we covered 72% of them in the floss accumulated scenario (1697)

and remove approximately 59% of anti-patterns; that means that 28% of the

classes, which were not modified in our collected dataset, contain 41% of anti-

patterns. The coverage of classes in PDE and platform is considerably less, 24%

and 11%; however, the remaining anti-patterns in the untouched classes are 40%

and 55% respectively. These results suggest that for PDE and platform, 60% of

the anti-patterns studied are concentrated in a small portion of the system.

Finally, ReCon do not require any set of bad code examples to work like

previous approaches [64, 30, 65, 63], so it can be used directly out of the box.

Another advantage of ReCon is that the thresholds used for detecting the ana-

lyzed anti-patterns, can be easily modified according to the user needs through

SAD and DETEX, without modifying any line of code in the implementation

of ReCon.

6. Related Work

We report previous works related to anti-patterns, refactoring and the use

of Mylyn context.

6.1. Anti-patterns

Anti-patterns such as those defined by Brown et al. [57] have been proposed

to embody poor design choices. These anti-patterns stem from experienced

software developers’ expertise and are reported to negatively impact systems

by making classes more change-prone [66] and defect-prone [8, 67]. They are

opposite to design patterns [68], i.e., they identify “poor” solutions to recurring

design problems. For example, Brown et al. define 40 anti-patterns that describe

the most common recurring pitfalls in the software industry [57]. Coplien and

Harrison [12] described an anti-pattern as “something that looks like a good
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idea, but which back-fires badly when applied”. Khomh et al. [8] investigated

MessageChains in ArgoUML, Eclipse, Mylyn, and Rhino and found them to be

consistently related to high faults and change rates.

Concerning the detection of anti-patterns and code smells, we present the

following representative works. Marinescu [69] proposed a metric-based ap-

proach to detect anti-patterns capturing deviations from “good design princi-

ples” through a set of rules comprised of metrics joined by set operators and

relative thresholds. Munro [70] presented a similar rules metrics-based approach

to detect code smells, and evaluated the choice of metrics and thresholds through

an empirical study.

Moha et al., proposed a domain-specific language to characterize anti-patterns

based on a literature review of existing work. They also proposed algorithms

and a platform to automatically convert specifications into detections algorithms

to apply in a software system. They achieved good precision and a perfect re-

call [52]. Our approach implements the detection rules defined by this work to

identify anti-patterns in our studied systems.

Khomh et al., proposed a Bayesian approach to account for the uncertainty of

the loosely specified definitions of anti-patterns. By computing the probability

that a class participate in an anti-pattern, this approach allows quality analysts

to prioritize the inspection of bad candidate classes [55]. These previous works

has contributed significantly to the specification and automatic detection of

antipatterns. However our approach aims to provide a mean to automatically

remove the anti-patterns during maintenance sessions.

6.2. Refactoring

In an industrial setting, Rompaey et al. [21] found that refactoring can help

to reduce over 50% of memory usage, and 33% startup time improvement in a

telecommunication company. In a case study with several revisions of an open

source project, Soetens and Demeyer [18] found that most refactorings tend to

reduce the Cyclomatic complexity [71], especially when they target duplicate

code. Du Bois et al. [20], performed an experiment with students and observed
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that refactoring God classes improves the comprehensibility of the source code.

In an industrial setting at Microsoft, Kim et al. [19] found that modules that

underwent refactoring have less inter-module dependencies and less post-release

faults.

Tsantalis et al., proposed different approaches to detect refactoring oppor-

tunities like extract method, move method, and remove non-trivial code smells

like feature envy and type-checking, to improve the design quality of a system.

They implemented their techniques as an Eclipse plug-in, named JDeodorant 4

allowing their evaluation on java source projects [72, 73, 74, 75]. Semi-automatic

approaches provide an interesting compromise between fully automatic detec-

tion techniques and manual inspections. However, they require the developer

to take decisions about the order of refactorings to be applied. On the con-

trary, our approach aims to relieve developers from the time-consuming task of

selecting the best sequence of refactorings and evaluating their impact one by

one.

6.3. Search-Based Refactoring

We present a sample of representative works in this category. O’Keeffe and

Cinnéide [23] propose an approach that relies on the QMOOD model [27] to

assess the quality of the candidate refactorings. They implement their approach

using local search techniques, namely Simulated annealing (SA), and two ver-

sions of hill climbing. They found strong evidence that QMOOD flexibility and

understandability attributes are the most suitable attributes to assess the qual-

ity of the refactoring solutions. The same authors extended this study in [49]

by adding GA and compared the results of the four search techniques. They

found Multiple-ascent hill climbing to be the most efficient search technique in

terms of speed, quality obtained in different program inputs, and consistence for

a different set of parameters; GA performs better with high values of cross-over

and mutation; the effectiveness of simulated annealing varies in function of the

4http://www.jdeodorant.com
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input program.

In this work we use GA and SA as a mean of comparison, because: GA

is a global search algorithm and latest works on refactoring relied on variation

of GA like Genetic Programming, NSGA-II, etc. SA is one of the algorithms

that provide a strategy to escape local optima [48] and it has been applied

to several combinatorial problems in combinatorial optimization (CO) like the

Quadratic assignment problem (QAP) [76] and the Job Shop Scheduling prob-

lem (JSS) [77]. We use the same quality attributes to evaluate our approach,

though our approach is anti-pattern-driven. In our approach the quality at-

tribute with more gain is reusability, followed by understanding, and flexibility,

while in their approach the order between reusability and understandability is

swapped.

Seng et al. [24] propose an approach based on genetic algorithm, that aims

to improve the cohesion of the entities through the implementation of the move

method refactoring and evaluated the quality of the refactoring sequences with

a fitness function that comprise coupling, cohesion, complexity and stability

measurements.

Harman and Tratt [25] introduced a multi-objective approach for the prob-

lem of refactoring that allows to treat the refactoring problem as a multi-

objective problem, where the goal is to find the Pareto front, i.e., the set of

solutions where there is no component that can be improved without decreasing

the quality of another component. Thus, the outcome is not a single solution

but a set of optimal solutions to be selected by the developer. Our work treat

the problem of refactoring as a single objective, as we want to show that floss

refactoring guided by the context is a good alternative to traditional automated

refactoring approaches. We do not discard the use of multi-objective refactoring

guided by context in the future.

Ouni et al. [26] propose a multi-objective evolutionary algorithm based on

the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [78]. The two con-

flicting objectives of their approach are correcting the larger quantity of design

defects, while preserving semantic coherence. For the first objective, they input
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a set of rules to characterize design defects from the literature, and select the

rules that detect the most design defects from a set of previous detected defects

(example-based approach). The second objective is achieved by implementing

two techniques to measure similarity among classes, when moving elements be-

tween them. The first technique evaluates the cosine similarity of the name of

the constituents, e.g., methods, fields, types. The second technique considers

the dependencies between classes.

Moghadam and Cinnéide [40] propose an automated approach where the

goal is to reach a desired design model, described as a UML diagram. The

approach takes as input the source code of the desired program and the program

to be improved; then, it abstracts the corresponding UML design models, and

computes the differences between them. Next it maps the set of differences to

source-level refactorings that will be applied in the code. The search problem

consists in finding the larger sequence of refactorings that can be legally applied

in the program. The metaheuristics algorithms used are the same as those

implemented in [49]. The difference with our approach, is that the software

designer need to provide a desired design, to allow the program to generate

the refactoring sequences that are necessary to achieved this goal; however our

approach do not require to provide this desired model and can work out of the

box.

Mkaouer et al. [79] propose an extension of the work presented in [26], by

allowing the user to interact with the candidate solutions found by the multi-

objective genetic algorithm. Their approach consists in the following steps:

(1) a NSGA-II algorithm proposes a set of refactoring sequences that satisfies

three conflicting objectives, i.e., improving software quality (based on QMOOD

model), minimizing the number of refactorings and preserving semantic coher-

ence; (2) an algorithm ranks the candidates solutions, and presents them to the

user, according to the candidates features (number of occurrences in the Pareto

front, candidates’ order, and user’s feedback); (3) a local-search algorithm up-

dates the set of solutions after several iterations with the user, or when several

program changes have been applied.
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Our proposed approach applies the same metaheuristics used in the afore-

mentioned works. However, it differs in the following points: (1) while all of

these approaches implemented genetic algorithm variations (single and multi-

objective, i.e., NSGA-II), our approach suggests to change the focus of research

to floss refactoring guided by developer’s context. We consider it to be more

suitable for the refactoring problem because: the maintenance activities can be

interspersed with refactoring suggestions, similar to “quick fixes” provide by

current developers IDEs, like Eclipse, IntelliJ IDEA, etc. Hence the developer

can select among a reasonable number of candidate refactorings while working,

and improve the quality of the system incrementally. In addition to this 4 out

of 7 existing refactoring approaches require the user to input a set of defects

examples to generate the detection rules, however, in practice it is not feasible

to ask such a bothering task to the users, especially since the first motivation

of an automated approach is to relieve the burden of refactoring activities on

users, by suppressing manual error-prone activities.

6.4. Usage of Mylyn Context

Mylyn context have been used in two different ways: (1) to assist developers

during task resolutions i.e., the context is collected and directly used during the

resolution of the current task, and (2) to understand developers’ activities.

Kersten and Murphy [80] used the task context to reduce information over-

head by filtering and keeping in the developers’ environment (i.e., package ex-

plorer in the IDE) only the program entities relevant to the developer’s task.

This prevents the developer from searching for relevant information in a large

information space; improving the developer’s productivity. Robbes and Lanza

[81] also used developer’s previously collected contexts to build a code comple-

tion tool that reduces developers’ scrolling effort. Users found their proposed

tool to be more accurate than previous tools. Recently, Lee et al. [82] pro-

posed an approach (named MI) to recommend relevant entities to developers.

They used both view and selection activities on the entities from the developer’s

context and mine association rules to identify relevant entities.
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Among the studies that used Mylyn context to examine developers’ activ-

ities is the work of Sanchez et al. [83], who studied developers interruptions

and found that work fragmentation is correlated with lower productivity. Ying

and Robillard [84] and Zhang et al. [85] studied how developers perform editing

activities. Ying and Robillard [84] defined file editing styles (edit-first, edit-last,

and edit-throughout) and found that enhancement tasks are associated with a

high fraction of edit events at the beginning of the programming session(i.e.,

edit-first). Zhang et al. [84] characterize how several developers concurrently

edit a file and derive concurrent, parallel, extended, and interrupted file editing

patterns. They found these file editing patterns to be related to future faults.

Soh et al. [86] used Mylyn context to study how developers’ navigate through

program entities. They found that developers spend more effort on tasks when

they exhibit unreferenced exploration (i.e., program entities are almost equally

revisited) compared to reference exploration (i.e., revisitation of a set of enti-

ties).

To the best of our knowledge, none of the previous works that used devel-

opers’ context aimed to perform automated software refactoring.

7. Threats to validity

We now discuss the threats to validity of our study following common guide-

lines for empirical studies [87].

Construct validity threats concern the relation between theory and observa-

tion. Our modeling approach assumes that each anti-pattern is of equal impor-

tance, when in reality, this may not be the case.

Threats to internal validity concern our selection of subject systems, tools,

and analysis method. The accuracy of DECOR impacts our results. DECOR

is an academic tool which has been reported to achieve high recall and reason-

able precision [52]. However, other anti-pattern detection techniques and tools

may provide different results. The rational behind using Mylyn’s interaction

histories is that Mylyn plug-in is the only tool that has been applied to several
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open-source projects to gather developers’ interactions and these are publicly

available. Note that the projects analyzed are the top-three open-source projects

with more interaction histories.

Conclusion validity threats are related to the violation of the assumptions of

the statistical tests and the diversity of our dataset. We used non-parametric

tests (Wilcoxon rank sum) that make no assertion about the distribution of the

data. We used data from three open-source projects that have different sizes

and involve many developers.

External validity threats relate to the generalization of our results. Because

our subject projects are open-source and because we used a particular yet repre-

sentative subset of anti-patterns as proxy for software design quality, we cannot

guarantee that the findings of this study can generalize to proprietary software

projects and other open-source projects. In the future, we plan to analyze

more projects, including proprietary projects and projects written in different

programming languages, to draw more general conclusions.

Reliability validity threats concern the possibility of replicating this study.

All the raw data used in this paper are available in Eclipse Bugzilla. The

projects studied in this paper are also available online for the public.

8. Conclusion

In this paper, we propose a novel approach to solve the problem of correcting

anti-patterns. Previous approaches from the literature recommend refactoring

opportunities to developers without considering their coding tasks, even though

studies (e.g., [22]) have found that developers prefer refactoring suggestions that

can be applied to files that are active in their workspace. This lack of consid-

eration for developers’ context may explain the poor adoption of automated

refactoring approaches in industry. In addition to this, many of the existing

approaches require that developers input a set of bad code examples, to gener-

ate detection rules, or a desired model to generate the corresponding refactoring

solution. These requirements put extra work on developers, slowing the refactor-
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ing process, and even rendering it impractical in certain cases. To address these

issues, we propose ReCon, an automated refactoring approach that leverages

developer’s context and metaheuristic techniques to compute the best sequence

of refactoring that affects only entities in the developer’s context. We performed

a case study using three open-source project and found that ReCon can success-

fully correct more than 50% of anti-patterns in a project using less resources

than the traditional approaches from the literature. More importantly, ReCon

does not disrupt the developer’s work flow, since it only recommends refactor-

ings that affect files on which the developer is already working (i.e., files from

the task context).

We also assess the quality of our subject projects before and after applying

ReCon, using five quality attributes defined in the QMOOD model [27]. Results

show that ReCon can achieve a significant quality improvement in terms of

reusability, understandibility, extendibility and to some extent flexibility, while

effectiveness reports a negligible increment.

As a future work, we plan to extend our approach ReCon to include the

correction of more object-oriented anti-patterns. We also plan to add more

objective functions to capture other quality aspects in the search of more human-

like refactoring operations. For example, we will use historical information and

relationships between classes apart from context metrics, like Mylyn’s Degree

of Interest (DOI), to guide the search of new refactoring opportunities.
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ommendation system for software refactoring using innovization and inter-

active dynamic optimization, in: Proceedings of the 29th ACM/IEEE Int’l

Conf. on Automated software engineering, ACM, 2014, pp. 331–336.

[80] M. Kersten, G. C. Murphy, Using task context to improve programmer

productivity, in: Proceedings of the 14th ACM SIGSOFT/FSE, 2006, pp.

1–11.

[81] R. Robbes, M. Lanza, Improving code completion with program history,

Automated Software Engineering 17 (2) (2010) 181–212.

[82] S. Lee, S. Kang, S. Kim, M. Staats, The impact of view histories on edit rec-

ommendations, Software Engineering, IEEE Transactions on 41 (3) (2015)

314–330.

[83] H. Sanchez, R. Robbes, V. M. Gonzalez, An empirical study of work frag-

mentation in software evolution tasks, in: Proceedings SANER, 2015, pp.

251–260.

[84] A. Ying, M. Robillard, The influence of the task on programmer behaviour,

in: Proceedings ICPC, 2011, pp. 31–40.

[85] F. Zhang, F. Khomh, Y. Zou, A. E. Hassan, An empirical study of the

effect of file editing patterns on software quality, in: Proceedings WCRE,

2012, pp. 456–465.

[86] Z. Soh, F. Khomh, Y.-G. Gueheneuc, G. Antoniol, B. Adams, On the ef-

fect of program exploration on maintenance tasks, in: Reverse Engineering

(WCRE), 2013 20th Working Conference on, 2013, pp. 391–400.

53



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[87] R. K. Yin, Case Study Research: Design and Methods - Third Edition, 3rd

Edition, SAGE Publications, 2002.

54



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Biography

Rodrigo Morales is a Ph.D. candidate at Polytechnique Montreal. He

earned his Bsc. degree in computer science in 2005 from Polytechnic of Mexico.

And in 2008, he earned his Msc. in computer technology from the same Univer-

sity, where he also worked as a Professor in the computer Science department for

five years. He has also worked in the bank industry as a software developer for

more than three years. He is currently supervised by Foutse Khomh, Giuliano

Antoniol (Poly Montreal), and Francisco Chicano (ETS Spain). His research

interests are software design quality, anti-patterns and automated-refactoring.

Zephyrin Soh is a postdoc in the GIGL Department of the École Poly-
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