
Do Faster Releases Improve Software Quality?

—An Empirical Case Study of Mozilla Firefox—

Foutse Khomh1, Tejinder Dhaliwal1, Ying Zou1, Bram Adams2

1 Dept. of Elec. and Comp. Engineering, Queen’s University, Kingston, Ontario, Canada
2 GIGL, École Polytechnique de Montréal, Québec, Canada

{foutse.khomh, tejinder.dhaliwal, ying.zou}@queensu.ca, bram.adams@polymtl.ca

Abstract—Nowadays, many software companies are shifting
from the traditional 18-month release cycle to shorter release
cycles. For example, Google Chrome and Mozilla Firefox
release new versions every 6 weeks. These shorter release cycles
reduce the users’ waiting time for a new release and offer
better marketing opportunities to companies, but it is unclear
if the quality of the software product improves as well, since
shorter release cycles result in shorter testing periods. In this
paper, we empirically study the development process of Mozilla
Firefox in 2010 and 2011, a period during which the project
transitioned to a shorter release cycle. We compare crash rates,
median uptime, and the proportion of post-release bugs of the
versions that had a shorter release cycle with those having a
traditional release cycle, to assess the relation between release
cycle length and the software quality observed by the end user.
We found that (1) with shorter release cycles, users do not
experience significantly more post-release bugs and (2) bugs
are fixed faster, yet (3) users experience these bugs earlier
during software execution (the program crashes earlier).

Keywords-Software release; release cycle; software quality;
testing; bugs.

I. INTRODUCTION

In today’s fast changing business environment, many
software companies are aggressively shortening their release
cycles (i.e., the time in between successive releases) to speed
up the delivery of their latest innovations to customers [1].
Instead of typically working 18 months on a new release
containing hundreds of new features and bug fixes, com-
panies reduce this period to, say, 3 months by limiting the
scope of the release to the new features and fixing only the
most crucial bugs. For example, with a rapid release model
(i.e., a development model with a shorter release cycle),
Mozilla could release over 1,000 improvements and per-
formance enhancements with Firefox 5.0 in approximately
3 months [2]. Under the traditional release model (i.e., a
development model with a long release cycle), Firefox users
used to wait for a year to get some major improvements or
new features.

The concept of rapid release cycle was introduced by agile
methodologies like XP [3], which claim that shorter release
cycles offer various benefits to both companies and end

users. Companies get faster feedback about new features and
bug fixes, and releases become slightly easier to plan (short-
term vs. long-term planning). Developers are not rushed to
complete features because of an approaching release date,
and can focus on quality assurance every 6 weeks instead
of every couple of months. Furthermore, the higher number
of releases provide more marketing opportunities for the
companies. Customers benefit as well, since they have faster
access to new features, bug fixes and security updates.

However, the claim that shorter release cycles improve
the quality of the released software has not been empirically
validated yet. Baysal et al. [4] found that bugs were fixed
faster (although not statistically significantly) in versions of
Firefox using a traditional release model than in Chrome,
which uses a rapid release model. Porter et al. reported that
shorter release cycles make it impossible to test all possible
configurations of a released product [5]. Furthermore, anec-
dotal evidence suggests that shorter release cycles do not
allow enough time to triage bugs from previous versions,
and hence hurt the developers’ chances of catching persistent
bugs [6]. This is why Firefox’s current high number of
unconfirmed bugs has been attributed to the adoption of the
6 week-release cycle [6]. In August 2011, Firefox had about
2, 600 bugs that had not been touched since the release of
Firefox 4 five months earlier. The number of Firefox bugs
that were touched, but not triaged or worked on was even
higher and continues to grow everyday [6].

To understand whether and how transitioning to a rapid
release model can affect the quality of a software system
as observed by users, we empirically study the historical
field testing data of Mozilla Firefox. Firefox is a hugely
popular web browser that has shifted from the traditional
development model to a rapid release model. This allows
us to compare the quality of traditional releases to that of
rapid releases, while controlling for unpredictable factors
like development process and personnel (since those largely
remained constant). As measures of the quality of Firefox,
we analyze the number of post-release bugs, the daily crash
counts and the uptime of Firefox (i.e., the time between a
user starting up Firefox and experiencing a failure).

We studied the following three research questions:
RQ1) Does the length of the release cycle affect the

software quality?
There is only a negligible difference in the number
of post-release bugs when we control for the time
interval between subsequent release dates. However,
the median uptime is significantly lower for versions
developed in short release cycles, i.e., failures seem
to occur faster at run-time.

RQ2) Does the length of the release cycle affect the fixing
of bugs?

Bugs are fixed significantly faster for versions devel-
oped in a rapid release model.

RQ3) Does the length of the release cycle affect software
updates?

Versions developed in a rapid release model are
adopted faster by customers, i.e., the proportion of
customers running outdated versions that possibly
contain closed security holes is reduced.

A better understanding of the impact of the release cycle
on software quality will help decision makers in software
companies to find the right balance between the delivery
speed (release cycle) of new features and the quality of their
software.

The rest of the paper is organized as follows. Section II
provides some background on Mozilla Firefox. Section III
describes the design of our study and Section IV discusses
the results. Section V discusses threats to the validity of our
study. Section VI discusses the related literature on release
cycles and software quality. Finally, Section VII concludes
the paper and outlines future work.

II. MOZILLA FIREFOX

Firefox is an open source web browser developed by the
Mozilla Corporation. It is currently the third most widely
used browser, with approximately 25% usage share world-
wide [7]. Firefox 1.0 was released in November 2004 and
the latest version, Firefox 9, was released on December 20,
2011. Figure 1(a) shows the release dates of major Firefox
versions. Firefox followed a traditional release model until
version 4.0 (March 2011). Afterwards, Firefox adopted a
rapid release model to speed up the delivery of its new
features. This was partly done to compete with Google
Chrome’s rapid release model [8], [9], which was eroding
Firefox’s user base. The next subsections discuss the Firefox
development and quality control processes.

A. Development Process

Before March 2011, FireFox supported multiple releases
in parallel, not only the last major release. Every version of
FireFox was followed by a series of minor versions, each
containing bug fixes or minor updates over the previous
version. These minor versions continued even after a new

5.0 NIGHTLY 6.0 NIGHTLY 7.0 NIGHTLY 8.0 NIGHTLY

5.0 AURORA 6.0 AURORA 7.0 AURORA

5.0 BETA 6.0 BETA

5.0 MAIN

New Feature Development

6 Weeks 6 Weeks 6 Weeks 6 Weeks

Figure 2. Development and Release Process of Mozilla Firefox

major release was made. Figure 1(b) shows the release dates
of the minor versions of Firefox.

With the advent of shorter release cycles in March 2011,
new features need to be tested and delivered to users faster.
To achieve this goal, Firefox changed its development pro-
cess. First, versions are no longer supported in parallel, i.e.,
a new version supersedes the previous ones. Second, every
FireFox version now flows through four release channels:
NIGHTLY, AURORA, BETA and MAIN. The versions
move from one channel to the next every 6 weeks [10].
To date, five major versions of Firefox (i.e., 5.0, 6.0, 7.0,
8.0, 9.0) have finished the new rapid release model.

Figure 2 illustrates the current development and release
process of Firefox. The NIGHTLY channel integrates new
features from the developers’ source code repositories as
soon as the features are ready. The AURORA channel
inherits new features from NIGHTLY at regular intervals
(i.e., every 6 weeks). The features that need more work are
disabled and left for the next import cycle into AURORA.
The BETA channel receives only new AURORA features
that are scheduled by management for the next Firefox
release. Finally, mature BETA features make it into MAIN.
Note that at any given time (independent from the 6 week
release schedule) unscheduled releases may be performed to
address critical security or stability issues.

Firefox basically follows a pipelined development pro-
cess. At the same time as the source code of one release
is imported from the NIGHTLY channel into the AURORA
channels, the source code of the next release is imported
into the NIGHTLY channel. Consequently, four consecutive
releases of Firefox migrate through Mozilla’s NIGHTLY,
AURORA, BETA, and MAIN channels at any given time.
Figure 2 illustrates this migration.

B. Quality Control Process

One of the main reasons for splitting Firefox’ develop-
ment process into pipelined channels is to enable incre-
mental quality control. As changes make their way through
the release process, each channel makes the source code
available for testing to a ten-fold larger group of users.
The estimated number of contributors and end users on the

1.0 1.5 2.0 3.0 3.5 3.6 4.0 5.0 7.0
8.0

9.0

Traditional Release Cycle Rapid Release Cycle

(a) Time Line of Major Versions of FireFox

(b) Time Line of Minor Versions of FireFox

Figure 1. Timeline of FireFox versions.

channels are respectively 100,000 for NIGHTLY, 1 million
for AURORA, 10 million for BETA and 100+ millions for
a major Firefox version [11]. NIGHTLY reaches Firefox
developers and contributors, while other channels (i.e., AU-
RORA and BETA) recruit external users for testing. The
source code on AURORA is tested by web developers who
are interested in the latest standards, and by Firefox add-on
developers who are willing to experiment with new browser
APIs. The BETA channel is tested by Firefox’s regular beta
testers.

Each version of Firefox in any channel embeds an auto-
mated crash reporting tool, i.e., the Mozilla Crash Reporter,
to monitor the quality of Firefox across all four channels.
Whenever Firefox crashes on a user’s machine, the Mozilla
Crash Reporter [12] collects information about the event
and sends a detailed crash report to the Socorro crash
report server. Such a crash-report includes the stack trace
of the failing thread and other information about a user
environment, such as the operating system, the version of
Firefox, the installation time, and a list of plug-ins installed.

Socorro groups similar crash-reports into crash-types.
These crash-types are then ranked by their frequency of
occurrence by the Mozilla quality assurance teams. For the
top crash-types, testers file bugs in Bugzilla and link them to
the corresponding crash-type in the Socorro server. Multiple
bugs can be filed for a single crash-type and multiple crash-
types can be associated with the same bug. For each crash-
type, the Socorro server provides a crash-type summary, i.e.,
a list of the crash-reports of the crash-type and a set of bugs
that have been filed for the crash-type.

Firefox users can also submit bug reports in Bugzilla
manually. A bug report contains detailed semantic infor-
mation about a bug, such as the bug open date, the last
modification date, and the bug status. The bugs are triaged

by bug triaging developers and assigned for fixing. When
a developer fixes a bug, he typically submits a patch to
Bugzilla. Once approved, the patch code is integrated into
the source code of Firefox on the corresponding channel and
migrated through the other channels for release. Bugs that
take too long to get fixed and hence miss a scheduled release
are picked up by the next release’s channel.

III. STUDY DESIGN

This section presents the design of our case study, which
aims to address the following three research questions:

1) Does the length of the release cycle affect the software
quality?

2) Does the length of the release cycle affect the fixing
of bugs?

3) Does the length of the release cycle affect software
updates?

A. Data Collection

In this study, we analyze all versions of Firefox that were
released in the period from January 01, 2010 to December
21, 2011. In total, we study 25 alpha versions, 25 beta
versions, 29 minor versions and 7 major versions that were
released within a period of one year before or after the
move to a rapid release model. Firefox 3.6, Firefox 4 and
their subsequent minor versions were developed following
a traditional release cycle with an average cycle time of
52 weeks between the major version releases and 4 weeks
between the minor version releases. Firefox 5, 6, 7, 8, 9
and their subsequent minor versions followed a rapid release
model with an average release time interval of 6 weeks
between the major releases and 2 weeks between the minor
releases. Table I shows additional descriptive statistics of the
different versions.

Table I
STATISTICS FROM THE ANALYZED FIREFOX VERSIONS (THE CYCLE TIME IS GIVEN IN DAYS).

Version Release date Cycle time LOC Alpha Versions (#) Beta Versions (#) Minor Versions (#)
Traditional
release model

3.6 21-01-2010 425 4,076,624 3.6a1pre–3.6b6pre (8) 3.6b1–3.6b6 (6) 3.6.2–3.6.24 (22)
4.0 22-03-2011 91 4,738,536 4.0.b1pre–4.0.b12pre (12) 4.0.b1beta–4.0.1beta (14) 4.0.1 (1)

Rapid release
model

5.0 21-06-2011 56 4,702,874 5.0Aurora (1) 5.0Beta (1) 5.0.1 (1)
6.0 16-08-2011 42 4,667,335 6.0Aurora (1) 6.0Beta (1) 6.0.1, 6.0.2 (2)
7.0 27-09-2011 42 4,653,081 7.0Aurora (1) 7.0Beta (1) 7.0.1 (1)
8.0 08-11-2011 42 4,635,064 8.0Aurora (1) 8.0Beta (1) 8.0.1 (1)
9.0 20-12-2011 42 4,687,901 9.0Aurora (1) 9.0Beta (1) 9.0.1 (1)

B. Data Processing

Figure 3 shows an overview of our approach. First, we
check the release notes of Firefox and classify the versions
based on their release model (i.e., traditional release model
and rapid release model). Then, for each version, we extract
the necessary data from the source code repository (i.e.,
Mercurial), the crash repository (i.e., Socorro), and the bug
repository (i.e., Bugzilla). Using this data, we compute
several metrics, then statistically compare these metrics
between the traditional release (TR) model group and the
rapid release (RR) model group. The remainder of this
section elaborates on each of these steps.

1) Analyzing the Mozilla Wiki: For each version, we
extract the starting date of the development phase and the
release date from the release notes on the Mozilla Wiki. The
release cycle is the time period between the release dates of
two consecutive versions. We also compute the development
time of the version by calculating the difference between the
release date and the starting date of the development phase.
The development time is slightly longer than the release
cycle because the development of a new version is started
before the release of the previous one.

2) Mining the Mozilla Source Code Repository: On the
source code of each downloaded version, we use the source
code measurement tool, SourceMonitor, to compute the
number of Total Lines of Code and the Average Complexity.
SourceMonitor1 can be applied on C++, C, C], V B.NET ,
Java, Delphi, V isualBasic(V B6), and HTML source
code files. Such a polyvalent tool is necessary, given the
diverse set of programming languages used by Firefox.

3) Mining the Mozilla Crash Repository: We downloaded
the summaries of crash reports for all versions of Firefox
that were released between January 21, 2010 and December
21, 2011. From these summaries, we extracted the date of
the crash, the version of Firefox that was running during
the crash, the list of related bugs, and the uptime (i.e., the
duration in seconds for which Firefox was running before it
crashed).

4) Analyzing the Mozilla Bug Repository: We down-
loaded all Firefox bug reports related to the Firefox crashes.
These reports contain both pre-release and post-release bugs.
We parse each of the bug reports to extract information

1http://www.campwoodsw.com/

about the bug status (e.g., UNCONFIRMED, FIXED), the
bug open and modification dates, the priority of the bug and
the severity of the bug. However, we cannot directly identify
the major or minor version of Firefox for which the bug was
raised, since this is not recorded.

Since the analyzed bugs are related to crashes, and crashes
are linked to specific versions, we instead use this mapping
to link the bugs to Firefox versions. For each bug, we check
the crash-types for which the bug is filed. Then, we look
at the crash reports of the corresponding crash-type(s) to
identify the version that produces the crash-type, and we link
the bug to that version. When the same crash-type contains
crash reports from users on different versions, we consider
that the crash-type is generated by the oldest version.

IV. CASE STUDY RESULTS

This section presents and discusses the results of our three
research questions. For each research question, we present
the motivation behind the question, the analysis approach
and a discussion of our findings.

A. RQ1: Does the length of the release cycle affect the
software quality?

Motivation. Despite the benefits of speeding up the delivery
of new features to users, shorter release cycles could have
a negative impact on the quality of software systems, since
there is less time for testing. Many reported issues are likely
to remain unfixed until the software is released. This in
turn might expose users to more post-release bugs. On the
other hand, with fast release trains (e.g., every 6 weeks),
developers are less pressured to rush half-baked features into
the software repository to meet the deadline. Hence, a rapid
release model could actually introduce less bugs compared
to traditional release models. Clearing up the interaction
between both factors is important to help decision makers
in software organizations find the right balance between the
speed of delivery of new features and maintaining software
quality.
Approach. We measure the quality of a software system
using the following three well-known metrics:

• Post-Release Bugs: the number of bugs reported after
the release date of a version (lower is better).

Mozilla Source
Code

Repository

Mozilla Crash
Repository

Mozilla Bug
Repository

Source Code
3.6Source Code

for Versions

Source Code
3.6

Source Code
Metrics for

each Version

Source Code
3.6Daily Crash

Summaries

Compute
Metrics

RQ1

RQ3

RQ2

Mozilla Wiki

Map Bugs to
Versions

Source Code
3.6Bug Metrics for

each Version

Analyze

Compute
Metrics

Compute
Metrics

Source Code
3.6

Crash Metrics
for each
Version

Development
Time + Release

Dates

Source Code
3.6Bug Reports

Extract Data

Extract Data

Extract Data

Extract Data

Figure 3. Overview of our approach to study the impact of release cycle time on software quality.

• Median Daily Crash Count: the median of the number
of crashes per day for a particular version (lower is
better).

• Median Uptime: the median across the uptime values
of all the crashes that are reported for a version (higher
is better).

We answer this research question in three steps. First, we
compare the number of post-release bugs between the tradi-
tional release (i.e., TR) and rapid release (i.e., RR) groups.
For each Firefox version, we consider all bugs reported after
its release date. Note that we cannot perform this comparison
directly. Herraiz et al. [13] have shown that the number of
reported post-release bugs of a software system is related to
the number of deployments. In other words, a larger number
of deployments increases the likelihood of users reporting a
higher number of bugs. Since the number of deployments is
affected by the length of the period during which a release is
used, and this usage period is directly related to the length of
the release cycle, we need to normalize the number of post-
release bugs of each version to control for the usage time.
Hence, for each version, we divide the number of reported
post-release bugs by the length of the release cycle of the
version, and test the following null hypothesis:
H1

01: There is no significant difference between the number
of post-release bugs of RR versions and TR versions.

Second, we analyze the distribution of the median daily
crash counts for RR and TR versions, and test the following
null hypothesis:
H1

02: There is no significant difference between the median
daily crash count of RR versions and TR versions.

Third, we compare the median uptime of RR versions to
TR versions. We test the following null hypothesis:
H1

03: There is no significant difference between the median
uptime values of RR versions and TR versions.

We use the Wilcoxon rank sum test [14] to test H1
01,

H1
02, and H1

03. The Wilcoxon rank sum test is a non-
parametric statistical test used for assessing whether two

independent distributions have equally large values. Non-
parametric statistical methods make no assumptions about
the distributions of the assessed variables.
Findings. When controlled for the length of the release
cycle of a version, there is no significant difference
between the number of post-release bugs of rapid re-
lease and traditional release versions. Figure 4 shows the
distribution of the normalized number of post-release bugs
for TR and RR versions, respectively. We can see that the
medians are similar for RR and TR versions. The Wilcoxon
rank sum test confirms this observation (p − value = 0.3),
therefore we cannot reject H1

01.
13 20

0

1

2

3

4

5

Traditional Release (TR) Rapid Release (RR)

 N
u

m
b

er
 o

f
P

o
st

 R
el

e
as

e
B

u
gs

 P
er

 D
ay

Figure 4. Boxplot of the number of post release bugs raised per day.

There is no significant difference between the median
daily crash count of rapid release versions and tradi-
tional release versions. The Wilcoxon rank sum test yielded
a p-value of 0.73. Again, we cannot reject H1

02.
The median uptime is significantly lower for rapid

release versions. Figure 5 shows the distribution of the
median uptime across TR and RR versions, respectively. We
can observe that the median uptime is lower for RR versions.
We ran the Wilcoxon rank sum test to decide if the observed
difference is statistically significant or not, and obtained a
p− value of 6.11e− 06. Therefore, we reject H1

03.
In general, we can conclude that although the median of

daily crash counts and the number of post-release bugs are

0

120

240

360

480

600

720

840

960

1080

1200

Traditional Release (TR) Rapid Release (RR)

M
ed

ia
n

 U
p

Ti
m

e
in

 S
ec

o
n

d
s

Figure 5. Boxplot of the median uptime.

comparable for RR versions and TR versions, the median
uptime of RR versions is lower. In other words, although
rapid releases do not seem to impact software quality
directly, end users do get crashes earlier during execution
(H1

03), i.e., the bugs of RR versions seem to have a higher
show-stopper probability than the bugs of TR versions. It is
not clear why exactly this happens, i.e., because of a quality
assurance problem or by accident (i.e., one or more show-
stopper bugs with a high impact).

Users experience crashes earlier during the execution of
versions developed following a rapid release model.

B. RQ2: Does the length of the release cycle affect the fixing
of bugs?

Motivation. For RQ1, we found that when one controls
for the cycle time of versions, there is no significant
difference between the number of post-release bugs of
traditional release and rapid release versions reported per
day. However, since a shorter release cycle time allows less
time for testing and there was no substantial change in the
development team of Firefox when switching to shorter
release cycles, we might expect that the same group of
developers now have less time to fix the same stream of
bugs. Hence, in this question, we investigate the proportion
of bugs fixed and the speed with which the bugs are fixed
in the rapid release model.

Approach. For each alpha, beta, and major version, we
compute the following metrics:

• Fixed Bugs: the number of post-release bugs that are
closed with the status field set to FIXED (higher is
better).

• Unconfirmed Bugs: the number of post-release bugs
with the status field set to UNCONFIRMED (lower is
better).

• Fix Time: the duration of the fixing period of the bug
(i.e., the difference between the bug open time and the
last modification time). This metric is computed only
for bugs with the status FIXED (lower is better).

We test the following null hypothesis to compare the
efficiency of testing activities under traditional and rapid
release models:
H2

01: There is no significant difference between the propor-
tion of bugs fixed during the testing period of a RR version
and the proportion of bugs fixed during the testing of a TR
version.

We consider the testing period of a version vi to be the
period between the release date of the first alpha version of
vi and the release date of vi. As such, bugs opened or fixed
during this period correspond to post-release bugs of the
alpha or beta versions of vi. To compute the proportion of
bugs fixed during the testing period, we divided the number
of bugs fixed in the testing period by the total number of
bugs opened during the testing period. We do not further
divide by the length of the testing period, since, as discussed
in RQ1, both the number of fixed bugs and the number of
opened bugs depend on the length of the testing period.

To assess and compare the speed at which post-release
bugs are fixed under traditional and rapid release models,
we test the following null hypothesis:
H2

02: There is no significant difference between the distribu-
tion of Fix Time values for bugs related to TR versions and
bugs related to RR versions.

We also investigate a similar hypothesis for high priority
bugs only. Because high priority bugs are likely to impede
or prevent the use of core functionalities, we expect that they
will be fixed with the same timely manner under traditional
and rapid release models.

For this, we classify all the bugs based on their priority,
i.e., for each bug, we extract priority and severity values
from the corresponding bug report. Since only 5% of Mozilla
bugs from our data set are filed with priority values, we rely
on the severity value of a bug report if the priority value
is absent. Severity values are always available in the bug
reports from our data set. In our analysis, we consider a bug
to have a high priority if the bug was filed explicitly with a
high priority value or if the bug’s severity level is either
“critical”, “major”, or “blocker”. We used this heuristic
before, with good results [15]. We can then test the following
null hypothesis:
H2

03: There is no significant difference between the distribu-
tion of Fix Time values for high-priority bugs related to TR
versions and high-priority bugs related to RR versions.

Similar to RQ1, hypotheses H2
01, H2

02 and H2
03 are

two-tailed. We perform a Wilcoxon rank sum test to accept
or refute them.

Findings. When following a rapid release model, the
proportion of bugs fixed during the testing period is
lower than the proportion of bugs fixed in the test-
ing period under the traditional release model. Figure
6 shows the distribution of the proportion of bugs fixed
during the testing period of TR and RR versions. We can

observe that the proportion of bugs fixed is higher under
the traditional release model. The Wilcoxon rank sum test
returned a significant p − value of 0.003. Therefore, we
reject H2

01.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Traditional
Release (TR) -

Main

Rapid Release
(RR) - Main

Traditional
Release (TR) -

Beta

Rapid Release
(RR) - Beta

%
 o

f
B

u
gs

 F
ix

ed

Figure 6. Boxplot of the proportion of bugs fixed.

654 159

0

10

20

30

40

50

60

70

80

90

100

Traditional Release (TR) Rapid Release (RR)

B
u

g
A

ge
 in

 D
ay

s

Figure 7. Boxplot of Bug Fixing Time.

Bugs are fixed faster under a rapid release model.
Figure 7 shows the distributions of the bug fixing time
for TR and RR versions, respectively. We can see that
developers take almost three times longer to fix bugs under
the traditional release cycle. The medians of bug fixing
times under traditional release and rapid release models
are respectively 16 days and 6 days. The result of the
Wilcoxon rank sum test shows that the observed difference is
statistically significant (p− value = 5.22e−08). Therefore,
we reject H2

02.
When limiting our comparison to high priority bugs, we

obtain again a statistically significant difference, with a
smaller p− value(< 2.2e− 16). Hence, we can also reject
H2

03.
In order to see if the observed difference in the bug

fixing time and the proportion of bugs fixed is caused by
source code size or complexity, we compute the following
source code metrics on TR and RR versions. We compute
the metrics on all files contained in a version.

• Total Lines of Code: the total number of lines of code
of all files contained in a version.

• Average Complexity: the average of the McCabe Cy-
clomatic Complexity of all files contained in a version.

The McCabe Cyclomatic Complexity of a file is the
count of the number of linearly independent paths
through the source code contained in the file.

• Development Time: the duration in days of the devel-
opment phase of a version.

• Rate of New Code: the total number of new lines of
code added in the version divided by the Development
Time.

We found no significant difference between the complex-
ity of traditional release and rapid release versions. Also, the
rate of new code in major RR versions is similar to the rate
of new code in minor TR versions. This finding is consistent
with our other finding that the development time of major
RR versions is similar to the development time of minor TR.

In summary, we found that although bugs are fixed faster
during a shorter release cycle, a smaller proportion of bugs
is fixed compared to the traditional release model, which al-
lows a longer testing period. We analyzed the bugs reported
during the testing period (i.e., excluding post-release bugs),
and found that, when testing under a rapid release model,
bugs are reported at a slightly higher rate compared to the
traditional model, i.e., the project gets more feedback. The
average (respectively median) number of bugs reported when
testing under a rapid release model is 10.7 bugs (respectively
1.8 bugs), while the average (respectively median) number
of bugs reported when testing under the traditional release
model is 2.6 bugs (respectively 1.6 bugs). Similar to other
projects [16], Firefox seems to experience a flood of user
feedback that, given the limited length of the release cycle,
cannot be triaged and fixed in timely fashion.

The Firefox rapid release model fixes bugs faster than
using the traditional model, but fixes proportionally less
bugs.

C. RQ3: Does the length of the release cycle affect software
updates?

Motivation. One of the main arguments of advocates of
rapid release models is the possibility to speed up the
delivery of brand new features to users in order to keep them
updated with the latest features as soon as development is
completed. However, to achieve this goal, it is important that
users quickly update to the new release. A fast adoption of
new versions is also very critical for quality improvement.
Users need to adopt new versions quickly in order to
test the fixes and allow the maintenance team to discover
new bugs to work on instead of spending developers’ time
testing buggy features reported already by others on earlier
channels. In this research question, we investigate how fast
new features and bug fixes reach users of TR and RR
versions.
Approach. For each version vi of Firefox in our data set,
we compute the following metric:

Table II
STALENESS OF FIREFOX VERSIONS.

Weeks before staleness below
Version released 70% 60% 50%

Traditional
release model

3.6 6 7 9
4 6 7 7

Rapid release
model

5 7 7 8
6 4 4 4
7 3 3 5
8 2 2 3

• Staleness: the number of days the version vi is still in
use after a newer version vi+1 has been released.

This metric is inspired by the work of Baysal et al. [4].
However, instead of relying on the logs of a set of web
servers to compute staleness values, we use the collected
user crash reports. We compute the staleness of a Firefox
version vi by calculating the time period between the release
date of a new version vi+1 and the disappearance of crash
reports related to the version vi from the field. Since full
disappearance of a version is hard to achieve, we measure
the time before the proportion of crashes from the users of
the version vi falls below respectively 70%, 60%, and 50%,
of the total number of reported crashes per day. Staleness
basically captures the speed with which the users are moving
to new versions.
Findings. Users switch faster to a newer rapid release
version than to a new traditional release version. Table
II shows low staleness for RR versions 6, 7 and 8. Four
weeks after the release of Firefox 7, 50% of the collected
crash reports were already coming from the newly released
version. In contrast, for Firefox 4 (developed according to
the traditional model), it took 9 weeks before the mark of
50% of reported crash reports was reached.

With a rapid release model, users adopt new versions
faster compared to the traditional release model.

Curiously, as shown on Figure 8, almost 20% of the users
remain on a stalled version for a very long time. According
to Firefox specialist Mike Kaply [17], a large share of these
users are companies. In fact, many companies have remained
on older versions of Firefox (e.g., 3.6) because the rapid
release schedule does not give them enough time to stabilize
their platforms [9] and customer support costs are increasing
because of the frequent upgrades [18].

To address this issue, Mozilla has initiated parallel ver-
sions of Firefox for companies. These versions are released
at a slower schedule [19]. For other users, Mozilla has
adopted silent updates for minor fixes of Firefox and it plans
to integrate a complete silent update feature in the upcoming
releases of Firefox, to keep all users on the latest versions.

V. THREATS TO VALIDITY

We now discuss the threats to validity of our study
following common guidelines for empirical studies [20].

Construct validity threats concern the relation between
theory and observation. In this work, these threats are mainly
due to measurement errors. We compute source code metrics
using the open source tool SourceMonitor. We extract crash
and bug information by parsing their corresponding HTML
(crash reports) and XML (bug reports) files. We use the
occurrence of crashes to capture stalled usages of a version.
The proportional drop of a version’s crash count indicates
that users have upgraded to a newer version. However, as
the new version might have substantially more (or less) crash
reports, the old version might drop faster (or slower) to for
example 50%. In our data set, we have found no significant
differences between the median daily crash count of the
different versions.

Threats to internal validity concern our selection of
subject systems, tools, and analysis method. Although we
selected Firefox to control for development process and
other changes before and after the migration to a rapid
release cycle, some of the findings might still be specific
to Firefox’s development process.

Conclusion validity threats concern the relation between
the treatment and the outcome. We paid attention not to
violate assumptions of the constructed statistical models.

Reliability validity threats concern the possibility of repli-
cating this study. We attempt to provide all the necessary
details to replicate our study. The Mercurial repository of
Firefox is publicly available to obtain the source code of
Mozilla Firefox. Both the Socorro crash repository and
Bugzilla repository are also publicly available. SourceMon-
itor is an open source code measurement tool [21].

Threats to external validity concern the possibility to gen-
eralize our results. Although this study is limited to Mozilla
Firefox, our results on the time it takes users to adopt a
new version are consistent with the findings of previous
studies on Google Chrome, which has been following a
rapid release model for a much longer time [4]. Nevertheless,
further studies on different systems are desirable. Also, we
only studied bug reports that were linked to crashes. Further
studies on all bug reports are needed.

VI. RELATED WORK

To the best of our knowledge, this study is the first attempt
to empirically quantify the impact of release cycle time on
software quality in a controlled setting.

Since open source projects have been using agile methods
for a long time, many projects adopted short release cycles.
Ten years ago, Zhao et al. found that 54% of the open source
apps released at least once per month. Five years later, Otte
et al. [22] found slightly contrasting numbers (on a different
set of apps), i.e., 49.3% released at least once per 3 months.
Although this is still relatively rapid, it is not clear why
this shift has happened. In any case, modern commercial
software projects [23], [24] and open source projects backed
by a company [8], [25] have embraced shorter release cycles.

4.0 5.0 6.0 7.0 8.0 9.0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4

%
 o

f
St

al
e

C
ra

sh
 R

e
p

o
rt

s

Weeks since Last Release

Version Released

Version8

Version7

Version6

Version5

Version4

Version3.6

Figure 8. Staleness of major versions of FireFox.

A lot of work has focused on enabling consistent, short
release cycles. For example, van der Storm [26] and Dolstra
et al. [27] developed infrastructure to automatically build,
package and deploy individual code changes. Mainstream
continuous integration servers [28] automatically run sets of
unit, integration or even acceptance tests after each check-
in, while more advanced environments are able to run such
tests in a massively parallel way in the shorter time in
between releases [5]. The combination of these ideas and
practices have led to the concept of continuous delivery [29],
which uses highly automated infrastructure to deploy new
releases in record time. Amazon, for example, deploys on
average every 11.6 seconds [24], achieving more than 1,000
deployments per hour.

Despite all this work on achieving and pushing for shorter
release cycles, there is hardly any empirical evidence that it
really improves product quality, except for various developer
surveys [30], [31]. Escrow.com reduced its release cycle
to iterations of 2 weeks [32], resulting in a reduction of
the number of defects by 70%. However, since many agile
techniques and team restructurings were introduced at once,
this improvement in quality cannot be related to shorter
release cycles alone. Marschall [16] found that short release
cycles require a steady flow of releases in order to control
the number of reported bugs.

Kuppuswami et al. [33] built a simulation model to
analyze the effects of each XP practice on development
effort. Small, incremental releases reduce the development
effort needed by 2.67%, but no link with software quality
was made. Stewart et al. [34] tried to relate code quality to
release frequency, number of releases and the change of size
across releases, but could not derive any conclusions.

Releasing too frequently not only decreases the time to
run tests, but it also might make customers weary of yet
another update to install [5], [35]. For this reason, many
projects do not automatically distribute each release to
their customers. For example, although the Eclipse project
uses 6-week release cycles, the resulting milestone releases
are only available to interested users and developers [25],

similar to how the NIGHTLY, AURORA and BETA Firefox
channels are only targeted at specific groups of users. Clear
communication about each channel/release is necessary to
make sure that the intended user group deploys the new
release and provides feedback about it [25], [35].

The work that is most closely related to ours is that
of Baysal et al. [4]. It compares the release and bug fix
strategies of Mozilla Firefox and Google Chrome based on
browser usage data from web logs. At that time, Firefox
was still in the 3.x series, i.e., before its transition to a
shorter release cycle, whereas Chrome had been following
a short release cycle since its birth. Although the different
profiles of both systems made it hard to compare things, the
median time to fix a bug in the TR system (Firefox) seemed
to be 16 days faster than in the RR system (Chrome), but
this difference was not significant. We found the opposite,
i.e., Firefox RR fixes bugs faster than Firefox TR. However,
the findings about staleness in the TR system confirm our
findings.

Our paper eliminates the inconsistency between the two
compared systems, by focusing on one project (Firefox) that
only modified its release cycle, but otherwise remained the
same. We believe that this allows to make more accurate
claims regarding RR versus TR models. Furthermore, we
use actual field crash data to assess the quality perceived by
customers.

VII. CONCLUSION

The increased competitiveness of today’s business envi-
ronment has prompted many companies to adopt shorter
release cycles, yet the impact of this adoption on software
quality has not been established thus far. In this paper, we
analyze the evolution of Mozilla Firefox during the period in
which it shifted from a traditional release model to a rapid
release model. We find that similar amounts of crashes occur,
yet users seem to experience crashes earlier during run-
time. Furthermore, bugs are fixed faster under rapid release
models, but proportionally less bugs are fixed compared to
the traditional release model. This could not be explained by

differences in the complexity of the source code developed
under both models. However, we found indications that the
migration to a shorter release cycle could have triggered
too many crash reports at once, flooding the triagers and
bug fixers. Finally, as expected, users of a software system
developed following a rapid release model tend to adopt new
versions faster compared to the traditional release model.

Although more case studies are needed, our results pro-
vide some warnings for decision makers in software orga-
nizations that should be taken into account when changing
the release cycle of their software systems.

REFERENCES

[1] “Shorten release cycles by bringing developers to application
lifecycle management,” HP Applications Handbook,
Retrieved on Febuary 08, 2012. [Online]. Available:
http://bit.ly/x5PdXl

[2] “Mozilla puts out firefox 5.0 web browser which carries over
1,000 improvements in just about 3 months of development,”
InvestmentWatch on June 25th, 2011. Retrieved on January
12, 2012. [Online]. Available: http://bit.ly/aecRrL

[3] K. Beck and C. Andres, Extreme Programming Explained:
Embrace Change (2nd Edition). Addison-Wesley, 2004.

[4] O. Baysal, I. Davis, and M. W. Godfrey, “A tale of two
browsers,” in Proc. of the 8th Working Conf. on Mining
Software Repositories (MSR), 2011, pp. 238–241.

[5] A. Porter, C. Yilmaz, A. M. Memon, A. S. Krishna, D. C.
Schmidt, and A. Gokhale, “Techniques and processes for
improving the quality and performance of open-source soft-
ware,” Software Process: Improvement and Practice, vol. 11,
no. 2, pp. 163–176, 2006.

[6] T. Downer, “Some clarification and musings,” Accessed on
January 06, 2012. [Online]. Available: http://bit.ly/q8RCuw

[7] “Web browsers (global marketshare),” Roxr Software Ltd.
Retrieved on January 12, 2012. [Online]. Available:
http://bit.ly/81klgi

[8] S. Shankland, “Google ethos speeds up chrome release cycle,”
http://cnet.co/wlS24U, July 2010.

[9] ——, “Rapid-release firefox meets corporate backlash,”
http://cnet.co/ktBsUU, June 2011.

[10] “New channels for firefox rapid releases,” The Mozilla
Blog. 2011-04-13. Retrieved on January 12, 2012. [Online].
Available: http://bit.ly/hc1zmY

[11] R. Paul, “Mozilla outlines 16-week firefox development
cycle,” 2011. [Online]. Available: http://bit.ly/fLHEfo

[12] “Socorro: Mozilla’s crash reporting system,” Accessed on
March 29, 2011. [Online]. Available: http://bit.ly/9A9zKP

[13] I. Herraiz, E. Shihab, T. H. D. Nguyen, and A. E. Hassan,
“Impact of installation counts on perceived quality: A case
study on debian.” in Proc. of the 18th Working Conf. on
Reverse Engineering (WCRE), 2011, pp. 219–228.

[14] M. Hollander and D. A. Wolfe, Nonparametric Statistical
Methods, 2nd ed. John Wiley and Sons, inc., 1999.

[15] F. Khomh, B. Chan, Y. Zou, and A. E. Hassan, “An entropy
evaluation approach for triaging field crashes: A case study
of mozilla firefox,” in Proc. of the 18th Working Conf. on
Reverse Engineering (WCRE), 2011.

[16] M. Marschall, “Transforming a six month release cycle to
continuous flow,” in Proc. of the conf. on AGILE, 2007, pp.
395–400.

[17] “Understanding the corporate impact,” Retrieved on January
12, 2012. [Online]. Available: http://bit.ly/mBzP37

[18] “Why do companies stay on old technology?” Retrieved on
January 12, 2012. [Online]. Available: http://bit.ly/k3fruK

[19] “Mozilla proposes not-so-rapid-release firefox,” CNET,
Retrieved on February 08, 2012. [Online]. Available:
http://cnet.co/mQZ6Tf

[20] R. K. Yin, Case Study Research: Design and Methods - Third
Edition, 3rd ed. SAGE Publications, 2002.

[21] “Sourcemonitor,” Accessed on January 12, 2012. [Online].
Available: http://bit.ly/9AKzN8

[22] T. Otte, R. Moreton, and H. D. Knoell, “Applied quality as-
surance methods under the open source development model,”
in Proc. of the 32nd Annual IEEE Intl. Computer Software
and Applications Conf. (COMPSAC), 2008, pp. 1247–1252.

[23] A. W. Brown, “A case study in agile-at-scale delivery,” in
Proc. of the 12th Intl. Conf. on Agile Processes in Software
Engineering and Extreme Programming (XP), vol. 77, May
2011, pp. 266–281.

[24] J. Jenkins, “Velocity culture (the unmet challenge in ops),”
Presentation at O’Reilly Velocity Conference, June 2011.

[25] E. Gamma, “Agile, open source, distributed, and on-time –
inside the eclipse development process,” Keynote at the 27th
Intl. Conf. on Software Engineering (ICSE), May 2005.

[26] T. van der Storm, “Continuous release and upgrade of
component-based software,” in Proc. of the 12th intl. wrksh.
on Softw. configuration management (SCM), 2005, pp. 43–57.

[27] E. Dolstra, M. de Jonge, and E. Visser, “Nix: A safe and
policy-free system for software deployment,” in Proc. of the
18th USENIX conf. on System admin., 2004, pp. 79–92.

[28] P. Duvall, S. M. Matyas, and A. Glover, Continuous In-
tegration: Improving Software Quality and Reducing Risk.
Addison-Wesley Professional, 2007.

[29] J. Humble and D. Farley, Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment Au-
tomation, 1st ed. Addison-Wesley Professional, 2010.

[30] S. Kong, J. E. Kendall, and K. E. Kendall, “The challenge
of improving software quality: Developers’ beliefs about the
contribution of agile practices,” in Proc. of the Americas Conf.
on Information Systems (AMCIS), August 2009, p. 12p.

[31] VersionOne, “4th annual state of agile survey,”
http://bit.ly/6BPw5, 2009.

[32] P. Hodgetts and D. Phillips, eXtreme Adoption eXperiences
of a B2B Start Up. Addison-Wesley Longman Publishing
Co., Inc., 2002, ch. 30, extreme Programming Perspectives.

[33] S. Kuppuswami, K. Vivekanandan, P. Ramaswamy, and P. Ro-
drigues, “The effects of individual xp practices on software
development effort,” SIGSOFT Softw. Eng. Notes, vol. 28, p.
6p., November 2003.

[34] K. J. Stewart, D. P. Darcy, and S. L. Daniel, “Observations
on patterns of development in open source software projects,”
SIGSOFT Softw. Eng. Notes, vol. 30, pp. 1–5, May 2005.

[35] S. Jansen and S. Brinkkemper, “Ten misconceptions about
product software release management explained using update
cost/value functions,” in Proc. of the Intl. Workshop on
Software Product Management, 2006, pp. 44–50.

