
Anti-Patterns for Multi-language Systems
Mouna Abidi

Polytechnique Montreal
mouna.abidi@polymtl.ca

Foutse Khomh
Polytechnique Montreal
foutse.khomh@polymtl.ca

Yann-Gaël Guéhéneuc
Concordia University

yann-gael.gueheneuc@concordia.ca

ABSTRACT
Multi-language systems are common nowadays because most of
the systems are developed using components written in different
programming languages. These systems could arise from three
different reasons: (1) to leverage the strengths and take benefits
of each language, (2) to reduce the cost by reusing code written
in other languages, (3) to include and accommodate legacy code.
However, they also introduce additional challenges, including the
increase in the complexity and the need for proper interfaces and
interactions between the different languages. To address these chal-
lenges, the software-engineering research community, as well as
the industry, should describe and provide common guidelines, id-
ioms, and patterns to support the development, maintenance, and
evolution of these systems. These patterns are an effective means
of improving the quality of multi-language systems. They capture
good practices to adopt and bad practices to avoid. In order to help
to improve the quality of multi-language systems, we analysed
open-source systems, developers’ documentation, bug reports, and
programming language specifications to extract bad practices of
multi-language systems usage. We encoded and cataloged these
practices in the form of design anti-patterns. We report here six
anti-patterns. These results could help not only researchers but
also professional developers considering the use of more than one
programming language.

KEYWORDS
Anti-patterns, multi-language systems, code analysis, software qual-
ity
ACM Reference Format:
MounaAbidi, Foutse Khomh, and Yann-Gaël Guéhéneuc. 2019. Anti-Patterns
for Multi-language Systems. In 24th European Conference on Pattern Lan-
guages of Programs (EuroPLoP ’19), July 3–7, 2019, Irsee, Germany. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3361149.3364227

1 INTRODUCTION
The quality of software systems become increasingly important
with the evolution of technology, the high demand for software
systems by society, and market competition. Providing systems
with good quality is a necessity and no longer an advantage [1].
Software quality is one of the most important concerns for systems
to reduce testings, maintenance, and evolution costs [2, 3].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroPLoP ’19, July 3–7, 2019, Irsee, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6206-1/19/07. . . $15.00
https://doi.org/10.1145/3361149.3364227

Software quality partly depends on adopting guidelines, idioms,
patterns, and avoiding code smells and design anti-patterns. For
example, design patterns [4] describe good solutions to recurring
design problems. On the contrary, design anti-patterns describe
poor solutions to design problems [5, 6]. Design anti-patterns are
negative practices at the design level, while code smells are at the
implementation level. Many studies reported that the use of design
patterns improves software quality while design anti-patterns nega-
tively impact software quality [7–9]. Developers are recommended
to remove anti-patterns and code smells as soon as possible through
refactorings, which are behavior preserving code transformations.

Most non-trivial software systems are developed using more
than one programming languages. These systems could arise from
three different reasons: (1) to leverage the strengths and take bene-
fits of each language, (2) to reduce the cost by reusing code written
in other languages, (3) to integrate systems originally written in
different programming languages, e.g., while integrating systems
from two different companies1. Developers can reuse existing mod-
ules and components, without writing the source code from scratch
[10]. They choose the programming language most suitable for
their needs, instead of implementing all the tasks with a single
programming language [11–13].

Several studies in the literature discussed multi-language sys-
tems, with studies mostly reporting the importance of addressing
the complexity as one of the main challenges of multi-language
systems [14, 15]. Some of the studies highlighted the importance
of investigating multi-language systems design patterns and anti-
patterns [16]. Tan et al. [10] introduced a taxonomy of bugs thatmay
result from combining Java and C++. Goedicke et al. [17] proposed
a pattern-based approach to wrap legacy components as black-
box entities. They introduced five architectural patterns based on
well-known design patterns [18]. These patterns are proposed to
wrap a system at different granularity levels, including wrapping
an existing C implementation into an object system. Neitsch et
al. [16] investigated build issues and defined build patterns and
anti-patterns to help developers building multi-language systems.

To support the software quality ofmulti-language systems, we ex-
tracted, encoded, and cataloged good and bad practices in the devel-
opment, maintenance, and evolution of multi-language systems. We
analysed the source code of open-source multi-language systems
as well as developers’ documentation, and programming-language
specifications. These systems contain mainly Java/C(++) but also
include other programming languages e.g. Python, JavaScript, Lua,
etc. We observed good and bad practices in the code as well as issues
reported in the developers’ documentation and bug reports. We
encoded and cataloged these observed practices and report our find-
ings in the form of anti-patterns. These anti-patterns could apply
to microservices or, rather, to the implementation of microservices,
1https://docs.google.com/document/d/1FF_OqFk5tROyRs2W5Xko17FNweG-MyK6V7qNZzFlgWQ/
edit#

https://doi.org/10.1145/3361149.3364227
https://doi.org/10.1145/3361149.3364227
https://docs.google.com/document/d/1FF_OqFk5tROyRs2W5Xko17FNweG-MyK6V7qNZzFlgWQ/edit#
https://docs.google.com/document/d/1FF_OqFk5tROyRs2W5Xko17FNweG-MyK6V7qNZzFlgWQ/edit#

EuroPLoP ’19, July 3–7, 2019, Irsee, Germany Abidi et al.

as to any other pieces of code in which such poor design or im-
plementation choice could appear. We have focused our efforts on
design anti-patterns to complement the previous work on identi-
fying design patterns for multi-language systems [16, 17, 19, 20].
Both design patterns and anti-patterns are important to improve
the quality of multi-languages systems and help developers coping
with their challenges. We believe that our results could help not
only researchers but also developers, maintainers of multi-language
systems, and also any of those considering using more than one
programming language in the same project.

The remainder of this paper is organised as follows. Sec-
tion 2 discusses the background of multi-language systems, anti-
patterns. Section 3 describes our methodology for gathering good
and bad practices. Section 4 reports multi-language systems Anti-
patterns. Section 5 summarises threats to the validity of our method-
ology. Section 6 presents relatedwork. Section 7 concludes the paper
and discusses future works.

2 BACKGROUND
We now present a brief background about multi-language systems,
patterns, and anti-patterns, in general.

Multi-language Systems: Developed usingmore than one pro-
gramming language. Most of the systems with which we interact
daily integrate components written in several, different program-
ming languages. Developers of these systems attempt to choose
the “right” programming language for each component. The adjec-
tive “right” covers every choice, from using the most appropriate
programming language instead of trying to solve all problems with
a single language [15], to using the programming language that
some particular developers know best. The resulting heterogeneous
components usually communicate through Foreign Function In-
terfaces (FFIs) [21]. Some of the multi-language systems also rely
on language binding that are wrapper libraries offering a bridge
between two programming languages, so that a library written for
one language can be used in another language.

Patterns and Anti-patterns: Patterns were introduced for the
first time in the domain of architecture by Alexander [4]. “Each
pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to
that problem, In such a way that you can use this solution a million
times over, without ever doing it the same way twice” [4, p267].
From architecture, design patterns were introduced in software
engineering by Gamma et al [18]. In their landmark book, Coplien
et al. [22] provided an overview of practical guidelines for design
pattern usage. They presented design patterns as a means to meet
the goal of capturing the design of complex object-oriented systems.
These design patterns are based on the developers’ experiences
when facing recurrent problems and applying “good” solutions to
solve these problems. The goal of encoding and cataloging design
patterns is to preserve, share, reuse, and improve design knowledge
and take the benefits from similar, past situations [22, 23].

Anti-patterns are “opposite” to design patterns. They document
“poor” solutions to recurring problems [5, 6]. In the literature, there
are two main types of such bad practices: anti-patterns and code

smells [5, 6, 24]. Several studies showed that the presence of anti-
patterns makes the evolution of the software more difficult. They
affect software comprehensibility and increase change- and fault-
proneness and increase the effort needed to perform maintenance
activities [25, 26]. For example, classes including design defects
are significantly more fault-prone and change-prone compared to
classes without those occurrences [27, 28].

Encoding and Cataloguing: There exist several templates in
the literature to encode patterns and anti-patterns [5, 6]. The tem-
plate that we used in this paper is inspired by Brown’s template [5].
We adapted the template to the specificity of our work as follows:

• Anti-pattern: We describe in the title the name to identify
the anti-pattern.

• Context: The context in which this particular anti-pattern
applies, for example, real-time systems or communication
systems.

• Problem: It introduces the initial problem that is being
solved or the problem that may lead to the wrong solution.
It can be illustrated by a simple concrete example.

• Bad Solution: The bad Solution is the solution solving the
problem on first thought but that has other negative impacts
on software quality.

• Forces Toward: Used in the anti-pattern section, they de-
scribe common reasons and choices that may lead to the
application of the bad solution. We relied on the forces dis-
cussed in the anti-pattern book to write the forces [5]. They
are based on the Software Design−Level Model (SDLM) that
are the general forces ignored, misused, or overused in the
Anti-pattern. They can also be contextual motivating factors
that influence design choices.

• Consequences of the Anti-Pattern: These consequences
describe the impact of applying the “poor” solution to solve
the problem.

• Forces Away: Used in the anti-pattern section, the forces
away provide the decisions and reasons to avoid the bad so-
lution. Similar to the Forces Toward, these forces are inspired
by Brown’s book and can be related to the management of
functionality, performance, complexity, changes, resources,
and technology transfer [5].

• Refactoring: This solution (or solutions) presents the better
solution that can be applied to remove the anti-patterns. It
includes the steps that can be followed to apply the solution.

• Benefits of the Refactoring: These benefits are the con-
sequences describing the positive impact of applying the
refactoring to remove the occurrences of the anti-patterns.

• Related Anti-Patterns: If any, specify the names of related
anti-patterns.

• Related Patterns: If any, specify the names of patterns that
could be used in the refactoring. In this paper, we specify the
names of the patterns that could be applied in the refactored
solution. In future work, we will examine the effectiveness
of those solutions.

• Examples: These examples provide code and–or diagrams
showing the anti-pattern in context. When possible, the ex-
ample is taken from real systems or is a Minimal, Complete,
and Verifiable example. In some cases, we provided a small

Anti-Patterns for Multi-language Systems EuroPLoP ’19, July 3–7, 2019, Irsee, Germany

fictive example. In other cases, we did not add examples,
especially where, the anti-pattern seems evident, or cannot
be well illustrated with only one example. We used a detailed
description to illustrate the situation.

3 STUDY DESIGN
In this section, we detail the setup of our study. We present the
steps followed to collect the anti-patterns. Figure 1 presents an
overview of our methodology. We believe that the following steps
could be used for a replication purpose as well as for any future
study investigating new design patterns and anti-patterns.

Prerequisites: We believe that to investigate and collect good
practices, design patterns, idioms— and bad practices—design anti-
patterns and code smells for multi-language systems, it is impor-
tant to have enough knowledge and experience with both multi-
language systems and design patterns and anti-patterns. From pre-
vious studies and our literature review, we already had good back-
ground and knowledge on design patterns, design anti-patterns,
and code smells for mono-language systems. Two of the authors
of this paper also have experience in developing tools to detect oc-
currences of design patterns, design anti-patterns, and code smells.
We performed in a prior study a systematic literature review and
a practice review to investigate and compare the usage of multi-
language systems in the literature and in real systems hosted in
GitHub. This step gave us good knowledge about multi-language
systems and their challenges as well as design patterns and anti-
patterns. It helped us to collect some keywords that can be used to
retrieve challenges and issues related to multi-language systems. It
also allowed us to better distinguish between a simple habit and a
possible pattern.

Data Collection: Once we decided to collect and document
anti-patterns for multi-language systems. We started by mining all
possible sources of documentation. We searched in the literature,
language specification, developers’ blog as well as bug reports. From
our systematic literature review on multi-language systems. We
found that the most studied combination of languages is Java/C(++).
For that, we decided to start with this combination and then include
other languages. We deeply read the Java Native Interface specifica-
tion [29] as well as developers’ documentation to collect common
practices and guidelines related to the JNI and multi-language sys-
tems. We searched in Google as well for JNI practices and find a
couple of developers’ blog and documentation that discuss common
good and bad practices3 2. We documented the practices extracted
in terms of definition, context, and examples.

We then consideredmulti-language systems in general and searched
for any other possible issues related to a combination of more than
one programming languages. We analysed bug reports and develop-
ers’ documentation to extract the issues related to multi-language
systems that have been reported by developers. We relied on of-
ten used websites such us Stack Overflow, GitHub issues, Bugzilla,
IBM Developers2, and developer.android3. We queried the developers’
documentation and bug reports by searching for common keywords
that reflect issues in multi-language systems. We relied on some

2https://www.ibm.com/developerworks/library/j-jni/index.html
3https://developer.android.com/training/articles/perf-jni

keywords collected from our literature review as well as common is-
sues reported by developers. We used the set of keywords extracted
from the previous step including JNI issue, Python/C issue, foreign
library, API, polyglot, programming languages issues, incompatibility,
compilation errors, memory issues, performance issues, security issues,
foreign function interface. As an example, when searching for JNI
issue in Bugzilla, our query returned 23 results, among them we
considered only two as possible bad practice. One was related to
the library loading, the other was related to the management of
exceptions4 5. From Stack Overflow, for the keywords JNI issue and
Python/C issue, we had for each of these keywords 500 results, we
searched manually only for issues that have been already discussed
in the developers’ documentation3 2.

We documented all of the reported issues and possible practices
in our list of potential practices. This list is then used as input to
the next step, which is the validation process. We believe that our
research method to collect practices was not exhaustive and that
there are many other good practices, design patterns, idioms— and
bad practices—design anti-patterns and code smells that can be
extracted as well. As future work, we plan to extract more practices
from these sources. We considered as practices a common situation
that was reported more than three times in any kind of documen-
tation, including literature, the developers’ documentation or bug
report.

Data Validation: For each of the practices reported in our list
of potential practices, we performed a coding process in which,
we provided a definition and explanation of the practice. The ex-
planation was in term of what are the contexts, situations, and
possible examples that we should look for to retrieve occurrences
of the practices. We performed a discussion between the authors
to validate the explanations provided for the potential practices.
We performed the validation process through different sources of
information following inclusion and exclusion criteria. Through
this step, we aimed to verify if the potential reported practices have
been used or discussed in at least three situations and-or examples
in open source systems. We searched for occurrences of these prac-
tices in different sources of information (e.g. GitHub, Developers’
Blog, Bug Report).

We defined a set of inclusion and exclusion criteria. As inclu-
sion criteria, we considered a practice that was discussed in at
least three situations. In the case of literature or any other type of
documentation, we searched for similar situations that have been
reported by developers, discussed in bug reports or developers’
blog. Another inclusion criteria were when analysing the source
code of multi-language systems. We searched if the good or bad
practices discussed in the literature were present in at least three
classes, source code files, or systems. As exclusion criteria, we con-
sidered a practice for which, we were not able to find at least three
of its occurrences in any of the sources of information, including
open source systems. We also considered as exclusion criteria prac-
tices that seem more likely to be a simple habit than a potential
anti-pattern.

We manually searched in the source of information (e.g. bug
reports, developers’ blog, developers’ documentation) to find at

4https://bugzilla.redhat.com/show_bug.cgi?id=529919
5https://bugzilla.redhat.com/show_bug.cgi?id=1045623

https://www.ibm.com/developerworks/library/j-jni/index.html
https://developer.android.com/training/articles/perf-jni
https://bugzilla.redhat.com/show_bug.cgi?id=529919
https://bugzilla.redhat.com/show_bug.cgi?id=1045623

EuroPLoP ’19, July 3–7, 2019, Irsee, Germany Abidi et al.

 Data Collection (2)

 Validation Process (3) Evaluation Process (4)

 Prerequisites (1)

Literature Specifications Developers'
 Blogs

Bug Reports

Mining Documentation and Projects for Each Practice

Surveying Developers
about Multi-language
 Practices

Developers

Validation Process

Documentation Process (5)

Documentation
of and four
anti-patterns.

Exclusion Criteria Inclusion Criteria

Mining Documentation to Collect
Practices Using Keywords

Set of
KeywordsGOF Design

Patterns, Anti-
Patterns, Code

Smells

SLR, Practice
Review on Multi-

language Systems

Coding Step for Each Practice
Validated
Practices

Evaluated
Practices Section 4

Potential
Practices

 Activity
Output of the
step that will
be used as
input of the
next stepInput

Figure 1: Overview of the Methodology Used to Collect and Document the Anti-patterns and Code smells for Multi-language
systems.

least three situations where the potential practices were discussed.
We also used data already extracted from one of our prior studies
focusing on JNI usage. The data consists of 100 multi-language open
source systems. We extracted these systems from OpenHub using
Python Scripts. We then downloaded the projects and manually
analysed their source code. These systems were mainly JNI systems
but also contain other languages. OpenHub provided the list of all
the languages used in the project. These systems contained not
only Java/C(++) but also Python, JavaScript, Lua, etc. (e.g. OpenCv
is mainly written in C(++) but contains 25.239 Python lines of
code, 24.427 Java lines of code, and other languages). Here are
some systems in which we mainly focused more during this study:
libgdx, Google toolkit, Openj9, Rocksdb, JMonkeyEng, OpenVRML,
PortAudio Java Bindings, jpostal, JavaSMT, Jna, ZMQ, reactNative,
Telegram, OpenCV, Tenserflow, JatoVM, SQLlite, Frostwire, Godot,
python-telegram-bot. We provide in Section 4 the sources and-or
name of the projects from which we extracted the anti-pattern.

We manually and qualitatively analysed the source code of the
multi-language systems collected from GitHub to extract occur-
rences of good and/or bad practices. We also checked if the common
guidelines and practices reported in the literature are followed by
the developers in practice. Most of them were not, in that case, we
reported it as a possible bad practice. In our case, we considered as
multi-language systems practices a piece of code that is involved
in the multi-language systems and participating in the interaction
between two or more languages and that has been documented
in the literature as bad practice or that have been reported in bug

reports or developers’ documentation as causing issues or nega-
tively impacting the system. We considered as practices a similar
situation and-or that were observed more than three times and was
discussed in the programming language specification, or developers
documentation as being a wise practice.

Data Evaluation: In order to evaluate our set of anti-patterns,
we asked in our survey on multi-language systems if developers
have faced these practices [30]. We also asked them in this survey
about any good or bad practices that they are adopting or avoiding
when using multi-language programming. We added the proposed
good and bad practices in our list of possible practices so they can be
used in future work as input to the validation process. We will use
this survey for future work to investigate the challenges related to
multi-language systems as well as the practices used by developers
to cope with those challenges.

Anti-patterns Documentation: We reported all the observed
practices and performed a discussion between the authors to vali-
date if the practices are really valuable and should be documented
in form of anti-patterns, or if they are only a simple practice or
developers’ habit. We discussed each case until a consensus was
reached. We used an available template to documented our results
in the form of six anti-patterns as presented in section 2. We believe
that these practices could help researchers and developers to cope
with the challenges introduced bymulti-language systems. In future
work, we will investigate more practices and document them in the
form of design patterns, anti-patterns, and code smells [31]. The

Anti-Patterns for Multi-language Systems EuroPLoP ’19, July 3–7, 2019, Irsee, Germany

figure 2 presents a pattern overview of the collected anti-patterns
and code smells and the relationships between them.

4 ANTI-PATTERNS FOR MULTI-LANGUAGE
SYSTEMS

In this section, we present a catalog of the good and bad practices in
the form of anti-patterns following the template detailed in section
2.

Excessive Inter-language Communication.

• Context: Supposing we are in a context in which we must
implement a task or add a new feature that is already avail-
able as library implemented in another language. This can
also be illustrated with a situation when a single language is
not suitable to implement all the tasks. It may appear in the
context of embedded systems, or systems in which we need
an important number of communication between different
layers or modules of the application.

• Problem: Someprojectsmay require an important com-
munication between components written in different
programming languages. Other projects may be inte-
grated with othermodules with high reuse of features
which results in several calls. The problem is that devel-
opers or maintainers do not always know how to deal with
such communication between heterogeneous languages and
components, which may lead to excessive inter-language
communication. Usually, different teams may be involved
separately to contribute to these components in a way that
developers do not have enough knowledge about the whole
architecture of the system.

• Bad Solution: Connect existing modules that are imple-
mented using different languages and/or technologies. Reuse
existing codes or modules implemented in different lan-
guages to benefit from the reuse of code or it can simply
be related to the fact that some tasks are easier implemented
in a specific language or are already available and ready
to be used. The bad solution would be, to add the foreign
code and access features from one language to another each
time in the program we need to access foreign objects with-
out considering the number of calls from one language to
another.

• Forces Toward: (1) Wrong partitioning of parts in the lan-
guages; (2) Trying to benefit of performance of another
lower-level language; (3) Using a scripting language to en-
able non-programmers to participate; (4) Providing several
wrappers to access the features of the system; (5) Not separat-
ing all the multi-language concerns; (6) During a change or
new requirement, design decision tends to introduce several
calls rather than to refactor working code; (7) Classes with
high coupling.

• Consequences of the Anti-Pattern: This anti-pattern will
result in an excessive passage of objects and calls between
the host and the foreign language. In a study focusing on

JNI systems, they found that calling the native code from
Java code can take five times longer than a regular method
call2. Similarly, calling Java code from the native code can
take substantial time. If the partitioning of tasks between
the foreign and the host languages is not used properly, this
can cause a dispersion of the responsibility to perform a
simple task between several languages. In some cases we
can have excessive calls and passage of parameters between
one language to another, These calls add more complexity
to the program and negatively impact the performance of
the system.

• Forces Away: (1) Design components with high cohesion;
(2) Separate the concerns; (3) Ensure efficiency and manage-
ment of the resources by limiting the number of methods
calls and messages sent between components; (4) Informa-
tion hiding and avoid indecent exposition.

• Refactoring: To refactor this anti-pattern, start by lo-
cating the classes and objects involving excessive com-
munication. Identify related attributes and operations.
Then try to split the responsibility in a way that min-
imises the calls between the different languages but
alsowith considering high cohesion.Decide which tasks
are better implemented in which language. A good solution
would be to separate the responsibility and identify the com-
mon concerns. If needed isolate the module involving the
excessive calls or provide a wrapper to minimise the calls
when we need to access from one language features available
in another language.

• Benefits of the Refactoring: Refactor this anti-pattern en-
sure high cohesion and low coupling. A better performance
by reducing the number of calls from one language to an-
other. It also reduces the complexity, by limiting and splitting
the responsibility between the host and the foreign code. An-
other benefit is to avoid unnecessary broken code related to
a nonseparation of concerns when applying changes.

• Related Anti-Patterns: Circular dependency.

• RelatedPatterns:Message Redirector [32] andAdapter[22].

• Examples: This anti-pattern can be illustrated when in a
system where we have different calls from one language to
another. Occurrences of this anti-pattern are generally ob-
served in systems involving different layers or components.
For example, the same object can be used and-or modified in
more than one modules written in different languages. Each
time we need the object, we pass it from one language to
another or we call the foreign method to perform specific
tasks in the object. The solution would be to separate the re-
sponsibilities and minimise the calls between the languages.
It is better to focus each time in a single language to im-
plement the tasks. Some examples of this anti-pattern have
been observed in Godot, PortAudio Java Bindings, OpenResty.
In Godot, The function process() is called at each time delta.
The time delta is a small period of time that the game does

EuroPLoP ’19, July 3–7, 2019, Irsee, Germany Abidi et al.

Excessive Inter-language
Communication Too Much Scattering Too Much Clustering Project Migration Language

Related Issues
Language and Paradigms

Mismatch

Passing Excessive Objects
Unnecessary Parameters

Not Handling Exceptions
Across Languages

Assuming Safe Multi-
language Return Values

Unused Native Methods
Declaration

Not Caching Objects'
Elements

Unused Native Method
Implementation

Not Securing LibrariesHard Coding Libraries Not Using Relative Path to
Load the Library

Memory Model Mismatch
Local References Abuse

Symptoms of Lead to

Unnecessary Use of Multi-
language Programming

Message Redirector Adapter WrapperFacade DecoratorComponent Wrapper Interface Extension

Object System Layer

Strangler Application

Code Smell Anti-Pattern Pattern for Refactoring Used For Refactoring

Figure 2: Pattern Overview Diagram - Relation Between Multi-language Anti-patterns, Code Smells, and Possible Patterns
Applied for Refactoring

Lua FileBrowser NGINX
(C) image.png

conf

API

Server

http Request
Lua FilesBrowser NGINX

(C) image.png

conf

Server

http Request
API

Refactoring

Entry Point

Repartion of communication between
Lua Files

Excessive communication with a single
Lua File

Figure 3: Illustration Anti-Pattern - Excessive Inter-
language Communication

not process anything i.e. the engine does other things than
game logic out of this time range. The foreign function pro-
cess() is called multiple times per second, in this case once
per frame6. Another example in PortAudio Java Bindings,
where they used raw buffers between Java and C++. In this
example, they copy data between buffers which makes way
for more communication than needed. Java supports mem-
ory mapped input/output for this purpose, with this raw
buffers can be used between language barriers7. We present
in figure 3, an example of occurrences of this anti-pattern
extracted from OpenResty. We found a situation, in which
a developer introduced several calls from one Lua file to
the Nginx. In this example, the developer was excessively
calling the function ngx.exec() from the Lua file and getting
values from the configuration file. The good solution is also
present in the same system. As they usually provide access
as an entry point to ensure the better way of communication
between Nginx and Lua8.

Too Much Scattering.

• Context: We are maintaining a system, migrating a project
from one language to another, or adding new functionality
and features available in other languages. In multi-language
systems usually, several teams are involved in the same

6https://github.com/godotengine/godot-demo-projects/blob/master/2d/pong/paddle.
gd
7https://github.com/rjeschke/jpa/blob/master/src/main/native/jpa.c#L84
8https://github.com/openresty/lua-nginx-module

project. This can also be faced in microservices architec-
ture and feature-based decomposition where several teams
are working in different features.

• Problem:Under timepressure developerswants to add
multi-language systems code, the problem is that de-
velopers in these situations are not always sure where
they should add the code. Especially that developers or
maintainers do not always have a global idea about the over-
all architecture and design of the system. When several de-
velopers or teams are involved in the same project bugs
related to changes may occur. Developers and managers
would avoid these breakages in unrelated features, if the
features are mixed together a change to the behavior of one
may cause a bug in another feature.

• Bad Solution:Try to always separatemulti-language classes
to avoid breakage in unrelated features without considering
the concerns. Add the foreign code without considering the
concerns and architecture of the project. Each time we es-
timate that the use of multi-language programming can be
easier to perform a specific task, we add the foreign code
without considering the classes already participating in the
multi-language code and the responsibilities of each class.

• Forces Toward: (1) Expose only subpart of the code and
some features, and hide others features to the client; (2)
Classes designed to be too simple and lightweight; (3) Adding
new requirements without considering the coupling; (4) Fa-
voring the understandability and simplicity of the classes
by introducing few multi-language codes in each class; (5)
Avoid breakage when applying a changes in unrelated fea-
tures that are mixed together; (6) Build Large code bases
over long periods of time by different people; (7) Wrong
partitioning of the allocation of responsibilities of classes
participating in the multi-language code.

• Consequences of theAnti-Pattern:Themethods and classes
participating in the foreign interaction are spread through

https://github.com/godotengine/godot-demo-projects/blob/master/2d/pong/paddle.gd
https://github.com/godotengine/godot-demo-projects/blob/master/2d/pong/paddle.gd
https://github.com/rjeschke/jpa/blob/master/src/main/native/jpa.c#L84
https://github.com/openresty/lua-nginx-module

Anti-Patterns for Multi-language Systems EuroPLoP ’19, July 3–7, 2019, Irsee, Germany

the code in a way that determining which classes are partici-
pating and which does require some effort. This code will be
more difficult to maintain and refactor. It would be hard to
know which classes are participating in the multi-language
programming and which are not. It becomes difficult to lo-
cate and fix issues related to multi-language programming.

• Forces Away: (1) Ensure a high cohesion and low coupling;
(2) Merge the multi-language code in specific classes to im-
prove the maintainability; (3) Ensure better encapsulation
and Open/Closed principle; (4) Promote abstraction among
classes and components.

• Refactoring: To refactor this anti-pattern, start by investi-
gating the architecture of the project, which classes and pack-
ages are better involved in the multi-language programming
concept. Then identify themulti-language code (e.g. methods,
attributes, etc.) that are scattered through the code and that
could be grouped in term of concerns. Once the above located,
try to isolate the foreign code and limit the number of
classes participating in the multi-language program-
ming. Such Classes should be easily located in both of
the languages, so they can easily be refactored ormod-
ified. It is better to concentrate the code participating in the
multi-language programming, so we have classes with and
classes without.

• Benefits of the Refactoring:When applying a change, de-
velopers or maintainers can easily locate the code related to
the same feature. The refactored solution will ensure high
cohesion and low coupling. Another benefit is to isolate the
foreign code and limit the number of multi-language classes.

• Related Anti-Patterns: Functional Decomposition [5].

• Related Patterns: Component Wrapper [17], Interface Ex-
tension [33], Facade, and Decorator [22].

• Examples: This anti-pattern can be observed in a system
wherewe havemany classes participating in themulti-language
programming and most of them contain only a small part
involving foreign code as illustrated in figure 4. These classes
are mainly mono-language but contain few foreign codes.
A good solution would be to refactor the code and isolate
the foreign code in a way that some classes are mainly par-
ticipating in the multi-language programming and others
involve only one language. We present a simple example
in figure 4 to illustrate the excess of classes participating in
multi-language programming. In this example, we have three
classes each of them contains two native methods declara-
tion. A good solution would be to move these methods or add
a superclass if needed, that will contain all the native decla-
ration methods, and keep these classes as inherited from this
superclass. This will reduce the number of native method
declaration by removing the duplicated ones. This will also
reduce the scattering of multi-language participants and con-
cerns by keeping the multi-language code concentrated only
in specific classes. In the same vein, in the system jpostal,

 YUV420Image

+ pixels: byte[]

+width: int
Etc...

+ native toRgb888()
:RGB888Image
+native toYuv444()
:YUV444Image

RGB888Image

+ pixels: byte[]

+width: int
Etc...

+ native toYuv420()
:YUV420Image
+native toYuv444()
:YUV444Image

YUV444Image

+ pixels: byte[]

+width: int
Etc...

+ native toRgb888()
:RGB888Image
+ native toYuv420()
:YUV420Image

Image

Etc...

Etc...

Image

+ pixels: byte[]

+height: int
+width: int

+ native toYuv420()
:YUV420Image
+native toYuv444()
:YUV444Image

+ native toRgb888()
:RGB888Image

Etc...

Refactoring

XImage

Etc...

Etc...

.cpp.cpp.cpp

.cpp

 YUV420Image

Etc...

+ native toRgb888()
:RGB888Image
+native toYuv444()
:YUV444Image

RGB888Image

Etc...

+ native toYuv420()
:YUV420Image
+native toYuv444()
:YUV444Image

YUV444Image

Etc...

+ native toRgb888()
:RGB888Image
+ native toYuv420()
:YUV420Image

XImage

Etc...

Etc...

Foreign Implementation

Figure 4: Illustration Anti-Pattern - Too Much Scattering

the classes AddressParser and AddressExpander contain each
few native declaration methods that could be grouped into
the same class9. Especially that the implementation of most
of these native methods is duplicated between both of them.
Other classes also from the same package contain one to
two native method declaration. Another example of this
anti-pattern is present in Frostwire. For example, the method
getWindowHandleNative() is the only function written in C,
and the window handle is used for displaying video using
mplayer10. This method could have been grouped with other
natives methods to reduce the number of classes participat-
ing in the multi-language code. There are also other ways of
doing this in Java by using a video player made for Java.

Too Much Clustering.
• Context: In a situation where we are developing a new
system or a systemwhich has been released and we are asked
to add new features. We are considering that the system is a
multi-language system. The features to add may be in the
same foreign language but are not related to each other. Each
one of them is related to a specific task.

• Problem: The problem is that under pressure, develop-
ers may excessively try to limit the classes participat-
ing in themulti-language programmingwhichmay vi-
olate the separating of concerns principle. This may be
related to concerns in term of tasks as well as concerns in
term of programming languages. Multi-language code is dif-
ficult to maintain and understand, having multi-language
code scattered through the project may negatively impact
the maintenance activities. For that, developers may choose
to always limit the classes containing the multi-language
code.

• Bad Solution: The bad solution would be to always try to
concentrate as much as possible the multi-language code
in the same classes without considering the responsibilities
related to each class. This situation can also be defined by the
merge the multi-language code in a single class in a way that

9https://github.com/openvenues/jpostal/tree/master/src/main/java/com/mapzen/
jpostal
10https://github.com/frostwire/frostwire/blob/7414e3be2ef5ced88a775df7831b7ae382fcf966/
desktop/lib/native-src/linux/SystemUtilities.cpp

https://github.com/openvenues/jpostal/tree/master/src/main/java/com/mapzen/jpostal
https://github.com/openvenues/jpostal/tree/master/src/main/java/com/mapzen/jpostal
https://github.com/frostwire/frostwire/blob/7414e3be2ef5ced88a775df7831b7ae382fcf966/desktop/lib/native-src/linux/SystemUtilities.cpp
https://github.com/frostwire/frostwire/blob/7414e3be2ef5ced88a775df7831b7ae382fcf966/desktop/lib/native-src/linux/SystemUtilities.cpp

EuroPLoP ’19, July 3–7, 2019, Irsee, Germany Abidi et al.

results in a high coupling and low cohesion. The occurrence
of this anti-pattern would appear if we do not consider the
concerns when adding new features or functionalities that
involve the use of a multi-language code. The allocation of
responsibilities between the multi-language classes is not
well managed during system evolution so that one module
becomes predominant regarding the other modules.

• Forces Toward: (1) Inappropriate requirements allocation;
(2) Class or module is given responsibilities that overlap most
other parts of the project; (3) Class designed to touch multi-
ple domains which must be decoupled from each other; (4)
Iterative development where proof-of-concept code evolves
over time into a prototype, and eventually, a production sys-
tem evolution; (5) Classes in the project designed mainly
for control or management; (6) Adding new requirements
without considering the cohesion; (7) Wrong management
of changes in the project by adding multi-language code to
classes that are already multi-language instead of loading
libraries or APIs in new classes.

• Consequences of the Anti-Pattern: As a consequence of
this anti-pattern, would be a negative impact on maintain-
ability, as applying a change would require an important
effort due to the complexity of understanding such code.
There is also a loose of portability and reusability as the
module has more than one responsibility. If we do not con-
sider the cohesion and concerns when adding the code, this
can result in a high coupling with low cohesion.

• Forces Away: (1) Depending on the number of calls decide
whether components that need to talk can have direct ref-
erences to each other without having to go through the
manager or controller class; (2) Promote simplicity and read-
ability of the classes; (3) High cohesion and low coupling.

• Refactoring: To refactor this anti-pattern, start by identi-
fying and grouping related attributes and operations
in termof concerns. Then, search or create classes that
could host these attributes and operations and ensure
ahigh cohesion. Then eliminate unnecessary coupling
and indirect associations to have a high cohesion with
low coupling. We encourage decoupling the code into
distinct unitswithwell-defined responsibilities. Always
separate the concerns. When the concerns are properly sep-
arated, we can have different teams working in parallel on a
given feature. A component with a solid separation of con-
cerns can ensure greater collaboration between developers,
maintainers, designers, etc. They can work at the same time
on the same component. We also recommend ensuring co-
hesion between the programming languages and not only
a cohesion of responsibilities. Depending on the program-
ming languages, a possible solution would also be to expose
services of a specific language and use extensions to invoke
each programming language.

• Benefits of theRefactoring: Refactor this anti-patternwill
introduce several benefits, including the separation of the
concerns and having simple and readable classes. This can
also reducemaintainability efforts by keeping classes cleaned.
Another benefit would be to allow high cohesion and low
coupling.

• RelatedAnti-Patterns:TooMuch Scattering ofMulti-language
Participants, Blob, and Swiss Army Knife [5].

• Related Patterns: Interface Extension [33].

• Examples:This anti-pattern can be identified inmulti-language
systems when the multi-language code is mixed in the same
classes or files without any common concerns.We believe
that it is a good practice to not spread the multi-language
code through the system, but this should be balanced be-
tween the context. A good solution would be to find a com-
promise between separating the concerns and not dispersing
the multi-language code. When a change needs to be applied
we should be able to easily locate the code directly associated
with the change. If the concerns are well separated between
the languages, it is easier for developers to work separately
in different tasks or modules. Separating the concerns also
help to avoid breakage in unrelated features, if the features
are mixed together a change to the behavior of one may
cause a bug in another feature. An example is React, as it
was reported to violating the separating of concerns by mix-
ing JavaScript code with HTML, and CSS11. We present in
figure 5 an example extracted from ZMQ JNI12. In this ex-
ample, native methods related to cryptographic operations
are mixed in the same class as the methods used for net-
work communication. This merging of concerns resulted in
a blob multi-language class that contains 29 native declara-
tion methods and 78 attributes.Another example, the class
GodotLib which contains 25 native declaration methods13.

Unnecessary Use of Multi-language Programming.
• Context: This anti-pattern can be observed when the task
can be completed in a single language in such way that
we are not really taking benefit if we will introduce the
usage of multi-language programming but we are adding
unnecessary complexity. Excessive usage of multi-language
programming may result in a loose of their benefits and
adding more unnecessary complexity to the project.

• Problem: This anti-pattern can result from a situation
inwhichwe are implementing a simple task or adding
new features to an existing system. These features or
tasksmaybe already available in other languages or as
libraries. However, their development presents a sim-
ple task and do not require too much effort. This can
also be related to the developer’s experience with the

11http://krasimirtsonev.com/blog/article/react-separation-of-concerns
12https://github.com/zeromq/zmq-jni/blob/master/src/main/java/org/zeromq/jni/
ZMQ.java
13https://github.com/godotengine/godot/blob/60d910b1916305c4b0ac5f92415083995b4f7c7a/
platform/android/java/src/org/godotengine/godot/GodotLib.javanativemethods

http://krasimirtsonev.com/blog/article/react-separation-of-concerns
https://github.com/zeromq/zmq-jni/blob/master/src/main/java/org/zeromq/jni/ZMQ.java
https://github.com/zeromq/zmq-jni/blob/master/src/main/java/org/zeromq/jni/ZMQ.java
https://github.com/godotengine/godot/blob/60d910b1916305c4b0ac5f92415083995b4f7c7a/platform/android/java/src/org/godotengine/godot/GodotLib.java nativemethods
https://github.com/godotengine/godot/blob/60d910b1916305c4b0ac5f92415083995b4f7c7a/platform/android/java/src/org/godotengine/godot/GodotLib.java nativemethods

Anti-Patterns for Multi-language Systems EuroPLoP ’19, July 3–7, 2019, Irsee, Germany

ZMQ

+ socket: long
+ flag: int

+ CURVE_SERVERKEY: int

+ publicKey: charBuffer

+ context: long

+ secretKey: charBuffer

+ zmq_curve_keypair(CharBuffer
CharBuffer): boolean
+ zmq_z85_encode(CharBuffer,
byte[]):boolean

+ zmq_getsockopt_int(long,
int):int

+ zmq_z85_decode(byte[],
String)

+ zmq_getsockopt_long(long,
int):long

+ zmq_send(long, ByteBuffer,
int):int

+ zmq_recv(long, ByteBuffer,int)
:int

+ zmq_connect(long,
String):boolean

+ zmq_discnect(long,String)
:boolean
+ zmq_poll(long,int,long):int

+ nativeInit():void

+ version():int

+ zmq_ctx_new():int

Etc...

ZMQCrypto

+ publicKey: charBuffer

+ CURVE_SERVERKEY:
int
+ zmq_curve_keypair(Cha
CharBuffer): boolean
+ zmq_z85_encode(CharB
byte[]):boolean

+ zmq_z85_decode(byte[]
String)

+ secretKey: charBuffer

ZMQ

+ POLLIN: int

+ POLLOUT: int

+ zmq_poll(long,int,long):int

+ zmq_poll(long,int,long):int

+ nativeInit():void

+ version():int

+ zmq_ctx_new():int

Etc...

Refactoring

.cpp

.cpp

.cpp

.cpp

ZMQNetwork

+ socket: long

+ context: long

+ zmq_getsockopt_long(long
int):long

+ zmq_send(long,
ByteBuffer, int):int

+ zmq_recv(long,
ByteBuffer, int):int

+ zmq_connect(long,
String):boolean

+ zmq_discnect(long,String)
:boolean

+ flag: int

+ zmq_getsockopt_int(long,
int):int

Foreign Implementation

Figure 5: Illustration Anti-Pattern - Too Much Clusterings

programming languages. Developers have different expe-
rience and levels of interest in different programming lan-
guages. The problem is that developers do not always have
a great idea about the architecture of the system to decide
whether in that specific case introducing multi-language
programming worth it or not.

• Bad Solution: Always favor the reuse of code. If a feature
or module is already available even if in another language,
then integrate the module and make your program multi-
language. If we are more comfortable in a specific language
that differs from the language used to implement the appli-
cation, use that specific language to implement the tasks.

• Forces Toward: (1) Reuse of existing resources; (2) Pres-
sure of time delivery; (3) Management of technologies and
following the trends; (4) Reuse of existing code to save the
development time; (5) Take the benefit of the different pro-
gramming languages; (6) Avoid reinventing the wheel; (7)
Start from a working example even if implemented in an-
other language and adapt it to the specific needs.

• Consequences of the Anti-Pattern: Those kinds of sys-
tems will be difficult to maintain and understand. Systems
are usually developed and maintained by different people, a
maintainer may not be as comfortable with multi-language
systems and may not understand why they have been used
in such situations.

• Forces Away: (1) Reuse components and APIs implemented
in the same language as the host project; (2) Improve the
reusability and portability; (3) Avoid unnecessary complexity
by introducing multi-language code.

• Refactoring: To refactor this anti-pattern, identify the tasks
or modules that could have been written in the same lan-
guage. Search for existing implementation or modules
implemented in the same language that could replace
the foreign code. Thenmeasure the cost and impact of
removing the foreign code in regards to the lifetime of
the project. Then, isolate the modules and try to migrate the
features and even reproduce the bugs in the same language.
We also recommend before introducing multi-language pro-
gramming, to determine if we are reducing or adding more
complexity. In the case where a single language can perfectly
complete all the tasks, it is better to use only this language
and not introduce another language. Even if at that time, a
specific developer would find it easier for him to perform
the tasks by reusing code written in a different language. It
is always recommended to consider the maintenance cost.
All the systems will be maintained and probably by another
person that may not have the same preferences as the initial
developer.

• Benefits of the Refactoring: Avoid unnecessary complex-
ity. This will reduce the challenges related to introducing
new programming languages. It is important to avoid multi-
language programming if we are losing the benefits of in-
troducing several languages. Other benefits of applying the
refactoring are to improve the understandability and read-
ability of the code and Reduce the maintenance efforts.

• Related Anti-Patterns: Overengineering.

• Examples: Some occurrences of this anti-pattern have been
observed in JNI systems that we analysed, in which we found
simple tasks delegated to JNI code. This was also discussed
in some developers’ documentation3. Figure 6 presents a pos-
sible case of unnecessary usage of multi-language systems
extracted from JniHelpers. In some cases, the introduction of
multi-language programming presents several benefits and
can be justified. For example, in the case of mathematical
operations like compression or encryption, or shared library
that could be better written in a language available on all
platforms. In these cases, we can reduce the maintenance
cost and development cost by using the existing library writ-
ten in C language for example instead of re-writing the same
code in several languages. However, we should always keep
in mind that native code might be faster under specific cir-
cumstances. But in case of a bunch of arrays, loops, and
arithmetic operations, there is no difference in performance
between using java and native or a different language14. The
solution would be when a task can be perfectly implemented
in a single language always go for that language. We also
found in Telegram occurrences of this anti-pattern. As it
packages SQLite while there are other database types imple-
mented in Java and recommended to be used within from
Java. Shipping SQLite opens the application for more vulner-
abilities and bugs. The same goes for shipping FFmpeg. It is
also recommended to not mix between Media playback and

14https://www.reddit.com/r/java/comments/vr250/the_jni_is_it_worth_it/

https://www.reddit.com/r/java/comments/vr250/the_jni_is_it_worth_it/

EuroPLoP ’19, July 3–7, 2019, Irsee, Germany Abidi et al.

security concerns. Several bugs and vulnerabilities related
to FFmpeg have been discussed in developers’ blogs and bug
reports15. Another example found in JniCompressions, where
native implementation where used, while their functionality
is already available as Apache common libraries for Java16.

/* Java */
native void createJavaString();
native void nativeCreateJavaStringFromJavaString(String s);
void createJavaStringFromJavaString() throws Exception {
nativeCreateJavaStringFromJavaString(TestConstants.STRING);

}

Figure 6: Anti-Pattern - Unnecessary Use of Multi-language
Programming

Language and Paradigms Mismatch.
• Context: In some cases, we can face tasks that may be better
implemented in a specific language/paradigm. Also, the cho-
sen programming language or paradigm might be inefficient
for some specific tasks due to limitations of that particular
language. However, the developer may be more comfortable
with that specific language or paradigm.

• Problem: Each programming language has its own bene-
fits and maybe more efficient for specific tasks. The choice
of the programming language to use depends on how the
solution is modeled and the design decision applied. Some
models work better with objects, some would best be done
in an iterative solution, etc. However, design decisions
may change during the software development phase
and the same of the programming language used in
the project. These languages have different paradigms
that may introduce some incompatibilities once com-
bined. In the same vein, developers do not have the same
preferences and competencies in term of programming lan-
guages. Many languages or environment decisions are made
by “if you have a hammer, everything looks like a nail”, de-
velopers tend to use the programming languages or tools
they are familiar with.

• Bad Solution: The bad solution would be to implement the
task in the language or paradigm that are easier to use but
may not be the best language for that task or may introduce
incompatibilities. This case may occur if we favor mono-
language programming but also in the case of multi-language
systems. If we do not choose the best language for the best
task but always prefer to use language and paradigms with
which we are more comfortable.

• Forces Toward: (1) Coexistence with other software; (2) In-
troduce benefits from low-level programming languages; (3)

15https://www.cvedetails.com/vulnerability-list/vendor_id-3611/Ffmpeg.html
16https://commons.apache.org/proper/commons-compress/javadocs/api-release/
org/apache/commons/compress/compressors/lz4/package-summary.html

Ensure efficiency implementation for specific tasks; (4) Reuse
of similar or same features already implemented in another
language; (5) Use of available resources; (6) A prototype or a
part of the code was already written in the other language
and developers prefer to reuse what was already available;
(7) An old project that is still used but developers avoid to
apply refactoring or migrate it to new technologies.

• Consequences of the Anti-Pattern: This anti-pattern can
introduce problems during maintenance phases and also per-
formance problems. As not all the languages are better used
for the same tasks17. The same task could be written in four
lines of code in Python language, however, require more
than 10 lines of Java code. This may impact the understand-
ability and maintainability of the system. Especially in the
case of multi-language systems, this may cause additional
overhead while debugging and maintenance of the system.
Bad solutions like these contribute to the technical debt on
the developers.

• Forces Away: (1) Multi-threaded safety and robustness; (2)
Ensure performance and calculation time; (3) Use each lan-
guage for the best purpose; (4) Ensure performance by using
low-level memory for specific tasks.

• Refactoring: It might be possible that a certain task
can be implementedmore efficiently using another com-
paratively lower level programming language than the
primary programming language for the project. To refac-
tor this anti-pattern we first recommend to deeply verify if
the task can be isolated appropriately. If yes, then depending
on the task, decide which language can be better suitable
for this situation. Once the choice of the language made,
search for an existing module or library implemented in
that language that provides the same features. The use of
another programming language or paradigm for these tasks
can boost the system’s overall efficiency. Then isolate the
task to a level that any problem caused by a task can be
easily traced back to the code for this task. If there is no
existing library or module that can be used, the task can be
programmed using the chosen programming language with
proper logs and documentation that can ease the usage of
the library in the system. This methodology ensures separa-
tion of concerns and availability of reusable code in different
modules or even projects.

• Benefits of the Refactoring: Take the benefit from each
programming language and use each language for the best
purpose. This can also ensure security by using program-
ming languages that present fewer vulnerabilities. Another
benefit is related to improving performance by using an-
other lower-level language for embedded programming or
OS programming.

• Related Anti-Patterns: Blob [5].

17https://stackoverflow.com/questions/1912408/appropriate-programming-languages-for-different-problems

https://www.cvedetails.com/vulnerability-list/vendor_id-3611/Ffmpeg.html
https://commons.apache.org/proper/commons-compress/javadocs/api-release/org/apache/commons/compress/compressors/lz4/package-summary.html
https://commons.apache.org/proper/commons-compress/javadocs/api-release/org/apache/commons/compress/compressors/lz4/package-summary.html
https://stackoverflow.com/questions/1912408/appropriate-programming-languages-for-different-problems

Anti-Patterns for Multi-language Systems EuroPLoP ’19, July 3–7, 2019, Irsee, Germany

FluidSimHeightMap

+ waveSpeed: float

+ timeStep: float

+ nodeDistance: float

+ viscosity: float

Etc...

+ load() :boolean

Refactoring

.cpp

FluidSimHeightMap

+ waveSpeed: float

+ timeStep: float

+ nodeDistance: float

+ viscosity: float

Etc...

+ native load() :boolean

Figure 7: Illustration Anti-Pattern - Language and
Paradigms Mismatch

• Related Patterns: Object System Layer [34], Wrapper, and
Facade [22].

• Examples: One of the observed example of occurrences of
this anti-patterns was while sending files in Python. The sys-
tem python-telegram-bot also contains occurrences of this
anti-pattern. Several issues have been reportedwhen sending
files in Python18. In the case where packets are checked for
an acknowledgment then the transmission speed in Python
is much lower than that of C programming language and
may lead to timeout issues. File transmission is a task that
can be easily isolated, and therefore programmed in C lan-
guage, which can be converted into a dynamic library for
use in Python. In this kind of situation, it would be better
to isolate the task and provide an external library. We will
benefit from the advantage that is introduced by the different
programming language and we use the right language for
the right task. We present in figure 7 another example of oc-
currences of this code smell extracted from jMonkeyEngine19.
In this example, JMonkeyEngine uses Java to process a lot
of mathematical operations mostly related to terrain genera-
tion using the method load(). This could have been offloaded
to C(++) and ensure better performance for each device as
the system already involve the C(++) language.

Project Migration Language Related Issues.
• Context: Developers and companies frequently face situa-
tions where projects fail or introduce several issues to be
migrated. This can also be faced when modernising applica-
tion from old technologies to the new trends and advantages
available in the market. Another case is, where applications
or websites were designed as a prototype or for internal
usage. But then started to be used by an important number
of users. For this kind of reasons companies often migrate
their applications. Another illustration of this anti-pattern is
that there are some utility tools that are not updated to sup-
port the latest and advanced features of new technologies.
This can cause restrictions on advancements and updates
to the project if these tools are not replaced. Some other
tools may be migrated from one language to another from
one technology to another. These systems, often become

18https://github.com/python-telegram-bot/python-telegram-bot/issues/533
19https://github.com/jMonkeyEngine/jmonkeyengine/blob/master/jme3-terrain/src/
main/java/com/jme3/terrain/heightmap/FluidSimHeightMap.java

multi-language systems as a subset of the system remain in
the old language and new features should be implemented
in another language.

• Problem: Usually systems are implemented under time de-
livery pressure or are designed as a prototype for internal
usage. These systems are usually not implemented in
a way that easily allows future migration and com-
patibility with new technologies. New programming
languages and technologies also appear every day and
with time, these technologies often become obsolete.
When migrating project it is also challenging to migrate
business rules. In some cases, the programming language or
technologies used in the past, may not be still used by an
important number of developers. Martin Fowler discussed
this common problem as it is really more complex to migrate
systems than what it seems20. He explained that even when
adding new features, old stuff has to remain, including old
bugs that need to be added to the migrated version of the
system. He introduced the concept of a strangler application
pattern as a way of handling the release of the refactored
code in a large application. We highly recommended when
developing a new application tomake it easier to be strangled
in the future. Several studies also in the literature discussed
the common issues and challenges related to the migration
of such application [35].

• Bad Solution: If the tool supports external libraries, then
dynamic libraries are created focusing on fulfilling the re-
quirements at hand. If the tools have no support for external
libraries, new tools are designed for that specific requirement
or additional third-party software are used.

• Forces Toward: (1) Legacy Configurations; (2) Business
pressure; (3) Prioritising the delivery of a working version
and do not consider the maintenance activities and evolu-
tion after delivery; (4) The project designed as a prototype
or one time project not designated to add new features or
be migrated with new technologies; (5) Not considering the
extensibility, only the delivery process in that present time;
(6) Design not oriented to support important changes and
allowing evolvability and openness; (7) Project based en-
tirely upon marketing and industry need, and not consider
future needs; (8) Lack of process management; (9) Companies
looking for a quick and cheap transition to a client/server
architecture.

• Consequences of the Anti-Pattern: In long term projects,
generally some utility/third-party tools are developed and
used to interact with the primary system. These tools are de-
veloped with a specific aim in mind, and their design might
not have been given enough attention to supporting exten-
sions according to the latest technology trends and new
programming languages. As new concepts are being imple-
mented in the form of packages and libraries constantly, if
the project dependency on these obsolete tools is high, then

20https://www.martinfowler.com/bliki/StranglerApplication.html

https://github.com/python-telegram-bot/python-telegram-bot/issues/533
https://github.com/jMonkeyEngine/jmonkeyengine/blob/master/jme3-terrain/src/main/java/com/jme3/terrain/heightmap/FluidSimHeightMap.java
https://github.com/jMonkeyEngine/jmonkeyengine/blob/master/jme3-terrain/src/main/java/com/jme3/terrain/heightmap/FluidSimHeightMap.java
https://www.martinfowler.com/bliki/StranglerApplication.html

EuroPLoP ’19, July 3–7, 2019, Irsee, Germany Abidi et al.

the entire project can become obsolete. The libraries might
be developed to solve specific problems at hand, but the lack
of updates and bad design for a tool in most cases causes ad-
ditional problems with time. Moreover, in most cases, when-
ever a third party tool or library is used, only a small subset
of its overall features is used in the project, which results in
additional technical overhead for the people working with
them. Migration issues are a common discussion between
developers. Especially when migration a project from one
language to another (e.g. from COBOL to Java), developers
are usually asking for any learned lessons or practices to
avoid common migration issues21.

• Forces Away: (1) Adapt to a changing world and technolo-
gies; (2) Coexistence with other software and technologies;
(3) Allow extensibility and reusability; (4) Incremental de-
sign process; (5) Choose language with active and important
community; (5) Preserve several years of development, while
greatly enhancing performance and flexibility.

• Refactoring: To refactor this anti-pattern, we recommend
first to understand the whole architecture of the system to be
migrated. Then, chose the languages and technologies that
will be used for the new version. Depending on the languages
and technologies, they may be some existing tools that can
help during the migration phase. It is also important, to con-
sider making the system more flexible to future migrations.
Martin Fowler introduced a possible solution to con-
sider a strangler application over a cut-over rewrite.
He also suggested as good practice when designing a
newapplication tomake it easier to be strangled in the
future. A good solution would be to always keep a future
vision when implementing a system. New technologies and
languages appear every day. Each of them introduces new
advantages and may solve specific challenges. The systems
should be designed in a way to allow extensions, especially
for multi-language systems usage. This will allow for smooth
addition of future modifications and new features. Devel-
opers should ensure that tool support is always as good as
expected.

• Benefits of the Refactoring: Consider future extensions
and reduce the costs and risks of project migration. This also
allows the project to stay in the market and easily migrated
to new technologies. Another benefit is related to the post-
delivery as it ensures a better lifetime of the project once
delivered.

• Related Anti-Patterns: Continuous Obsolescence and Au-
togenerated Stovepipe [5].

• Related Patterns: Strangler Application [36].

• Examples: An example of this anti-pattern would exist in
each application that failed or introduced high cost, to be

21https://stackoverflow.com/questions/1029974/experience-migrating-legacy-cobol-pl1-to-java

migrated from one technology or language to another. Mar-
tin Fowler also discussed examples of this anti-pattern. One
example of this anti-pattern could be faced by a company
with COBOL systems that cannot be migrated to new hard-
ware for lack of appropriate compilers. Developers would
have to deal with different tools and languages due to this
migration issue22. Some of these issues were reported in
one of our current studies in which we surveyed developers
about the challenges of multi-language systems. The legacy
tools should be replaced with the latest feature-rich tech-
nologies that will provide more area for improvement and
innovation. It would always be better to develop and main-
tain one utility tool with new technology than to maintain
multiple legacy tools using a different set of technologies.
Another example of this anti-pattern is the features that are
available in one language but in the other language. As an
example we have the code assistance in Java but not in C
language. In the literature, we also found occurrences of this
anti-pattern presented as an industrial report when migrat-
ing an airport management system from a Bull mainframe
using COBOL programming language and IDS as a database
to a distributed UNIX platform using Java and Oracle [35].
They presented the challenges and issues related to such
migration. Previously, two attempts have already been made
to migration this application from COBOL to Java but both
of them failed. They also argued that it is much more difficult
to migrate an existing application than to develop a new one
starting from scratch. As in commercial applications, users
are expecting to have all of the old features plus new ones.
Another example of this situation was the case for Microsoft,
when they rewrote their compiler23. The same for Facebook,
with the increase of its popularity, PHP could not support
the volumes they process. For that, they migrated the PHP
into C++ thence machine code24.

5 THREATS TO VALIDITY
We now discuss threats to the validity of our methodology and the
reported anti-patterns.

Threats to internal validity: We used the well-know, open-source
repositories GitHub and OpenHub to identify and obtain multi-
language systems. We also used well-used developers’ documen-
tations, bug reports, and developers’ blogs, such as StackOverflow,
IBM Developers, developer.android, and Bugzilla to extract practices.
Hence, we limited threats to the internal validity, although we did
not identify exhaustively all existing anti-patterns. Moreover, we
followed a systematic method to identify and report multi-language
anti-patterns.

Threats to external validity: We observed each one of the anti-
patterns more than three times in multiple systems. However, de-
pending on the languages, some of the anti-patterns may not be
existent or may have different consequences. Hence, we believe that
22https://stackoverflow.com/questions/1029974/experience-migrating-legacy-cobol-pl1-to-java
23https://medium.com/microsoft-open-source-stories/
how-microsoft-rewrote-its-c-compiler-in-c-and-made-it-open-source-4ebed5646f98
24https://softwareengineering.stackexchange.com/questions/176435/
why-does-facebook-convert-php-code-to-c

https://stackoverflow.com/questions/1029974/experience-migrating-legacy-cobol-pl1-to-java
https://stackoverflow.com/questions/1029974/experience-migrating-legacy-cobol-pl1-to-java
https://medium.com/microsoft-open-source-stories/how-microsoft-rewrote-its-c-compiler-in-c-and-made-it-open-source-4ebed5646f98
https://medium.com/microsoft-open-source-stories/how-microsoft-rewrote-its-c-compiler-in-c-and-made-it-open-source-4ebed5646f98
https://softwareengineering.stackexchange.com/questions/176435/why-does-facebook-convert-php-code-to-c
https://softwareengineering.stackexchange.com/questions/176435/why-does-facebook-convert-php-code-to-c

Anti-Patterns for Multi-language Systems EuroPLoP ’19, July 3–7, 2019, Irsee, Germany

our study is repeatable but could give different results for different
programming languages.

Threats to reliability validity: We attempted to provide all the
necessary information needed to reproduce our study here and
online25 26, including our developers’ survey. Hence, we believe to
have minimised threats to its reliability.

6 RELATEDWORK
Several studies in the literature investigated the quality of multi-
language systems.

Neitsch et al. [16] studied five multi-language software packages
from Ubuntu 9.10. They provided common build patterns and anti-
patterns that summarise the key problems related to the build of
multi-language systems.

Goedicke et al. [17] proposed five architectural patterns based
on well-known design patterns. These patterns are defined to wrap
legacy components as black-box entities. Most of the defined pat-
terns can be used with different programming languages. To assess
the legacy migration and the wrapping techniques, the authors also
presented a pilot project. They also provided a detailed definition of
these patterns. The pattern Object System Layer provides a highly
flexible object system as a layer build on top of a given language
[34]. It makes components that are not object-oriented or that are
implemented in another language, accessible through Object System
Layer. These components can then be treated as black-boxes. The
pattern Message Redirector ensures a simple indirection architec-
ture that maps the calls to a message implementation [32]. It also
provides callback methods around the calls.

Malinova [19] made an attempt to connect some well-known
design patterns e.g. Adapter, Proxy, and Wrapper Facade, to the
process of Javawrapping of native legacy codes. In this paper, design
patterns were studied in the context of invoking native applications
from Java code.

Kondoh et al. [37] focused on four kinds of common JNI mis-
takes made by developers. They proposed BEAM, a static-analysis
tool to find mistakes pertaining to error checking, virtual machine
resources, invalid local references, and JNI methods in critical code
sections. They did not propose recommendations to avoid and–or
fix these mistakes.

Osmani et al. [38] presented the Lazy Initialisation pattern which
describes how to execute Ajax requests in JavaScript, where the
Ajax request includes a URL and some data, possibly in JSON or
XML, to communicate with a server, likely implemented in C/C++.

Li and Tan [39] highlighted the risks caused by the exception
mechanisms in Java, which can lead to failures in JNI implementa-
tion functions and affect security. They defined a pattern of mishan-
dling JNI exceptions. This paper focused mainly on JNI but can also
be adapted to other FFIs, such as the Python/C and the OCaml/C
interface.

Tan et al. [10] studied the JNI usages in the JDK source code.
They examined a range of bug patterns in the native code and
they identified six bugs related to the use of JNI methods in the
JDK. Bugs identified can cause a JVM crash or can open the JVM
to some security breaches. They found that bugs are possible due
25http://www.ptidej.net/downloads/replications/europlop19/
26https://github.com/ResearchML/Catalog-Patterns-MLS

to language mismatches and the assumptions made by the Java
code regarding the C(++) code. As an example, the native method
java.util.zip.Deflater.deflatesByte() assumes that its Java callers check
bounds, which could lead to buffer overflows.

Ayers et al. [40] proposed TraceBack a tool that collects and
analyses bugs in multi-languages systems by storing data through
runtime instrumentation of control-flow blocks. They collected the
data by statically rewriting the libraries and-or instrumenting the
intermediate languages to generate a unified trace of components’
execution.

Mayer and Schroeder [41] studied the dependencies in multi-
language systems. They proposed a technique to identify dependen-
cies among multi-languages components, warn of potential miss-
ing dependencies, and propagate renaming among multi-language
code.

7 CONCLUSIONS AND FUTUREWORK
Most of the existing systems are multi-language systems and consist
of components written in several, different programming languages.
Multi-language systems provide many benefits because developers
can reuse existing code and take advantage of existing libraries,
even if written in different programming languages [15]. Multi-
language systems also raised with the need to include and accom-
modate legacy code. However, multi-language systems also present
challenges to developers: they are difficult to develop, maintain,
and evolve because they are more complex than mono-language
systems.

To the best of our knowledge, good and bad practices in the
development, maintenance, and evolution of multi-language sys-
tems are scattered across various resources, including few academic
papers, some blogs, programming-language specifications, etc.

Therefore, in this paper, we present the steps followed for study-
ing these resources and report on six anti-patterns that we bor-
rowed, observed, and–or inferred from these resources. These prac-
tices should help developers and researchers to handle the com-
plexity of multi-language systems. We followed and adapted the
template provided by Brown [5].

In future work we will (1) investigate developers’ perception
about these anti-patterns, (2) combine multi-language design pat-
terns and anti-patterns to relate them with one another, (3) create a
pattern language that could relate multi-language design patterns,
design anti-patterns, idioms, with one another, (4) investigate their
impact on quality attributes, and (5) implement tools to identify
and correct their occurrences.

ACKNOWLEDGMENTS
We thank our shepherd Uwe Zdun for his valuable suggestions that
significantly improved this paper. We also would like to thank the
review group on EuroPLoP conference ’19. This work has been par-
tially supported by the Natural Sciences and Engineering Research
Council of Canada.

REFERENCES
[1] P. L. Roden, S. Virani, L. H. Etzkorn, and S. Messimer, “An empirical study of

the relationship of stability metrics and the qmood quality models over software
developed using highly iterative or agile software processes,” in Source Code

http://www.ptidej.net/downloads/replications/europlop19/
https://github.com/ResearchML/Catalog-Patterns-MLS

EuroPLoP ’19, July 3–7, 2019, Irsee, Germany Abidi et al.

Analysis and Manipulation, 2007. SCAM 2007. Seventh IEEE International Working
Conference on. IEEE, 2007, pp. 171–179.

[2] D. Galin, Software quality assurance: from theory to implementation. Pearson
Education India, 2004.

[3] E. Shihab, “Practical software quality prediction,” in Software Maintenance and
Evolution (ICSME), 2014 IEEE International Conference on. IEEE, 2014, pp. 639–
644.

[4] C. Alexander, S. Ishikawa,M. Silverstein, J. R. i Ramió, M. Jacobson, and I. Fiksdahl-
King, A pattern language. Gustavo Gili, 1977.

[5] W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray, AntiPatterns:
refactoring software, architectures, and projects in crisis. John Wiley & Sons, Inc.,
1998.

[6] M. Fowler and K. Beck, Refactoring: improving the design of existing code. Addison-
Wesley Professional, 1999.

[7] C. Zhang and D. Budgen, “What do we know about the effectiveness of software
design patterns?” IEEE Transactions on Software Engineering, vol. 38, no. 5, pp.
1213–1231, 2012.

[8] F. Khomh and Y.-G. Gueheneuce, “Do design patterns impact software quality
positively?” in Software Maintenance and Reengineering, 2008. CSMR 2008. 12th
European Conference on. IEEE, 2008, pp. 274–278.

[9] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “A bayesian approach
for the detection of code and design smells,” in Quality Software, 2009. QSIC’09.
9th International Conference on. IEEE, 2009, pp. 305–314.

[10] G. Tan and J. Croft, “An empirical security study of the native code in the jdk,” in
Proceedings of the 17th Conference on Security Symposium, ser. SS’08. Berkeley,
CA, USA: USENIX Association, 2008, pp. 365–377.

[11] F. Tomassetti and M. Torchiano, “An empirical assessment of polyglot-ism in
github,” in Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering, ser. EASE ’14. New York, NY, USA: ACM,
2014, pp. 17:1–17:4.

[12] R.-H. Pfeiffer and A. Wąsowski, “Texmo: A multi-language development environ-
ment,” in Proceedings of the 8th European Conference on Modelling Foundations
and Applications, ser. ECMFA’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp.
178–193.

[13] Z. Mushtaq and G. Rasool, “Multilingual source code analysis: State of the art and
challenges,” in 2015 International Conference on Open Source Systems Technologies
(ICOSST), Dec 2015, pp. 170–175.

[14] ——, “Multilingual source code analysis: State of the art and challenges,” in Open
Source Systems & Technologies (ICOSST), 2015 International Conference on. IEEE,
2015, pp. 170–175.

[15] P. S. Kochhar, D. Wijedasa, and D. Lo, “A large scale study of multiple program-
ming languages and code quality,” in Software Analysis, Evolution, and Reengi-
neering (SANER), 2016 IEEE 23rd International Conference on, vol. 1. IEEE, 2016,
pp. 563–573.

[16] A. Neitsch, K. Wong, and M. W. Godfrey, “Build system issues in multilanguage
software,” in Software Maintenance (ICSM), 2012 28th IEEE International Conference
on. IEEE, 2012, pp. 140–149.

[17] M. Goedicke and U. Zdun, “Piecemeal legacy migrating with an architectural
pattern language: A case study,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 14, no. 1, pp. 1–30, 2002.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995.

[19] A. Malinova, “Design approaches to wrapping native legacy codes,” Scientific
works, Plovdiv University, vol. 36, pp. 89–100, 2008.

[20] G. Neumann and U. Zdun, “Pattern-based design and implementation of an
xml and rdf parser and interpreter: A case study,” in European Conference on

Object-Oriented Programming. Springer, 2002, pp. 392–414.
[21] M. Furr and J. S. Foster, “Checking type safety of foreign function calls,” in

Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’05. ACM, 2005, pp. 62–72.

[22] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, “Design patterns: Elements of
reusable object-oriented software,” Reading: Addison-Wesley, vol. 49, no. 120, p. 11,
1995.

[23] R. C. Martin, Agile software development: principles, patterns, and practices. Pren-
tice Hall, 2002.

[24] B. F. Webster, Pitfalls of object oriented development. Book, 1995.
[25] Z. Soh, A. Yamashita, F. Khomh, and Y.-G. Guéhéneuc, “Do code smells impact

the effort of different maintenance programming activities?” in Software Analysis,
Evolution, and Reengineering (SANER), 2016 IEEE 23rd International Conference
on, vol. 1. IEEE, 2016, pp. 393–402.

[26] A. Yamashita and L. Moonen, “Do developers care about code smells? an ex-
ploratory survey,” in Reverse Engineering (WCRE), 2013 20th Working Conference
on. IEEE, 2013, pp. 242–251.

[27] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory study of the
impact of code smells on software change-proneness,” in Reverse Engineering,
2009. WCRE’09. 16th Working Conference on. IEEE, 2009, pp. 75–84.

[28] D. Romano, P. Raila, M. Pinzger, and F. Khomh, “Analyzing the impact of antipat-
terns on change-proneness using fine-grained source code changes,” in Reverse
Engineering (WCRE), 2012 19th Working Conference on. IEEE, 2012, pp. 437–446.

[29] S. Liang, Java Native Interface: Programmer’s Guide and Reference. Addison-
Wesley Longman Publishing Co., Inc., 1999.

[30] A. Mouna, G. Manel, and K. Foutse, “Behind the scenes: Developers’ perception
of multi-language practices,” in 29th Annual International Conference on Computer
Science and Software Engineering (CASCON’2019). ACM, 2019.

[31] A.Mouna, G.Manel, K. Foutse, and G. Yann-Gaël, “Code smells for multi-language
systems,” in 24th European Conference on Pattern Languages of Programs (EuroPLoP
’19), July 3–7, 2019, Irsee, Germany. ACM, 2019.

[32] M. Goedicke, G. Neumann, and U. Zdun, “Message redirector,” 6th European
Conference on Pattern Languages of Programms (EuroPLoP ’2001), 2001.

[33] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented Software
Architecture, Patterns for Concurrent and Networked Objects. John Wiley & Sons,
2013, vol. 2.

[34] M. Goedicke, G. Neumann, and U. Zdun, “Object system layer,” 5th European
Conference on Pattern Languages of Programms (EuroPLoP ’2000), 2000.

[35] H. M. Sneed, “Migrating from cobol to java,” in 2010 IEEE International Conference
on Software Maintenance. IEEE, 2010, pp. 1–7.

[36] M. Fowler, “Strangler application,” 2004. [Online]. Available: https://martinfowler.
com/bliki/StranglerFigApplication.html

[37] G. Kondoh and T. Onodera, “Finding bugs in java native interface programs,” in
Proceedings of the 2008 International Symposium on Software Testing and Analysis,
ser. ISSTA ’08. New York, NY, USA: ACM, 2008, pp. 109–118.

[38] A. Osmani, Learning JavaScript Design Patterns: A JavaScript and jQuery Devel-
oper’s Guide. " O’Reilly Media, Inc.", 2012.

[39] S. Li and G. Tan, “Finding bugs in exceptional situations of jni programs,” in
Proceedings of the 16th ACMConference on Computer and Communications Security,
ser. CCS ’09. New York, NY, USA: ACM, 2009, pp. 442–452.

[40] A. Ayers, R. Schooler, C. Metcalf, A. Agarwal, J. Rhee, and E. Witchel, “Trace-
back: first fault diagnosis by reconstruction of distributed control flow,” in ACM
SIGPLAN Notices, vol. 40, no. 6. ACM, 2005, pp. 201–212.

[41] P. Mayer and A. Schroeder, “Cross-language code analysis and refactoring,” in
2012 IEEE 12th International Working Conference on Source Code Analysis and
Manipulation. IEEE, 2012, pp. 94–103.

https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html

	Abstract
	1 Introduction
	2 Background
	3 Study Design
	4 Anti-Patterns for Multi-language Systems
	5 Threats to Validity
	6 Related Work
	7 Conclusions and Future Work
	References

