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Abstract Past and recent studies have shown that design smells which are poor solutions

to recurrent design problems make object-oriented systems difficult to maintain, and that

they negatively impact the class change- and fault-proneness. More recently, lexical smells

have been introduced to capture recurring poor practices in the naming, documentation,

and choice of identifiers during the implementation of an entity. Although recent studies

show that developers perceive lexical smells as impairing program understanding, no study

has actually evaluated the relationship between lexical smells and software quality as well

as their interaction with design smells. In this paper, we detect 29 smells consisting of 13

design smells and 16 lexical smells in 30 releases of three projects: ANT, ArgoUML, and

Hibernate. We analyze to what extent classes containing lexical smells have higher (or

lower) odds to change or to be subject to fault fixing than other classes containing design

smells. Our results show and bring empirical evidence on the fact that lexical smells can

make, in some cases, classes with design smells more fault-prone. In addition, we

empirically demonstrate that classes containing design smells only are more change- and

fault-prone than classes with lexical smells only.

Keywords Lexical smells � Design smells � Change-proneness � Fault-proneness �
Empirical study

& Latifa Guerrouj
Latifa.Guerrouj@etsmtl.ca
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1 Introduction

Design smells are bad practices in software development; they represent ‘‘poor’’ design or

implementation solutions to recurring design problems (Brown et al. 1998; Fowler 1999).

Most often developers introduce design smells when they are not knowledgable enough

about a system, they do not have the needed expertise to solve the problem at hand, or they

do not understand the logic behind how it works. Design smells do not usually prevent a

program from functioning normally. However, their presence reveals the existence of flaws

in the system’s design or implementation. Previous studies indicate that design smells may

affect software comprehensibility (Marwen et al. 2011) and possibly increase change- and

fault-proneness (Khomh et al. 2009, 2012). Taba et al. (2013) have found that design

smells can be used to predict faults as files that have design smells tend to have a higher

density of faults than other files. A recent investigation by Yamashita and Moonen (2013)

has shown that the majority of developers are concerned about design smells. Recently,

researchers have introduced another family of smells called, lexical smells (Arnaoudova

et al. 2013). Lexical smells are defined as recurring poor practices in the naming, docu-

mentation, and choice of source code identifiers in the implementation of an entity. Their

introduction was motivated by the role played by source code lexicon in capturing and

encoding developers’ intent and knowledge (Soloway et al. 1983; Mayrhauser and Vans

1995) as well as in source code understandability (Takang et al. 1996; Lawrie et al. 2007).

Lexical smells have been shown to enhance fault prediction when used along with tradi-

tional structural metrics (Lemma et al. 2012). In addition, they have been proved to

negatively impact concept location (Abebe et al. 2011). Recently, researchers have studied

how developers perceive them (Arnaoudova et al. 2015).

Although some previous works have investigated the relation between the occurrence of

design smells and a class change- and fault-proneness, to the best of our knowledge we are

the first to investigate the additional impact lexical smells can have on class change- and

fault-proneness when occurring with design smells. Specifically, we compare in terms of

change- and fault-proneness between (1) classes with both design and lexical smells and

classes with design smells only, (2) classes containing both design and lexical smells and

classes with lexical smells only, as well as (3) classes with design smells only and those

with lexical smells only. As baseline, we use design smells since they have been already

proved to correlate with changes and faults (Khomh et al. 2012).

This work is also the first to detect such a variety and large number of smells. We

explore 29 smells consisting of 13 design smells and 16 lexical ones that we identified

using widely adopted techniques from the literature (Arnaoudova et al. 2013; Moha et al.

2010). Our investigation focuses on 13 design smells from Brown et al. (1998) and Fowler

(1999). We chose these design smells because they are representative of design and

implementation problems related to object-oriented systems. In addition, they have been

thoroughly described and received significant attention from researchers (e.g., Brown et al.

1998; Khomh et al. 2012; Taba et al. 2013). As for lexical smells, we selected the family

described in Arnaoudova et al. (2015) since its represents the most recent catalog of lexical

smells, we detected them using the most recent approach for identifying lexical smells

(Arnaoudova et al. 2013).

We empirically show through the analysis of 30 releases from three different projects

that, in many cases, the occurrence of lexical smells can make classes with design smells

more fault-prone. In addition, classes with both lexical and design smells are more change-

and fault-prone than classes containing lexical smells only. Furthermore, classes with
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design smells only are more change- and fault-prone than classes containing lexical smells

only. We believe that such findings bring more awareness to developers about the addi-

tional role that lexical smells can have on fault-proneness when they occur with design

smells. A software manager could use our design and lexical smells detection approaches

applied in this work to assess the volume of classes with such families of smells to possibly

better estimate the effort needed for refactoring.

Paper organization The rest of the paper is organized as follows. Section 2 describes

the methodology followed while Sect. 3 reports our empirical study. In Sect. 4, we show

the findings of our study. Section 5 discusses the threats to validity. Section 6 presents

related work. Finally, Sect. 7 concludes and outlines directions for future work.

2 Methodology

This section describes the methodology followed and summarized in Fig. 1. It consists of

(1) mining data repositories, (2) detecting design, (3) lexical smells across different

releases of the studied systems, and (4) identifying changes and post-release defects.

2.1 Step 1: Data collection and processing

The first phase of our methodology consists of mining data repositories. We analyze a total

of 30 releases from different open-source systems (i.e., ArgoUML, ANT, and Hibernate).

We selected these projects since they are made publicly available to the research com-

munity and practitioners and they have a considerable number of releases, committers, as

well as development history. Our study includes 12 releases of ArgoUML, 11 releases of

Hibernate, and 7 releases of ANT. ArgoUML1 is an open-source UML modeling tool.

Hibernate2 (ORM) is an open-source Java persistence framework project while ANT3 is a

Git/SVN

Repositories

BugZilla or JIRA

Mining Source Code 
Repositories

Detecting Design Smells

Detecting Lexical 
Smells

Mining Bug 
Repositories

Computing Change-
and Fault- proneness 
(Post-release Bugs)

Analyzing and 
Interpreting Results

Fig. 1 Main steps of the followed methodology

1 http://argouml.tigris.org/.
2 http://hibernate.org/.
3 http://ant.apache.org/.
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system related to software build processes. We chose these systems because they belong to

different domains and have different sizes.

The first step of our data collection process consists of downloading the source code of

the considered releases for all systems, which we used as an input for the design and lexical

smells detection approaches. We then mined the source code change history repositories

from the version control systems of the systems, i.e., Git4 for ANT and Hibernate and SVN

for ArgoUML, to identify changes and fault fixes. The Git/SVN repository of each system

was downloaded using appropriate PerlScripts, and the data were then stored in a Post-

greSQL database. We used SQL queries to obtain the source code change history of each

system release as well as information including the number of changes, classes that

underwent changes, summary of the changes, change logs, etc.

In the last step, we mined bug repositories corresponding to each system with the

purpose of identifying changes that were fixing faults. For ArgoUML, issues dealing with

fixing faults are marked as ‘‘DEFECT’’ in the issue tracking system.5 For ANT, we mined

BugZilla6 while JIRA7 was mined to determine fault-fixing issues for Hibernate. Sec-

tion 2.4 describes the steps of this phase in details.

Finally, we use statistical tests to analyze the collected data and address our research

questions.

2.2 Step 2: Identifying design smells

Code smells/antipatterns are ‘‘poor’’ implementation and—or design choices, thought to

make object-oriented systems hard to maintain. In practice, code smells may concern the

design of a class and hence concretely manifest themselves in the source code as classes

with specific implementation. We call such smells design smells.

To identify design smells in each release of the studied projects, we use the Defect

dEtection for CORrection (DECOR) approach (Moha et al. 2010). DECOR is based on a

thorough domain analysis of code and design smells from the literature, from which is built

a domain-specific language. This language uses rules to describe design smells, with

different types of properties: lexical (e.g., class names), structural (e.g., classes declaring

public static variables), internal (e.g., number of methods), and the relation among prop-

erties (e.g., association, aggregation, and composition relations among classes). Using this

domain-specific language, DECOR proposes the descriptions of several design smells. It

also provides algorithms and a framework, DeTeX, to convert design smell descriptions

automatically into detection algorithms. DeTeX allows detecting occurrences of design

smells in systems written in various object-oriented programming languages, such as Java

or C??. We used DECOR because it has been widely acknowledged and used in past and

recent research (Khomh et al. 2012, 2009; Marwen et al. 2011); it achieves 100 % of recall

and a precision[31 % in the worst case, with an average[60 %. More precisely, DECOR

yields 100 % of recall and has precisions between 41.1 and 87 % for three types: Blob,

SpaghettiCode, and SwissArmyKnife. The detection algorithms for these three types have

an average accuracy of 99 % for the Blob, of 89 % for the SpaghettiCode, and of 95 % for

the SwissArmyKnife; and a total average of 94 % (Moha et al. 2010).

4 http://git-scm.com/.
5 http://argouml.tigris.org/issues.
6 https://www.bugzilla.org/.
7 https://www.atlassian.com/software/jira.
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In this study, we focus on 13 design smells from Brown et al. (1998) and Fowler (1999).

The motivation behind our choice is that these design smells have been thoroughly

described and that they have received significant attention from researchers (Brown et al.

1998; Khomh et al. 2012; Taba et al. 2013). We could detect several occurrences of these

design smells across the studied releases, and they are representative of design and

implementation problems related to object-oriented systems.

• AntiSingleton A class that provides mutable class variables, which consequently could

be used as global variables.

• Blob A class that is too large and not cohesive enough that monopolizes most of the

processing, takes most of the decisions, and is associated with data classes.

• ClassDataShouldBePrivate A class that exposes its fields, thus violating the principle

of encapsulation.

• ComplexClass A class that has (at least) one large and complex method, in terms of

cyclomatic complexity and LOCs.

• LargeClass A class that has (at least) one long method.

• LazyClass A class that has few fields and methods (with little complexity).

• LongMethod A class that has a method that is overly long, in term of LOCs.

• LongParameterList A class that has (at least) one method with a too long list of

parameters with respect to the average number of parameters per methods in the

system.

• MessageChain A class that uses a long chain of method invocations to realize (at least)

one of its functionalities.

• RefusedParentBequest A class that redefines inherited methods using empty bodies,

thus breaking polymorphism.

• SpaghettiCode A class declaring long methods with no parameters and using global

variables. These methods interact too much using complex decision algorithms. This

class does not exploit and prevents the use of polymorphism and inheritance.

• SpeculativeGenerality A class that is defined as abstract, but that has very few children,

which do not make use of its methods.

• SwissArmyKnife A class whose methods can be divided in disjunct set of many

methods, thus providing many different unrelated functionalities.

2.3 Step 3: Identifying lexical smells

The third phase of our methodology consists of identifying lexical smells in each release of

the studied projects. We detect lexical smells at the level of each system’s release using the

Lexical Anti-Patterns Detection (LAPD) approach presented and described in Arnaoudova

et al. (2013) for Java source code; it relies on the Stanford natural language parser

(Toutanova and Manning 2000) to identify the part of speech of the terms constituting the

identifiers and comments and to establish relations between those terms. We used LAPD

because, to the best of our knowledge, it is the most recent novel approach that deals with

large number of lexical smells; it has a catalog of 16 lexical smells. The rationale and

specifications of these lexical smells are detailed in Arnaoudova et al. (2013). In the

following, we list the lexical smells detected by LAPD and used in this work.

• ‘‘Get’’—more than an accessor A getter that performs actions other than returning the

corresponding attribute without documenting it.
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• ‘‘Is’’ returns more than a Boolean The name of a method is a predicate suggesting a

true/false value in return. However, the return type is not Boolean but rather a more

complex type allowing, thus a wider range of values without documenting them.

• ‘‘Set’’ method returns A set method having a return type different than void and not

documenting the return type/values with an appropriate comment.

• Expecting but not getting a single instance The name of a method indicates that a single

object is returned, but the return type is a collection.

• Validation method does not confirm A validation method (e.g., name starting with

‘‘validate,’’ ‘‘check,’’ ‘‘ensure’’) does not confirm the validation, i.e., the method neither

provides a return value informing whether the validation was successful, nor

documents how to proceed to understand.

• ‘‘Get’’ method does not return The name suggests that the method returns something

(e.g., name starts with ‘‘get’’ or ‘‘return’’), but the return type is void. The

documentation should explain where the resulting data are stored and how to obtain it.

• Not answered question The name of a method is in the form of predicate, whereas the

return type is not Boolean.

• Transform method does not return The name of a method suggests the transformation

of an object, but there is no return value and it is not clear from the documentation

where the result is stored.

• Expecting but not getting a collection The name of a method suggests that a collection

should be returned, but a single object or nothing is returned.

• Method name and return type are opposite The intent of the method suggested by its

name is in contradiction with what it returns.

• Method signature and comment are opposite The documentation of a method is in

contradiction with its declaration.

• Says one but contains many The name of an attribute suggests a single instance, while

its type suggests that the attribute stores a collection of objects.

• Name suggests Boolean, but type does not The name of an attribute suggests that its

value is true or false, but its declaring type is not Boolean.

• Says many but contains one The name of an attribute suggests multiple instances, but

its type suggests a single one. Documenting such inconsistencies avoids additional

comprehension effort to understand the purpose of the attribute.

• Attribute name and type are opposite The name of an attribute is in contradiction with

its type as they contain antonyms. The use of antonyms can induce wrong assumptions.

• Attribute signature and comment are opposite The declaration of an attribute is in

contradiction with its documentation. Whether the pattern is included or excluded is,

thus, unclear.

2.4 Step 4: Identifying post-release defects

The fourth phase of our methodology consists of identifying post-release defects. To

determine whether a change fixes a fault, we search, using regular expressions, in change

logs from the system versioning Git/SVN for co-occurrences of fault identifiers with

keywords like ‘‘fixed issue #ID,’’ ‘‘bug ID,’’ ‘‘fix,’’ ‘‘defect,’’ or ‘‘patch.’’ A similar

approach was applied to identify fault-fixing and fault-inducing changes in prior works

(Kamei et al. 2013; Kim et al. 2008). Following current practices on the identification of

post-release defects (Kamei et al. 2013; McIntosh et al. 2014, 2015), we define post-

release faults as those with fixes recorded in the 6-month period after the release date. Once
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this step is performed, we identify, for each bug ID, the corresponding bug report from the

corresponding issue tracking system, i.e., Bugzilla8 or Jira,9 and extract relevant infor-

mation from each report including:

• Issue ID.

• Issue type, i.e., fault, enhancement, feature, patch, feature request, etc.

• Issue status, i.e., new, closed, reponed, resolved, fixed, verified, or not.

• Issue resolution, e.g., fixed, invalid, duplicate, etc.

We extracted further information about bugs such as the priority of the bug, its opening

and closing dates, as well as the bug summary. We did not leverage them in this inves-

tigation, but kept them in our database for possible further investigations.

We first make sure that the issues correspond to the system (i.e., product) under analysis

since some communities (e.g., Apache) use the same issue tracking system for multiple

products. Second, we verify whether the issue IDs identified at the level of commits from

the Git/SVN versioning system are true positives. Then, we differentiate fault fixes from

other types of issues involving enhancements, feature requests, etc. based on the issue type,

status, and resolution. As in prior works (Kamei et al. 2013; Kim et al. 2008; Bavota et al.

2012), we search faults characterized by ‘‘CLOSED’’ status and ‘‘FIXED’’ resolution. In

such a way, fault fixes are used as measure of fault-proneness and invalid or duplicate

issues are excluded. Our pipeline for the extraction of bug data mirrors the methodology

followed by recent studies on smells (Khomh et al. 2009) as well as studies conducted in

other contexts (e.g., code review, refactoring, quality assurance, etc.) (Kamei et al. 2013;

Kim et al. 2008; Bavota et al. 2012; McIntosh et al. 2014, 2015).

2.5 Step 5: Identifying defect-inducing changes

To make sure a fault was in the specific release, we have applied the widely applied SZZ

(Śliwerski et al. 2005) algorithm. This algorithm links each defect fix to the source code

change that introduced the original defect relying on information from version control

systems (i.e., Git or SVN) and issue tracking systems (e.g., BugZilla or JIRA). The SZZ

algorithm consists of three main steps. The first stage consists of identifying defect–fixes

changes. SZZ searches, in change comments, for keywords such as ‘‘fixed issue #ID,’’

‘‘bug ID,’’ ‘‘fix,’’ ‘‘defect,’’ ‘‘patch,’’ ‘‘crash,’’ ‘‘freeze,’’ ‘‘breaks,’’ ‘‘wrong,’’ ‘‘glitch,’’

‘‘proper,’’ The second step verifies if that change is really a defect fixing change using

information from issue tracking systems. For such a purpose, we search for the defect

identification numbers mentioned in the change logs in the BugZilla or JIRA issue tracking

systems. The third step determines when the defect is introduced. We first use the diff

command to locate the lines that were changed by the defect fix. Then, we use the annotate

and blame commands to trace back to the last revision where the changes of lines have

been made. If no defect report is specified in the fixing change, then similar to prior work

(Kamei et al. 2013), we assume that the last change before the fixing change was the

change that introduced the defect (Śliwerski et al. 2005; Kamei et al. 2013).

8 https://www.bugzilla.org/.
9 https://www.atlassian.com/software/jira.
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3 Study description

In this section, we present the empirical study that we have performed to validate our

research questions.

The goal of this study is to investigate the relationship between design and lexical

smells occurring on classes in object-oriented systems and software quality by analyzing

the relation between the presence of smells from the two families and the change- and

fault-proneness of classes.

The purpose is to show to what extent classes with lexical smells have higher odds to

change or to be subject to fault-fixing changes than classes containing design smells or

classes with no smell.

The quality focus is the change- and fault-proneness of classes in object-oriented

systems.

The perspective is that of researchers and practitioners interested in understanding the

relation between the occurrence of lexical and/or design smells and a class change- and

fault-proneness, which can be beneficial for quality assurance teams when prioritizing for

example change- and fault-prone classes for testing.

The context consists of three open-source projects: ArgoUML, ANT, Hibernate. We

analyze a total number of 30 releases: 12 releases for ArgoUML, 11 releases for Hibernate,

and 7 releases for ANT. Table 1 summarizes the main characteristics of the analyzed

systems including the number of releases, size, total number of classes for each system,

number of developers, total number of changes, total number of changed classes, number

of fault-fixing changes.

In terms of smells detected, Table 2 indicates for each project release, the number of

design smells as well as lexical ones. Additionally, it shows the percentage (in parentheses)

of classes with such families of smells with respect to the total number of classes. For

example, the cell at the intersection of the ANT 151 release row and design smells column

reports that the total number of design smells detected in the release ANT 151 is 545 and

that the percentage of classes containing these smells is 21.25 (i.e., 384 out of a total of

1807 classes). We also report the percentage of classes with both design and lexical smells.

3.1 Research questions

The study reported in this section aims at addressing the following research questions:

• RQ1: Are classes with a particular family of smells (design, lexical, or both design and

lexical) more change-prone than others? Specifically, we test the following null

hypothesis:

Table 1 Characteristics of the analyzed projects

Projects #Rel. #Dev. #Size
(LOCs)

#All
Classes

#Changes #Classes
Changed

#Faulty
Changes

ANT 7 51 1,660,256 14,067 15,353 64,167 587

ArgoUML 13 25 644,829 27,822 5300 23,153 201

Hibernate 10 89 7,239,075 21,876 9075 89,658 179
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H01 : The proportion of classes undergoing at least one change between two releases is

not different between classes containing different families of smells.

• RQ2: Are classes with a particular family of smells (design, lexical, or both design and

lexical) more fault-prone than others? Specifically, we test the following null

hypothesis:

H02 : The proportion of classes undergoing at least one fault-fixing change between two

releases does not differ between classes with different families of smells.

H01 and H02 are two-tailed because we are interested in investigating whether a family

of smells relate to an increase or decrease in change-proneness and fault-proneness.

3.2 Variables selection

• Independent variables number of classes containing the 29 smells where 13 of them are

design smells and 16 are lexical ones. In our computations, we use variables Si;j;k which

indicate the number of times that a class i has a design, lexical, or both design and

lexical smells j in a release k. We aggregate these variables into a Boolean variable Si;k
indicating if a class i has or not in any smells.

• Dependent variables measure the phenomena related to classes with different families

of smells:

1. Change-proneness refers to whether a class underwent at least a change between

release k (in which it has some smells) and the subsequent release k þ 1. Changes

are identified, for each class in a system, by looking at commits in their control

version systems (Git or SVN). For the sake of simplicity, we assumed to have one

class per file, i.e., as in prior works (Khomh et al. 2012), we do not consider inner

classes and nonpublic top-level.

2. Fault-proneness refers to whether a class underwent at least a fault-fixing change

between releases k and k þ 1. We identified fault-fixing changes following the

methodology described in Sect. 2.4 based on the traceability of faults/issues to

changes by matching their IDs in the commits (Fischer et al. 2003) and the issue

tracking systems.

3.3 Analysis method

We study whether changes and faults in a class are related to the class containing a specific

family of smells (e.g., lexical or design smells) regardless of the kinds of smells from each

family (e.g., Blob or LazyClass design smells). More precisely, we test whether the pro-

portions of classes exhibiting (or not) at least one change/fault significantly vary between

classes with (1) design smells, (2) lexical smells, or (3) both design and lexical smells. Our

analysis methods and statistical procedures applied in this study mirror the ones followed

in previous studies about smells (e.g., Khomh et al. 2009).

To address RQ1, we compute the following:

1. #Design number of classes of a project release for which there was at least one class

change and at least one design smell among the 13 design smells detected.

2. #Lexical number of classes of a project release for which there was at least one class

change and at least one lexical smell among the 16 design smells detected.
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3. #design-lexical number of classes of a project release for which there was at least one

class change and at least a design and a lexical smell (both) among the 29 design and

lexical smells detected.

4. #no-design number of classes of a project release for which there was no design smell,

while there was at least one class change.

5. #no-lexical number of classes of a project release for which there was no lexical smell,

while there was at least one class change.

6. #no-design-lexical number of classes of a project release for which there was no

design and lexical smells at the same time, while there was at least one class change.

Then, we use the Fisher exact test (Sheskin 2007) to assess whether the proportion

between different families of smells significantly differs in terms of changes/faults.

Specifically, we first test the statistical difference between the proportions of design and

lexical smells [i.e., (1, 4) and (2, 5)] in terms of changes/faults. Then, we test wether the

difference between the proportions of design and lexical smells and design smells [i.e., (3,

6) and (1, 4)] is statistically significant. Finally, we investigate the statistical difference, in

terms of change- and fault-proneness, between the proportions of design and lexical smells

and lexical smells [i.e., (3, 6) and (2, 5)].

As for RQ2, we compute the same proportions above, for the different considered

families of smells, but for faults (instead of changes), and then, we assess whether the

differences between the computed proportions significantly differ in terms of faults.

We also use the odds ratio (OR) (Sheskin 2007) as an effect size measure. Odds ratio

indicates the likelihood of an event (i.e., change or fault) to occur. The OR is defined as the

ratio of the odds p of an event occurring in one sample, i.e., the set of classes with one

family of smells or both, i.e., lexical, design, or lexical and design smells (experimental

group), to the odds q of it occurring in the other sample, i.e., the set of classes containing

another different family of smells from the three investigated families, i.e., lexical, design,

or lexical and design smells (control group): OR ¼ p=ð1�pÞ
q=ð1�qÞ.

The interpretation of odds ratio is as follow. An odds ratio of 1 indicates that the event

(i.e., change or fault) is equally likely in both samples. OR[ 1 indicates that the event is

more likely in the first sample (experimental group) while an OR\ 1 shows the opposite

(control group).

Since we perform several tests on the same data, we adjust p values using the Bon-

ferroni correction procedure (Sheskin 2007). This procedure works as follow: It divides the

critical p value (alpha) by the number of comparisons, n, being made: alpha/n. In this

study, we perform three pair of tests (e.g., design vs. lexical smells) when analyzing

change-/fault-proneness, the null hypothesis is, therefore, rejected only if the p value is

\0.016 (0.05/3). We use Bonferroni because it is a simple procedure (Sheskin 2007).

4 Results and discussion

We now present and discuss the results of the empirical study that we conducted to answer

the research questions formulated in Sect. 3.

4.1 RQ1. Are classes with a particular family of smells more change-prone
than others?

1. Classes containing both design and lexical smells versus classes with design smells
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Table 3 summarizes the obtained odds ratios.

For ANT, in all analyzed releases, Fisher’s exact test indicates a significant difference in

the proportion of changed classes between the group of classes containing in both design

and lexical smells and those having design smells only. Odds ratios vary across systems

and, within each system, across releases. For ANT, we found an OR[ 1 in all releases.

The OR ranges from 1.98 (ANT 170) to 9.51 (ANT 180). This finding means, that for

ANT, classes with both design and lexical smells are more change-prone than classes

containing design smells only.

For ArgoUML, in six releases (out of a total of 13), Fisher’s exact test indicates a

significant difference in the proportion of changed classes between the group of classes

Table 3 Change-proneness results: design and lexical smells versus design smells (only)

Release Design and lexical versus design smells Adj. p value OR

#Design-
Lexical

#Design #No-Design-
Lexical

#No-
Design

ANT 151 27 266 0 119 <0.0001 –

ANT 152 29 269 0 119 <0.0001 –

ANT 154 26 244 0 57 0.012 –

ANT 170 42 146 48 331 0.0047 1.98

ANT 180 93 357 5 183 <0.0001 9.51

ANT 192 83 292 14 198 <0.0001 4.01

ANT 15(MAIN) 23 162 4 220 <0.0001 7.77

Hibernate 3.6.1 100 736 2 22 1 1.49

Hibernate 3.6.2 77 589 17 149 0.68 1.14

Hibernate 3.6.3 0 538 0 181 1 0

Hibernate 3.6.4 0 452 0 274 1 0

Hibernate 3.6.7 0 304 0 420 1 0

Hibernate 3.6.8 0 315 0 455 1 0

Hibernate 4.2.5 0 512 0 504 1 0

Hibernate 4.2.7 0 492 0 486 1 0

Hibernate 4.3.0 0 469 0 639 1 0

ArgoUML 0.14 24 365 36 471 0.68 0.86

ArgoUML 0.16 26 397 44 437 0.10 0.65

ArgoUML 0.18 41 514 44 1077 0.003 1.95

ArgoUML 0.18.1 43 576 30 201 0.0083 0.50

ArgoUML 0.20 41 459 46 364 0.14 0.70

ArgoUML 0.22 45 653 75 285 <0.0001 0.26

ArgoUML 0.24 48 496 74 483 0.02 0.63

ArgoUML 0.26 42 435 66 525 0.22 0.76

ArgoUML 0.26.2 50 606 42 328 0.052 0.64

ArgoUML 0.28 96 374 64 591 0.232 0.79

ArgoUML 0.28.1 38 540 81 418 <0.0001 0.36

ArgoUML 0.30 241 370 965 595 <0.0015 0.50

ArgoUML 0.30.1 231 520 88 445 <0.0001 0.36

Significant p-values are highlighted in bold face
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with both design and lexical smells and those containing design smells only. Odds ratios

vary across systems and, within each system, across releases. We find an OR[ 1 for the

release 0.18; this indicates that classes with both design and lexical smells are more

change-prone than classes with design smells only. For the rest of releases, the OR is\1

and in few cases close to 1, i.e., the odd of experiencing a change is the same for classes

with both lexical and design smells and classes with design smells only.

For Hibernate, we did not find any significant differences.

Table 4 Change-proneness results: design and lexical smells versus lexical smells (only)

Release Design and lexical versus lexical smells Adj.
p value

OR

#Design-
Lexical

#Lexical #No-Design-
Lexical

#No-
Lexical

ANT 151 27 58 0 13 0.01 –

ANT 152 29 57 0 13 0.0093 –

ANT 154 26 51 0 2 1 –

ANT 170 42 59 48 110 0.08 1.62

ANT 180 93 157 5 17 0.24 2.00

ANT 192 83 129 14 51 0.011 2.33

ANT 15(MAIN) 23 38 4 38 0.0013 5.66

Hibernate 3.6.1 100 157 2 354 <0.0001 112.42

Hibernate 3.6.2 77 131 17 385 <0.0001 13.24

Hibernate 3.6.3 0 209 0 309 1 0

Hibernate 3.6.4 0 208 0 312 1 0

Hibernate 3.6.7 0 63 0 461 1 0

Hibernate 3.6.8 0 60 0 468 1 0

Hibernate 4.2.5 0 29 0 1274 1 0

Hibernate 4.2.7 0 24 0 628 1 0

Hibernate 4.3.0 0 59 0 660 1 0

ArgoUML 0.14 24 26 36 58 0.28 1.48

ArgoUML 0.16 26 30 44 59 0.73 1.16

ArgoUML 0.18 41 50 44 84 0.12 1.56

ArgoUML
0.18.1

43 53 30 91 0.0023 2.45

ArgoUML 0.20 41 43 46 104 0.0073 2.14

ArgoUML 0.22 45 53 75 95 0.79 1.075

ArgoUML 0.24 48 62 74 131 0.22 1.36

ArgoUML 0.26 42 54 66 138 0.07 1.52

ArgoUML
0.26.2

50 69 42 219 <0.0001 3.76

ArgoUML 0.28 32 44 64 244 0.00031 2.76

ArgoUML
0.28.1

38 53 81 228 0.0059 2.01

ArgoUML 0.30 30 41 96 241 0.033 1.83

ArgoUML
0.30.1

38 51 88 231 0.0091 1.95

Significant p-values are highlighted in bold face
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Overall, we could not find that classes having both design and lexical smells are more

change-prone than classes containing design smells only across all systems and releases.

We therefore conclude that lexical smells do not increase the odds of a class to experience

a change, i.e., they do not make classes with design smells more change-prone:

This finding brings empirical evidence on the fact that lexical smells do not con-

tribute to the change-proneness of design smells when both occur in classes of

object-oriented systems.

2. Classes having design and lexical smells versus classes containing lexical smells

Table 4 shows the difference in proportions between the change-proneness of classes

with both design and lexical smells and classes with lexical smells only. As it can be

Table 5 Change-proneness results: design smells versus lexical smells

Release Design smells versus lexical smells Adj. p value OR

#Design #Lexical #No-Design #No-Lexical

ANT 151 266 58 119 13 0.0328 0.50

ANT 152 269 57 119 13 0.044 0.51

ANT 154 244 51 57 2 0.0044 0.16

ANT 170 146 59 331 110 0.33 0.72

ANT 180 357 157 183 17 <0.0001 0.21

ANT 192 292 129 198 51 0.0039 0.58

ANT 15(MAIN) 162 38 220 38 0.25 0.73

Hibernate 3.6.1 736 157 22 354 <0.0001 75.16

Hibernate 3.6.2 589 131 149 385 <0.0001 11.58

Hibernate 3.6.3 538 209 181 309 <0.0001 4.38

Hibernate 3.6.4 452 208 274 312 <0.0001 2.47

Hibernate 3.6.7 304 63 420 461 <0.0001 5.28

Hibernate 3.6.8 315 60 455 468 <0.0001 5.39

Hibernate 4.2.5 512 29 504 1274 <0.0001 44.55

Hibernate 4.2.7 492 24 486 628 <0.0001 26.44

Hibernate 4.3.0 469 59 639 660 <0.0001 8.20

ArgoUML 0.14 365 26 471 58 0.027 1.72

ArgoUML 0.16 397 30 437 59 0.0137 1.78

ArgoUML 0.18 514 50 1077 84 0.25 0.80

ArgoUML 0.181 576 53 201 91 <0.0001 4.91

ArgoUML 0.20 459 43 364 104 <0.0001 3.04

ArgoUML 0.22 653 53 285 95 <0.0001 4.10

ArgoUML 0.24 496 62 483 131 <0.0001 2.16

ArgoUML 0.26 435 54 525 138 <0.0001 2.11

ArgoUML 0.262 606 69 328 219 <0.0001 5.85

ArgoUML 0.28 374 44 591 244 <0.0001 3.50

ArgoUML 0.281 540 53 418 228 <0.0001 5.54

ArgoUML 0.30 370 41 595 241 <0.0001 7.20

ArgoUML 0.30.1 520 51 445 231 <0.0001 5.28

Significant p-values are highlighted in bold face
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noticed, results vary depending on the system. However, in several cases, Fisher’s exact

test show significant differences with OR [ 1. For ANT, the OR ranges between 2.33

(ANT 192) and 5.66 (ANT 15 MAIN) while for Hibernate the OR is higher, it is between

13.24 (Hibernate 3.6.1) and 112.42 (Hibernate 3.6.2) which means that the difference, in

terms of changes, is really high. For ArgoUML, the OR is between 1.95 (ArgoUML 0.30.1)

and 3.76 (ArgoUML 0.26.2); theses results suggest that, in most cases, the odd of expe-

riencing a change is higher for classes with both design and lexical smells than it is for

classes with lexical smells only. We therefore conclude that classes with both design and

lexical smells are changed in greater proportion than classes having only in lexical smells.

When comparing the odd ratios of (design and lexical vs. design smells) and (design and

lexical vs. lexical smells), we observe that:

The occurrence of design smell in a class that experienced a lexical smell seems to

have a stronger relationship with change-proneness than the occurrence of lexical

smell in a class that experienced a design smell.

A possible explanation to the low odds ratio for classes with lexical smells is the type of

changes underwent by such classes. We manually checked the change logs of a set of such

classes for the three analyzed systems and we observed that they underwent changes

mainly related to spelling, formatting (whitespace, etc.), checkstyle, imports organization,

javadoc fixes, namespaces, spell checkers, as well as identifier naming. Classes with design

smells underwent, in addition to such types of changes, others associated with code fixing,

refactoring, design, optimization of performance, memory issues, static code analysis, etc.

This is why more likely lexical smells do not boost change rates that much.

3. Classes containing design smells versus classes with lexical smells

Table 5 reports on the proportion of changed classes in the groups of classes experi-

encing design smells only and classes experiencing lexical smells only.

As it can be noticed, in most of the system’s releases, Fisher’s exact test indicates that

the difference between the change-proneness of classes with design smells only versus

classes with lexical smells only is statistically significant. Except for ANT, in which the

OR is\1 indicating that the proportion of classes having design smells that changed is

lower than the proportion of classes with lexical smells that changed, the OR is[1 for all

other releases of the analyzed systems. It ranges between 2.47 (Hibernate 3.4.6) and 75.16

(Hibernate 3.6.1) for Hibernate and between 1.78 (ArgoUML 0.16) and 7.20 (ArgoUML

0.30) for ArgoUML. This finding is very likely due to the fact that design smells are, in

general, well known and established than lexical smells, i.e., they change more often in

comparison with lexical smells as developers know they need to change them. We

therefore conclude that:

Design smells contribute more to the change-proneness of lexical smell classes than

lexical smells do to the change-proneness of design smells classes.

Overall, we reject the hypothesis H01 since, in most of the analyzed systems, there is a

significant difference between the proportion of classes undergoing at least one change

between two releases, for classes belonging to different families of smells.

4.2 RQ2. Are classes having a particular family of smells more fault-prone
than others?

In this section, we first present the results obtained using as a measure of fault-proneness

the post-release defects. Then, we show our findings when defects are identified using SZZ.
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4.2.1 Fault-proneness using post-release defects

1. Classes with design and lexical smells versus classes having design smells

Table 6 summarizes Fisher’s exact test results and ORs. The differences in the pro-

portions of classes that undergo fault-fixing changes are mostly significant for ANT with an

OR[ 1 varying from 2.18 to 2.76, indicating that in ANT, the fault-proneness of classes

with both design and lexical smells is higher than the fault-proneness of classes with design

smells only. For the remaining systems, there is no statistically significant difference

between the proportions of classes that underwent fault-fixing changes among the groups

Table 6 Fault-proneness results: design and lexical smells versus design (only)

Release Design and lexical versus design smells Adj. p value OR

#Design-
Lexical

#Design #No-Design-
Lexical

#No-
Design

ANT 151 17 183 10 202 0.16 1.87

ANT 152 16 158 13 230 0.17 1.78

ANT 154 18 154 8 147 0.10 2.14

ANT 170 55 191 35 286 0.00029 2.34

ANT 180 50 174 48 366 0.00051 2.18

ANT 192 57 189 40 301 0.00029 2.86

ANT 15(MAIN) 20 194 7 188 0.02 2.76

Hibernate 3.6.1 6 28 96 730 0.278 1.62

Hibernate 3.6.2 6 29 88 709 0.271 1.66

Hibernate 3.6.3 0 28 0 691 1 0

Hibernate 3.6.4 0 33 0 693 1 0

Hibernate 3.6.7 0 33 0 698 1 0

Hibernate 3.6.8 0 32 0 692 1 0

Hibernate 4.2.5 0 32 0 738 1 0

Hibernate 4.2.7 0 43 0 973 1 0

Hibernate 4.3.0 0 41 0 937 1 0

ArgoUML 0.14 6 79 53 573 0.83 0.82

ArgoUML 0.16 5 100 55 736 0.53 0.66

ArgoUML 0.18 7 110 63 724 0.57 0.73

ArgoUML 0.18.1 13 141 72 1450 0.053 1.85

ArgoUML 0.20 12 143 60 634 0.87 0.88

ArgoUML 0.22 15 163 63 660 1 0.96

ArgoUML 0.24 12 165 93 773 0.13 0.60

ArgoUML 0.26 16 188 72 791 0.88 0.93

ArgoUML 0.26.2 17 190 61 770 0.65 1.12

ArgoUML 0.28 14 194 78 740 0.22 0.68

ArgoUML 0.28.1 13 188 78 777 0.26 0.68

ArgoUML 0.30 14 188 105 770 0.045 0.54

ArgoUML 0.30.1 15 178 111 817 0.10 0.62

Significant p-values are highlighted in bold face
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of classes with both design and lexical smells and classes with design smells, suggesting

that in general:

Lexical smells do not make classes with design smells more fault-prone (than they

already are).

2. Classes with design and lexical smells versus classes having lexical smells

Table 7 shows significant differences for some releases of the three systems. For three

releases of ANT, OR values are[1 ranging between 1.96 (ANT 170) and 3.67 (ANT 15

MAIN). For two releases of Hibernate, the ORs are almost equal to 5. These findings

suggest that, for the mentioned releases, the odd of experiencing a fault-fixing change is

higher for classes with both design and lexical smells than for classes with lexical smells

only. We therefore conclude that, in some cases:

The occurrence of design smell in a class that experienced a lexical smell has a

strong relationship with fault-proneness than the occurrence of lexical smell in a

class that experienced a design smell.

This finding is likely due to the fact that fault-fixing changes related to classes with

design smells cover (according to the fault-fixing change logs) a variety of types including

implementation problems, features, API changes, bugs after modification, deployment, and

FindBugs reported problems while lexical smells are mostly associated with formatting

issues, identifier naming, data types, enumeration types, spelling, checkstyle, etc. This

justifies why design smells boost faults rates that much.

3. Classes having design smells versus classes with lexical smells

Table 8 reports on the proportion of classes that underwent fault-fixing changes in the

groups of classes experiencing design smells only and classes experiencing lexical smells

only. Except for ANT and ArgoUML 0.16 and 0.18, Fisher’s exact test show significant

differences with an OR[ 1 in all studied cases. For Hibernate, the OR ranges between 2.75

and 8.75 while it varies between 1.78 and 7.20 for ArgoUML. This finding brings further

evidence to recent works (Hall et al. 2014) on the relationship between smells and faults. It

suggests that:

The occurrence of design smell in a class has a strong relationship with the class’s

fault-proneness than the occurrence of lexical smell.

We reject the hypothesis H02 since in most cases there is a significant difference

between the proportion of classes undergoing at least one fault-fixing change between two

releases, for classes belonging to different families of smells.

4.2.2 Fault-proneness using SZZ

1. Classes with design and lexical smells versus classes having design smells

Table 9 reports the results of Fisher’s exact test and OR. It indicates the difference in

proportions between the fault-proneness of classes with both design and lexical smells and

classes with design smells only. As it can be noticed, results are mostly significant for

ArgoUML. All results are statistically significant for all release except for 0.16, with an OR

varying between 4.92 and 0. We also found statistically significant results for Hibernate in

particular for the 3.6.1 and 3.6.2 releases with ORs equal to 2.74 and 2.48, respectively.

However, we did not find any statistically significant results for ANT. Unlike the findings

obtained by leveraging post-release defects, these results show that in some cases:
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The occurrence of lexical smells can make classes with design smells more fault-

prone.

2. Classes with design and lexical smells versus classes having lexical smells

Table 10 summarizes the results obtained using Fisher’s exact test and OR for what

concerns the differences in terms of the proportions of fault-proneness of classes with both

design and lexical smells and classes with lexical smells only. As it can be noticed, results

are all statistically significant for Hibernate, with an OR between 6.34 and 2.29. For

ArgoUML, we found statistically significant results for three releases only, i.e., 0.10.1,

0.14, and 0.12 with ORs equal to 3.69, 4.0, and 3.96, respectively. For ANT, only the

release 170 yields statistically significant results with an OR equals to 2.04. These findings

Table 7 Fault-proneness results: design and lexical smells versus lexical smells (only)

Release Design and lexical versus lexical smells Adj. p value OR

#Design-
Lexical

#Design #No-Design-
Lexical

#No-
Design

ANT 151 17 29 10 42 0.06 2.43

ANT 152 16 26 13 44 0.12 2.06

ANT 154 18 27 8 26 0.15 2.14

ANT 170 55 75 35 94 0.01 1.96

ANT 180 50 70 48 104 0.09 1.54

ANT 192 57 77 40 103 0.01 1.90

ANT 15(MAIN) 20 33 7 43 0.007 3.67

Hibernate 3.6.1 6 7 96 504 0.011 4.48

Hibernate 3.6.2 6 7 88 509 0.007 4.93

Hibernate 3.6.3 0 4 0 514 1 0

Hibernate 3.6.4 0 5 0 515 1 0

Hibernate 3.6.7 0 5 0 519 1 0

Hibernate 3.6.8 0 5 0 519 1 0

Hibernate 4.2.5 0 5 0 523 1 0

Hibernate 4.2.7 0 8 0 1295 1 0

Hibernate 4.3.0 0 8 0 644 1 0

ArgoUML 0.14 6 6 53 75 0.56 1.41

ArgoUML 0.16 5 6 55 78 1 1.18

ArgoUML 0.18 7 7 63 82 0.77 1.29

ArgoUML 0.18.1 13 17 72 117 0.68 1.24

ArgoUML 0.20 12 17 60 117 0.52 1.37

ArgoUML 0.22 15 17 63 117 0.23 1.63

ArgoUML 0.24 12 17 93 117 0.84 0.88

ArgoUML 0.26 16 17 72 117 0.33 1.52

ArgoUML 0.26.2 17 17 61 117 0.11 1.91

ArgoUML 0.28 14 19 78 269 0.017 2.53

ArgoUML 0.28.1 0.68 17 78 264 0.024 2.58

ArgoUML 0.30 14 17 105 264 0.06 2.06

ArgoUML 0.30.1 15 17 111 264 0.04 2.09

Significant p-values are highlighted in bold face
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suggest that, for the mentioned releases, the odd of experiencing a fault is higher for classes

with both design and lexical smells than for classes with lexical smells only. We therefore

confirm the results obtained using post-release defects as a measure of fault-proneness and

can conclude that:

The occurrence of design smell in a class having a lexical smell has a strong

relationship with fault-proneness than the occurrence of lexical smell in a class that

experienced a design smell.

3. Classes having design smells versus classes with lexical smells

Table 11 reports on the proportion of classes that underwent fault-fixing changes in the

groups of classes experiencing design smells only and classes experiencing lexical smells

Table 8 Fault-proneness results: design smells versus lexical smells

Release Design smells versus lexical smells Adj. p value OR

#Design #Lexical #No-Design #No-Lexical

ANT 151 183 29 202 42 0.36 1.31

ANT 152 158 26 230 44 0.59 1.16

ANT 154 154 27 147 26 1 1.08

ANT 170 191 75 286 94 0.36 0.83

ANT 180 174 70 366 104 0.05 0.70

ANT 192 189 77 301 103 0.32 2.84

ANT 15(MAIN) 194 33 188 43 0.25 1.34

Hibernate 3.6.1 28 7 730 504 0.01 2.75

Hibernate 3.6.2 29 7 709 509 0.0089 2.97

Hibernate 3.6.3 28 4 691 514 0.00041 5.20

Hibernate 3.6.4 33 5 693 515 0.000169 4.89

Hibernate 3.6.7 33 5 698 519 0.00016 4.90

Hibernate 3.6.8 32 5 692 519 0.0002 4.79

Hibernate 4.2.5 43 8 973 1295 <0.0001 7.14

Hibernate 4.2.7 41 8 937 644 0.00052 8.75

Hibernate 4.3.0 40 8 1068 711 0.00084 3.32

ArgoUML 0.14 365 26 471 58 0.027 1.72

ArgoUML 0.16 397 30 437 59 0.0137 1.78

ArgoUML 0.18 514 50 1077 84 0.25 0.80

ArgoUML 0.18.1 576 53 201 91 <0.0001 4.91

ArgoUML 0.20 459 43 364 104 <0.0001 3.04

ArgoUML 0.22 653 53 285 95 <0.0001 4.10

ArgoUML 0.24 496 62 483 131 <0.0001 2.16

ArgoUML 0.26 435 54 525 138 <0.0001 2.11

ArgoUML 0.26.2 606 69 328 219 <0.0001 5.85

ArgoUML 0.28 374 44 591 244 <0.0001 3.50

ArgoUML 0.28.1 540 53 418 228 <0.0001 5.54

ArgoUML 0.30 370 41 595 241 <0.0001 7.20

ArgoUML 0.30.1 520 51 445 231 <0.0001 5.28

Significant p-values are highlighted in bold face
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only. As it can be noticed, the results for Hibernate are all statistically significant, with an

OR varying between 3.48 and 1.94. For ArgoUML, out of the 14 studied releases, ten show

statistically significant results with an OR up to 4.56. Additionally, we found statistically

significant results for two releases 192 and 170, with ORs equal to 1.68 and 1.67,

respectively. While these results bring further evidence on the fact that design smells have

an impact on fault-proneness and confirm our results obtained using post-release defects,

they are different from the findings of a recent study by Hall et al. (2014) who have

examined the relationship between faults and five smells of Fowler (i.e., Data Clumps,

Switch Statements, Speculative Generality, Message Chains, and Middle Man). In fact, the

Table 9 Fault-proneness results using SZZ: design and lexical smells versus design (only)

Project Release Design and lexical smells versus design smells Adj. p value OR

#Design #Lexical #No-Design #No-Lexical

Ant 151 8 92 19 292 0.49 1.34

152 8 93 20 294 0.64 1.26

15 8 91 19 290 0.49 1.34

154 8 90 20 210 1.0 0.93

192 21 108 65 381 0.67 1.14

180 21 108 64 431 0.31 1.31

170 20 111 54 365 0.46 1.22

ArgoUML 0.10.1 24 316 5 324 0.000437 4.92

0.28 0 365 89 568 0.0 0.0

0.24 0 395 73 542 0.0 0.0

0.26 0 393 88 585 0.0 0.0

0.20 0 407 67 369 0.0 0.0

0.22 0 408 70 414 0.0 0.0

0.30 0 364 88 593 0.0 0.0

0.14 21 387 7 448 0.003365 3.47

0.16 22 412 20 421 0.75 1.12

0.26.2 0 360 88 599 0.0 0.0

0.12 21 329 6 322 0.00564 3.43

0.18.1 22 416 60 379 <0.0001 0.33

0.30.1 0 358 89 636 0.0 0.0

0.28.1 0 376 89 588 0.0 0.0

Hibernate 4.2.5 12 84 110 931 0.60 1.21

3.6.1 11 71 43 686 0.017058 2.47

3.6.2 11 69 43 668 0.016986 2.48

3.6.3 8 70 43 648 0.22 1.72

3.6.4 8 70 43 655 0.22 1.74

3.6.6 8 69 43 661 0.14 1.78

3.6.7 8 72 43 651 0.22 1.68

3.6.8 8 71 43 698 0.13 1.83

4.2.7 12 83 110 894 0.60 1.18

4.3.0 11 91 139 1016 0.87 0.88

Significant p-values are highlighted in bold face
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results of their empirical investigation have demonstrated that Switch Statements do not

have any effect on faults, while Message Chains and Data Clumps for example increased

faults in some cases and reduced them in others. Results also indicated that in cases where

smells have significantly affected faults, the size of that effect was small. Overall, we

conclude that:

The occurrence of design smell in a class has a strong relationship with the class’s

fault-proneness than the occurrence of lexical smell.

Table 10 Fault-proneness results using SZZ: design and lexical smells versus lexical smells (only)

Project Release Design and lexical smells versus lexical smells Adj. p value OR

#Design #Lexical #No-Design #No-Lexical

Ant 151 8 12 19 59 0.17 2.07

152 8 11 20 60 0.16 2.18

15 8 12 19 64 0.15 2.25

154 8 11 20 42 0.58 1.53

192 21 26 65 154 0.05 1.91

180 21 26 64 148 0.06 1.87

170 20 26 54 143 0.049164 2.04

ArgoUML 0.10.1 24 39 5 30 0.019952 3.69

0.28 0 0 89 288 1.0 –

0.24 0 0 73 148 1.0 –

0.26 0 0 88 193 1.0 –

0.20 0 0 67 144 1.0 –

0.22 0 0 70 147 1.0 –

0.30 0 0 88 281 1.0 –

0.14 21 36 7 48 0.004267 4.0

0.16 22 36 20 53 0.25 1.62

0.26.2 0 0 88 192 1.0 –

0.12 21 38 6 43 0.006988 3.96

0.18.1 22 26 60 108 0.23 1.52

0.30.1 0 0 89 282 1.0 –

0.28.1 0 0 89 288 1.0 –

Hibernate 4.2.5 12 29 110 622 0.024941 2.34

3.6.1 11 20 43 491 <0.0001 6.28

3.6.2 11 20 43 496 <0.0001 6.34

3.6.3 8 17 43 501 0.000795 5.48

3.6.4 8 17 43 503 0.000777 5.5

3.6.6 8 17 43 507 0.000741 5.55

3.6.7 8 17 43 507 0.000741 5.55

3.6.8 8 17 43 511 0.000707 5.59

4.2.7 12 29 110 623 0.024821 2.34

4.3.0 11 24 139 695 0.03655 2.29

Significant p-values are highlighted in bold face
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5 Threats to validity

Construct validity threats concern the relation between theory and observation. A main

threat is related to the techniques used to detect design and lexical smells. We applied

DECOR (Moha et al. 2010) for the identification of design smells since it has been widely

used in previous studies on design smells, while we applied LADP to detect lexical smells

because it is the most novel and recent approach (Arnaoudova et al. 2013). Other possible

design smells detection techniques (e.g., inFusion, JDeodorant or PMD) can be used to

Table 11 Fault-proneness results using SZZ: design smells versus lexical smells

Project Release Design smells versus lexical smells Adj. p value OR

#Design #Lexical #No-Design #No-Lexical

Ant 151 92 12 292 59 0.22 1.55

152 93 11 294 60 0.12 1.73

15 91 12 290 64 0.13 1.67

154 90 11 210 42 0.19 1.64

192 108 26 381 154 0.02948 1.68

180 108 26 431 148 0.14 1.43

170 111 26 365 143 0.037109 1.67

ArgoUML 0.10.1 316 39 324 30 0.31 0.75

0.28 365 0 568 288 0.0 –

0.24 395 0 542 148 0.0 –

0.26 393 0 585 193 0.0 –

0.20 407 0 369 144 0.0 –

0.22 408 0 414 147 0.0 –

0.30 364 0 593 281 0.0 –

0.14 387 36 448 48 0.56 1.15

0.16 412 36 421 53 0.11 1.44

0.26.2 360 0 599 192 0.0 –

0.12 329 38 322 43 0.55 1.16

0.18.1 416 26 379 108 0.0 4.56

0.30.1 358 0 636 282 0.0 –

0.28.1 376 0 588 288 0.0 –

Hibernate 4.2.5 84 29 931 622 0.002605 1.94

3.6.1 71 20 686 491 0.000216 2.54

3.6.2 69 20 668 496 0.000193 2.56

3.6.3 70 17 648 501 <0.0001 3.18

3.6.4 70 17 655 503 <0.0001 3.16

3.6.6 69 17 661 507 <0.0001 3.11

3.6.7 72 17 651 507 <0.0001 3.3

3.6.8 71 17 698 511 <0.0001 3.06

4.2.7 83 29 894 623 0.001353 1.99

4.3.0 91 24 1016 695 <0.0001 2.59

Significant p-values are highlighted in bold face
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confirm our findings. Another threats relate to our method for detecting post-release bugs.

In effect, we have used a method that is widely applied in the literature (Kamei et al. 2013;

McIntosh et al. 2014, 2015). Yet, we are aware that this accuracy is not perfect since it

includes its authors’ subjective understanding of the code smells (Moha et al. 2010).

Additionally, DECOR accuracy may have an impact on our results since we may have

classified a class without smells as a class involving smells and vice versa. In the future, we

intend to apply other techniques and tools to confirm our findings (Moha et al. 2010).

Internal validity threats deal with alternative explanations of our results. It is important

to mention that we do not claim causation, but we bring empirical evidence of the rela-

tionship between the presence of a particular family of smells and the occurrences of

changes, and faults. Another threat is related to errors related to fault-fixing changes. We

mitigated such a threat by not computing only the post-release defects, but also defects

using the SZZ algorithm (Śliwerski et al. 2005).

Conclusion validity threats concern the relation between the treatment and the outcome.

Proper tests were performed to statistically reject the null hypotheses. In particular, we

used nonparametric tests, which do not make any assumption on the underlying distribu-

tions of the data, and, specifically, Fisher’s exact test. Also, we based our conclusions not

only on the presence of significant differences but also on the presence of a practically

relevant difference, estimated by means of odds ratio measures. Last, but not least, we dealt

with problems related to performing multiple Fisher tests using the Bonferroni correction

procedure.

Reliability validity threats concern the possibility of replicating this study. We make

publicly available all information and necessary details to replicate our study. Moreover,

the source code repositories and issue tracking systems are publicly available to obtain the

same data. The raw data used to compute the statistics presented in this paper are available

online.10

External validity threats concern the possibility of generalizing our results. We studied

three systems having their corresponding control version system from where we extracted

changes and fault fixes. It is true that three projects are not a large number. However, we

analyzed a large number of releases, i.e., 30 releases in total. The investigated systems

have different sizes and belong to different domains. Such a number of systems and

releases may not be representative of all systems, and thus, we cannot guarantee that

similar findings will be obtained when applying our approach to other open or closed

source systems. Additionally, further validation on a larger set of systems from different

domains is recommended to make sure our results are generalizable. Finally, we used a

specific yet representative family of lexical and design smells. Different smells could be

investigated in future work and could lead to different results.

6 Related work

6.1 Design smells

6.1.1 Design smells definition and detection

Webster (1995) was the first who wrote about smells in object-oriented development. A

taxonomy of 22 code smells was introduced by Fowler (1999). They pointed out to the fact

10 http://swat.polymtl.ca/data/Replication-Package-Smells-SQJ-2015.zip.
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that such smells are indicators about design or implementation issues which can be

addressed using refactoring. Recently, Suryanarayana (2014) provided a catalog of 25

structural design smells that contribute to technical debt in software projects. Other works

focused on the detection of smells (Moha et al. 2010). Palomba et al. (2013, 2015) sug-

gested an approach called Historical Information for Smell deTection (HIST) to detect five

different code smells, namely Divergent Change, Shotgun Surgery, Parallel Inheritance,

Blob, and Feature Envy, by exploiting change history information mined from versioning

systems. The results indicate that HIST’s precision ranges between 61 and 80 %, and its

recall ranges between 61 and 100 %. More importantly, the results confirm that HIST is

able to identify code smells that cannot be detected by approaches solely based on code

analysis. More precisely, the authors analyzed HIST accuracy in two different scenarios. In

the first scenario, they applied HIST on 20 different open-source projects and showed that

in comparison with previous work, there is an improvement in precision while the recall

was nearly the same. They concluded that HIST can detect code smells which were not

detected by the competitive algorithm. The second scenario investigated to what extent

developers can trust and consider the smells detected by HIST. The findings showed that

more than 75 % of these detected code smells are real design or implementation problems

(Palomba et al. 2013, 2015). Recently, researchers (Fontana et al. 2005) have applied

machine learning algorithms to detect code smells. They investigated 16 different machine

learning algorithms on four code smells (i.e., Data Class, Large Class, Feature Envy, Long

Method) and 74 software systems. Their findings show that machine learning can help

achieve a high accuracy (i.e.,[96 %) when detecting code smells, and that only a hundred

training examples are sufficient to reach at least 95 % accuracy (Fontana et al. 2005).

6.1.2 Design smells and software evolution

Other researchers have analyzed the relation between smells and software quality. For

example, Khomh et al. (2012) have discovered the relation between smells and change-

and fault-proneness. Li and Shatnawi (2007) show relationships between six code smells

and probability of class error in three different versions of Eclipse. Their investigation

showed that classes with smells, such as God Class, God Method and Shotgun Surgery, are

strongly related to class error.

Hall et al. (2014) have examined the relationship between faults and five smells of

Fowler (i.e., Data Clumps, Switch Statements, Speculative Generality, Message Chains,

and Middle Man) using negative binomial regression models. They analyzed three open-

source systems: Eclipse, ArgoUML, and Apache Commons. Their findings have shown

that Switch Statements do not have any effect on faults in any of the three systems;

Message Chains increased faults in two systems; Message Chains which occurred in larger

files reduced faults; Data Clumps reduced faults in Apache and Eclipse, but increased

faults in ArgoUML; Middle Man reduced faults only in ArgoUML, and Speculative

Generality reduced faults only in Eclipse. Results also indicated that in cases where smells

did significantly affect faults, the size of that effect was small. While some smells do

indicate fault-prone code in some circumstances, their effect on faults is small. The authors

concluded that arbitrary refactoring is unlikely to significantly reduce fault-proneness and

in some cases may increase fault-proneness.

Cardoso and Figueiredo (2015) have investigated co-occurrences between design pat-

terns and bad smells on five systems such as AsoectJ, Hibernate, JHotDraw, Velocity and

WebMail. The results of their study indicated co-occurrences between Command and
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GodClass, as well as between Template Method and Duplicated Code. They concluded that

some of design pattern misuse may increase the possibility of arising of bad smells

Olbrich et al. (2009) analyzed the evolution of two different code smells, i.e., Shotgun

Surgery and God class over time in the development process of two software systems.

They showed that components containing such code smells do not decrease over time

given the fact that refactoring activities were not actively performed on these systems.

Peters and Zaidman (2012) studied the lifespan of five different code smells over

different releases. They revealed that long-lived code smells increase over time given the

low number of refactorings performed by developers on the considered systems. Such

investigation confirms that code smells mostly remain in systems. Recently, Taba et al.

(2013) have suggested multiple metrics based on smells to improve fault prediction. Also,

Palomba et al. (2014) have conducted a study where developers with code entities of three

systems affected and not by bad smells, and they asked them to tell whether the code has

potential design problem, and if any, the nature and severity of the problem. The results of

such study provide insights on the characteristics of bad smells yet unexplored in depth.

Also, Yamashita and Moonen (2013) have demonstrated through a user study with pro-

fessional developers that the majority of developers are concerned about code smells.

6.2 Lexical smells

6.2.1 Lexical smells definition and detection

De Lucia et al. (2010) suggested COCONUT to verify consistency between the lexicon of

high-level artifacts and of source code based on the textual similarity between the two

artifacts.

Abebe and Tonella (2013) built an ontology to assist developers in the choice of

identifiers consistent with the concepts already used in the system.

A more recent work proposed an approach to identify inconsistencies among identifiers,

source code, and comments; this technique handles generic naming and comments issues in

object-oriented programs and specifically in the lexicon and comments of methods and

attributes (Arnaoudova et al. 2015).

Tan et al. (2007) proposed several approaches to identify inconsistencies between code

and comments. The first called, @iComment, detects lock- and call-related inconsistencies.

The second approach, @aComment, detects synchronization inconsistencies related to

interrupt context (Tan et al. 2011). A third approach, @tComment, automatically infers

properties form Javadoc related to null values and exceptions; it performs test case gen-

eration by considering violations of the inferred properties (Tan et al. 2012).

6.2.2 Lexical smells and software evolution

Lemma et al. (2012) investigated whether using lexicon bad smells (LBS) in addition to

structural metrics improves fault prediction. They assessed the capability of their predictive

models using (1) only structural metrics, and (2) structural metrics and LBS. The results of

their study conducted on three open-source systems, ArgoUML, Rhino, and Eclipse

indicate that there is an improvement in the majority of the cases.

The same authors investigated to what extent lexicon bad smells can hinder the exe-

cution of maintenance tasks. The results indicate that lexicon bad smells negatively affect

concept location when using IR-based techniques (Abebe et al. 2011).

Software Qual J

123



We agree with the above-mentioned works that design smells are indicators about poor

code quality and that lexical bad smells can hinder the execution of program understanding

and maintenance tasks as well as decreasing the quality of programs. In our work, we

empirically investigate the additional relationship that lexical smells can have with change-

and fault-proneness.

7 Conclusion and future work

We provide further empirical evidence that design and lexical bad smells relate to change-

and fault-proneness. Our investigation consists of the analysis of 30 releases of three

different open-source systems: ArgoUML, Hibernate, and ANT. We detected 29 smells in

each release, i.e., 13 design smells using the DECOR approach and 16 lexical smells using

the novel LDAP approach. To study the relation between the detected families of smells

and change- and fault-proneness, we leveraged the change history of the studied systems

using information from their Git/SVN versioning systems. We also mined their bug

repositories.

Interestingly, our findings show that lexical smells can make, in some cases, classes

with design smells more fault-prone when both occur in classes of object-oriented systems.

In addition, they indicate that, in a lot of cases, classes containing design smells are more

change- and fault-prone than classes with lexical smells. The occurrence of design smell in

a class that experienced a lexical smell has a strong relationship with change- and fault-

proneness than the occurrence of lexical smell in a class that experienced a design smell.

We believe such results could guide development and quality assurance teams to better

focus their refactoring efforts on components with design smells (while not neglecting

lexical smells) to assure good quality for their systems. As future work, we intend to

conduct a user study involving professional developers both internal, i.e., contributors to

the development of the systems as well as external ones from industry to better understand

the interaction between design and lexical smells, and identify which specific type of

design smells (e.g., SpaghettiCode) and lexical smells (e.g., Attribute signature and

comment are opposite) should be given higher priority during refactoring.
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