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ABSTRACT
There are two well-known difficulties to test and interpret method-
ologies for mining developer interaction traces: first, the lack of
enough large datasets needed by mining or machine learning ap-
proaches to provide reliable results; and second, the lack of “ground
truth” or empirical evidence that can be used to triangulate the
results, or to verify their accuracy and correctness. Moreover, re-
lying solely on interaction traces limits our ability to take into
account contextual factors that can affect the applicability of min-
ing techniques in other contexts, as well hinders our ability to fully
understand the mechanics behind observed phenomena. The data
presented in this paper attempts to alleviate these challenges by
providing 600+ hours of developer interaction traces, from which
26+ hours are backed with video recordings of the IDE screen and
developer’s comments. This data set is relevant to researchers inter-
ested in investigating program comprehension, and those who are
developing techniques for interaction traces analysis and mining.
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1 INTRODUCTION
There are two well-known difficulties to test and interpret method-
ologies for mining developer interaction traces: first, attaining
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enough large datasets so that mining or machine learning (ML)
techniques could provide reliable results; and second, the lack of
“ground truth” or empirical evidence that can be used for triangu-
lation, or for verifying the accuracy and correctness of analysis
outcomes. Moreover, relying solely on interaction traces limits our
ability to take into account contextual factors that could affect the
applicability of the proposed techniques in other contexts. One final
big caveat of lacking contextual data is that it stops us from fully
understanding the mechanics behind an observed phenomenon.

Context can impact the outcome of a software engineering ac-
tivity [11] and by analysing it, we can attain meaningful interpre-
tations to our measurements and observations. Contextual factors
such as programming skill, the problem at hand, industrial domain,
are such factors [4, 6], but they are not always available nor are mea-
sured systematically. Also, due to limitations on the study design,
or resources available to perform the study, triangulation1 is more
often the exception rather than the rule. With an increased pres-
ence of Artificial Intelligence, Machine Learning and Data Science
techniques in the mainstream industrial arena, the usage of con-
cepts such as Contextual Intelligence2 has gained momentum, and is
currently perceived by data intelligence companies as a promising
arena to attain more robust and adequate insights/results from big
data analytics [7]. Although contextual analytics can be traced back
to Management and Business Analytics [14], it has permeated other
domains such as health care [2], and web analytics[8].

Ironically, datasets that are rich in volume as well as contextual
data or meta-data are scarce, whiles they seem to be critical not only
for advancing in the validity and robustness of scientific research,
but also for attaining Linked Open Data [21].

The data presented in this paper intends to alleviate these chal-
lenges by providing 600+ hours of developer interaction traces,
from which 26+ hours are backed by video recordings of the IDE
screen and developer’s comments. The videos were anonymised
and in order to keep the programmers’ identities concealed, and
were collected during a study involving 6 software developers who
were followed for a period of 4 months. This data set is relevant to
researchers interested on investigating program comprehension,
and those who are developing techniques for interaction traces
analysis/mining for different purposes.

1In the social sciences, triangulation is often used to indicate that more than two
methods are used in a study, with a view to double (or triple) checking results. This is
also called “cross examination.”
2Defined byMayo&Nohria [10] as: “the ability to understand the limits of our knowledge
and to adapt that knowledge to an environment different from the one in which it was
developed.”
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Table 1: Description of data contained in an event.

1. Timestamp Time in milliseconds when the event was recorded

2. Date Time the event was observed by Mimec (similar to #1)

3. Kind Kind of event: edit, selection, command or preference

4. Target A Java element (if any) that is the subject of the interaction, such as
the name of the file selected, or the name of the class/method being
edited.

5. Origin The part of Eclipse that generates the interaction (e.g., Package Ex-
plorer, Editor)

6. Delta An attribute (if any) containing relevant meta-information.

The remainder of this paper is organized as follows: Section 2
provides a brief background of the study from which the data was
obtained. Section 3 describes the data being released. Section 4
explains how the data can be accessed and used as well as caveats
and limitations. Section 5 concludes and presents future work.

2 BACKGROUND OF THE DATA SET
This data set is derived from an industrial case study conducted
by Simula Research Laboratory in 2008, with the objective of in-
vestigating the effect of code smells on the evolution and quality
of real-life, industrial software systems. Four java-based web sys-
tems were involved in the study. Their main functionality consisted
of keeping track of the empirical studies conducted at a research
center, including information such as the responsible for the study,
participants, data collected, publications from the study, etc.

Six software professionals were recruited from a pool of 65 par-
ticipants of a previous study on programming skill [5] who dis-
played similar programming abilities. The developers were asked
to perform three (identical) maintenance tasks, two adaptive and
one perfective on two out of the four systems analysed. This as-
signment resulted in 3 projects per system, i.e., 6 developers x 2
systems = 12 projects (cases) in total. The development took place
entirely at the developers’ company sites and the first author of
this paper was present in the sites for the entire duration of the
project. The developers were given no information on what the
study entailed. Eclipse was used as the development tool, together
with MySQL (www.mysql.com) and Apache Tomcat (http://tomcat.
apache.org). Subversion or SVN (http://subversion.apache.org/) was
used as the versioning system. The work reported in [15] provides
a complete account of the context and methodology of the study.

3 DATA DESCRIPTION AND RELEASE
APPROACH

3.1 Data Description and Collection
The dataset comprises of two parts: 1) Videos from the think-aloud
sessions, and 2) Developer Interaction Traces (Logs). During the
study, screen-recorded think-aloud sessions (30-40 minutes) were
conducted every another day to observe the developers in their
daily activities. ZD Soft Screen Recorder3 was used to capture the
screen during the sessions. The interaction traces were captured

3https://www.zdsoft.com/screen-recorder

via an Eclipse plug-in called Mimec [9]. Mimec can capture Eclipse
IDE events, such as editing source files, scrolling the source code
window, switching between open files, expanding/collapsing trees
in the package explorer, selecting Java elements (classes, methods,
and variables), and running Eclipse “commands” (e.g., copy, save,
and go to end of line). The interaction traces were stored as Comma-
Separated Value (CSV) files, where every line corresponds to an
event, a single observation generated byMimec. Each event consists
of six pieces of data, as depicted in Table 1. A Java program was
written to identify the elapsed time between the different activities
by truncating the consecutive events annotated with the same kind
of event, target, and origin. An additional heuristic was used to
handle two particular situations. In the project, the developers had
to work with multiple environments besides the Eclipse IDE. They
had to: 1) Look at documentations and 2) Run the application and
interact with the GUI (website) component of the systems, and 3)
Work on the DB via tools other than Eclipse. For all these events,
the developer would leave the IDE. Mimec does not record when
the developer leaves the IDE but does so only when they return
to the IDE. This situation would yield inaccurate results in some
cases. For example, a developer may first select a file and then
leave the IDE to take a coffee break, and all the time spent on the
coffee break will be assigned to the action “select file.” Another
problem of Mimec is that for certain editing commands (e.g., copy,
paste, and cut), it does not register the file in which the activity was
done. To solve the “idle time” problem, a lookup table was created
with average times of all types of activities from all the logs of
all developers. The average values excluded any log entries that
occurred just before the activity “Go back to IDE” (because those
are precisely the ones that we want to correct). Sample sizes used
to compute those averages were very high, and standard deviations
were very low, so they were considered trustworthy. The algorithm
for calculating the time was adjusted, so when any activity was
followed by “Go back to IDE”, then the algorithm will evaluate:

Case 1: If the elapsed time between entries is equal or lower than
the average time indicated in the lookup table, assign the whole
elapsed time to the entry. and

Case 2: If the elapsed time between entries is higher than the
average time indicated in the lookup table, assign the average time
from the lookup table to the entry and the elapsed time minus
average time to “Unknown activities outside IDE.”

To solve the “missing file” problem, the filename contained in
the closest preceding entry to any log entry containing any of
the problematic commands (copy, paste, and cut) was used as the
filename. The source code written to process the interaction traces
is available here: https://goo.gl/qNPNAV.

3.2 Process for Releasing the Data
Prior releasing the video data from the think aloud sessions, we
anonymised the voices of the participants and blurred the areas in
the screen that made any reference to the name of the company or
employees of the company hired to perform the maintenance tasks.

Step 1: Audio anonymisation – To anonymise an audio file,
we changed the participant’s voice without a disagreeable distortion
while reducing the possibility of reversing the change to obtain the
original audio. We increased or decreased the voice frequency of
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the participants to achieve a pitch similar to that of a young male
voice. We used Audacity4 to modify the audio tracks of videos.

Step 2: Video anonymisation –Weused Filmora5 to anonymise
sensitive information in the videos. Filmora has a feature that al-
lows us to select a region on the video and apply the blurring effect.
The analysis of the video had to be done frame by frame because
the sensitive data could appear everywhere and very quickly in
videos. This blur action can be done on the same specific region
from the beginning of the video to the end, or it can be applied on
specific frames in the video, using cutting tools.

Step 3: Rendering – This step consists of combining the Video,
Audio and the effect, generating a final video output. We adopted
as a standard use, the original resolution of the video with MP4 as
output.

Step 5: Quality Verification – The anonymised videos were ex-
amined in its entirety by an independent reviewer, and corrections
were made afterwards. A final random subsample was selected for
a final check by all the authors of the paper.

Step 6: Meta-data (system time) extraction –A consequence
of video anonymisation (in specific, the blurring of the bottom bar
of the window) is that the System time was concealed. In order to
enable a direct mapping between the videos and timestamps in the
interaction traces, we extracted that information from the original
videos and made them available as meta-data.

As for the interaction traces, there was no need for anonymi-
sation, given that the files do not contain any personal data on
the developers nor the company in which they worked. The file-
names of the systems (and their original developers, which did
not participate in this study) are publicly available, given that the
systems were released under Creative Commons Attribution 4.0
(via the MSR 2017 Data Showcase paper [17]) by Simula Research
Laboratory, who owed the source code and conducted the study.

4 DATA USAGE
4.1 How to access the data?
The structure of the dataset is described by Fig. 1. At high level, the
data is organized according to the developer. Under eachDeveloper{1–
6} folder, there is a folder containing the user interaction traces and
the videos from the think aloud sessions. The Interaction Traces
folder contain all three versions of the logs: the 1-Original or raw
logs, the 2-Annotated (where each single event was annotated with
its corresponding high-level activity label) and the 3-Truncated logs
(where consecutive events under the same activity label are trun-
cated and the total elapsing time under those truncated events
are calculated). The sub-folder Think aloud videos simply con-
tain the anonymised videos. The repository is connected to the
GitHub repository containing the Java code written to process the
interaction traces. Finally, there is an excel sheet containing the
meta-data of the think aloud videos. The dataset is available at:
http://doi.org/10.5281/zenodo.883813.

4.2 How has the data been used?
The data has been used in multiple works [12, 13, 15, 16, 18–20]
pertaining the study of source code properties (i.e. code smells),
4http://www.audacityteam.org/
5https://filmora.wondershare.com/

and their role on the maintainability and quality of Object Oriented
systems.

4.3 Potential usage scenarios
Due to the nature of this dataset, we envision countless usage
scenarios within program comprehension and data mining. Here
are some examples:

Studies on programming behavior. This data can provide better
insights for triangulating results from automated mining, with in-
depth investigation of programming behavior.

Studies on the impact of different variables on programming be-
havior. This data has primarily been used to investigate the effect of
code properties on software maintainability/quality, but other met-
rics and factors can be extracted from the study, and investigated
by using the interaction traces and the videos.

Benchmarking of tools/methodologies. This data set and the un-
derlying systems can be used for benchmarking purposes, when
evaluating new tools for metrics detection, defect extraction, or any
other methodologies.

Task/context extraction. The data allows to experiment with tech-
niques/tools/methods that can allow identifying the exact context
(e.g., task) by analysing the logs and verifying them on the video
samples. Such techniques have industrial applications such as the
one reported by [3].

4.4 Challenges and Limitations
No complete video coverage. The logs for the developer interac-

tion traces account for more than 600 hours of development, but the
think-aloud videos are only 28. However, the sampling was done
randomly so we hope that there is a good coverage of distinctive
cases during the development.

Context of the study. The external validity of any results from this
data are limited to the context of the study, in this case: medium-
sized, Java-based, three-layered architecture, web-based, informa-
tion systems.

Figure 1: Organization of the data
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Time frame. The data does not fully represent a long-term main-
tenance project, given the size of the tasks and the shorter mainte-
nance period covered in the study. However, tasks are similar to
backlog items in a single sprint/iteration.

The age of the systems. The technology used in this study is
nearly 10 years (14 if the original study [1] is considered). However,
there are still many industrial systems which are even older than 14
years, and the technology involved is still quite relevant to current
software projects.

Tool availability. The tool used for generating the interaction
traces (Mimec) is no longer available. The authors are aware of
other tools such as CodingTracker, DFlow, FeedBaG,WatchDog and
Flourite, which would have been more adequate than Mimec. How-
ever, the studywas conducted in 2008, andMimecwas one of the few
available tools at the time. Thus, interaction traces generated by al-
ternative tools such as Flourite (https://github.com/yyoon/fluorite-
eclipse) are not guaranteed to provide the same results. This also
applies to the Java code written to process the interaction traces.
However, there is a new tool developed at CWI, for processing
interaction traces, which has yielded consistent results with this
dataset (https://github.com/King07/espionage) as well as with data
generated by Flourite.

Realism of the study. There will be a trade-off between the degree
of realism and the degree of control in empirical studies. We believe
the systems and tasks belong to a realistic setting, and special care
was put in order to ensure as much as possible, a realistic project.

Hawthorne effect. Since the think aloud essentially involved ob-
serving the behavior of the developers directly, this may influence
the developers’ behavior during the screen capture. However, this
limitation equally applies to most other qualitative studies.

5 CONCLUSION AND FUTUREWORK
We presented a data set containing 600+ hours of developer interac-
tion traces, from which 26+ hours are backed with video recordings
of the computer screen and developers’ verbal comments. As such,
this dataset constitutes both a large quantitative and rich qualitative
(contextual) opportunity to investigate empirically programming
activities, and to evaluate/validate approaches for mining interac-
tion traces. This dataset complements primary data reported at
a previous MSR (multiple evolution histories, and multiple defect
reports, extracted from git and issue tracking systems). In future
related work, we plan to: 1) provide concrete guidelines for sharing
diverse types of empirical data from software engineering studies,
and 2) release a platform to support the sharing of research data
and reproducibility of studies in Software Engineering, including
the incorporation of ReproZip (https://www.reprozip.org/), and
Dockerfiles/Docker images.
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