
Understanding the Impact of Cloud Patterns on Performance and Energy
Consumption

Foutse Khomha, S. Amirhossein Abtahizadeha

aSWAT Lab., Polytechnique Montréal, Canada

Abstract

Cloud Patterns are abstract solutions to recurrent design problems in the cloud. Previous work has shown that these
patterns can improve the Quality of Service (QoS) of cloud applications but their impact on energy consumption is
still unknown. In this work, we conduct an empirical study on two multi-processing and multi-threaded applications
deployed in the cloud, to investigate the individual and the combined impact of six cloud patterns (Local Database
proxy, Local Sharding Based Router, Priority Queue, Competing Consumers, Gatekeeper and Pipes and Filters) on
the energy consumption. We measure the energy consumption using Power-API; an application programming interface
(API) written in Java to monitor the energy consumed at the process-level. Results show that cloud patterns can
effectively reduce the energy consumption of a cloud-based application, but not in all cases. In general, there appear to
be a trade-off between an improved response time of the application and the energy consumption. Moreover, our findings
show that migrating an application to a microservices architecture can improve the performance of the application, while
significantly reducing its energy consumption. We summarize our contributions in the form of guidelines that developers
and software architects can follow during the implementation of a cloud-based application.

Keywords: Cloud Patterns, Energy Consumption, Performance Optimization, Energy Efficiency

1. Introduction

Cloud computing systems are now pervasive in our
society. As a consequence, the energy consumption of
data centers and cloud-based applications has become an
emerging topic in the software engineering research com-
munities. Energy consumption has complex dependencies
on both the hardware platform and the multiple software
layers. Recently, researchers have started to investigate
the role of software components and coding practices [1, 2]
on the energy efficiency of software systems.

Cloud patterns, which are general and reusable solu-
tions to recurring design problems, have been proposed as
best practices to guide developers during the development
of cloud-based applications. However, although previous
work [3] has shown that these cloud patterns can improve
the QoS of cloud based applications, their impact on en-
ergy consumption is still unknown. This paper investigates
the impact on energy consumption of six cloud patterns:
Local Database Proxy, Local Sharding-Based Router, Pri-
ority Queue, Competing Consumers, Gatekeeper, and Pipes
and Filters. We aim to understand the trade-offs that may
exist between energy consumption and performance when
implementing cloud patterns in applications. The study is
conducted using two different applications exhibiting the
behavior of a real cloud-based application.

Email addresses: foutse.khomh@polymtl.ca (Foutse Khomh),
a.abtahizadeh@polymtl.ca (S. Amirhossein Abtahizadeh)

The first experiment uses a RESTful multi-threaded
application written in Java, and the second experiment
consists of an application implemented with the Python
Flask microframework, using both multi-processing and
multi-threaded scenarios, deployed in the Amazon EC2
cloud. These two systems are also implemented with dif-
ferent combinations of the aforementioned patterns. The
second application is also decomposed into seven microser-
vices in order to enable investigating the impact of mi-
croservices design architecture in a cloud-based scheme.
Energy consumption is measured using Power-API; an ap-
plication programming interface (API) written in Java that
can monitor the energy consumed by an application, at the
process-level [4].

This paper extends our previous work [5] in three ways.
First, we added a new cloud-based application to our study
and deployed it in a commercial cloud environment (i.e.,
Amazon EC2). Second, we have added three more cloud
patterns to our study (i.e., Competing Consumers, Gate-
keeper, and Pipes and Filters). Third, we summarize our
findings into architectural design guidelines that develop-
ers and software architects can follow to improve the per-
formance and energy efficiency of cloud-based applications.

The remainder of this paper is organized as follows.
Section 2 discusses the related literature on cloud patterns
and green software engineering. Section 3 introduces the
patterns that are investigated in this paper and Section
4 describes the design of our study. Section 5 discusses

Preprint submitted to the Journal of Systems and Software December 20, 2017



our results and Section 6 summarizes these results into
guidelines for developers of cloud-based applications. Sec-
tion 7 discusses threats to the validity of our study, while
Section 8 concludes the paper and outlines future work.

2. Related Work

Energy consumption is the biggest challenge that cloud
computing systems face today. Pinto et al. [6] who ana-
lyzed more than 300 questions and 550 answers on the
Q&A web site Stack Overflow reported that the number of
questions on energy consumption increased by 183% from
2012 to 2013. The majority of these questions were related
to software design, showing that developers need guidance
for designing green software systems. Similarly, Pang et al.
[7] found that developers lack knowledge on how to develop
energy-efficient software. Nowadays, cloud-based applica-
tions are becoming mainstream, thanks to their high avail-
ability and scalability. Many efforts have been focused on
modeling and improving the energy efficiency of cloud in-
frastructures from the hardware point of view, neglecting
the benefits that can be achieved through software opti-
mization. When developing an energy efficient cloud-based
application, developers must seek a compromise between
the application’s Quality of Service (QoS) and energy ef-
ficiency.

Cloud patterns, which are general and reusable solu-
tions to recurring design problems, have been proposed as
best practices to guide developers during the development
of cloud-based applications. Although previous works such
as [3] and [8] have shown that patterns can improve the
QoS of cloud based applications, their impact on energy
consumption is still unknown.

2.1. Object-Oriented Design Patterns and Software Qual-
ity

Several works in the literature have assessed the im-
pact of design patterns on software quality [9], software
maintenance [10] and code complexity [11]. Overall, these
studies have found that design patterns do not always im-
prove the quality of applications. Khomh and Guéhéneuc
[9] claim that design patterns should be used with caution
during software development because they may actually
impede software quality. Object Oriented design patterns
are usually not supposed to increase performance, never-
theless, Aras et al. [12] have found that design patterns
can have a positive effect on the performance of scien-
tific applications despite the overhead that they introduce
(by adding additional classes). Of course the results of
these studies cannot be directly generalized to cloud pat-
terns which usually focus on scalability and availability,
however they provide hints about the possible benefit and
disadvantages of cloud patterns. Clearing up the impact
of cloud patterns on energy consumption as well as QoS is
important to help software development teams make good
design decisions.

2.2. Evaluation of Cloud Patterns

Ardagna et al. [13] empirically evaluated the perfor-
mance of five scalability patterns for Platform as a ser-
vice (PaaS): Single, Shared, Clustered, Multiple Shared
and Multiple Clustered Platform Patterns. To compare
the performance of these patterns, they measured the re-
sponse time and the number of transactions per second.
They explored the effects of the addition and the removal
of virtual resources, but did not examine the impact of the
patterns on energy consumption. Tudorica et al. [14] and
Burtica et al. [15] performed a comprehensive compari-
son and evaluation of NoSQL databases (which make use
of multiple sharding and replication strategies to increase
performance), but did not examine energy consumption
aspects. Along the same line of work, Cattel [16] examined
NoSQL and SQL data stores designed to scale by using
replication and sharding. Similarly, they also did not per-
form energy consumption evaluations. Message oriented
middlewares have been benchmarked by Sachs et al. [17],
however, the energy consumption aspect was also ignored.

Regarding the relationship between cloud patterns and
energy consumption, Beloglazov [18] proposed novel tech-
niques, models, algorithms, and software for dynamic con-
solidation of Virtual Machines (VMs) in Cloud data cen-
ters, that support the goal of reducing the energy con-
sumption. His proposed architecture is reported to im-
prove the utilization of data center resources and reduce
energy consumption, while satisfying defined QoS require-
ments. Ultimately, his work led to the design and imple-
mentation of OpenStack Neat1, which is an extension of
OpenStack that implements the dynamic consolidation of
Virtual Machines (VMs), using live migration.

2.3. Green Software Engineering

Software has an indirect effect on the environment since
it intensely affects the hardware functioning. Therefore, it
should be written efficiently to avoid overusing the under-
lying hardware. Although developers can take advantage
of software tools that monitor resources in order to ob-
serve the energy consumption of their applications, there
is a lack of software development guidelines that develop-
ers can follow to minimize the energy consumed by their
application, while preserving the QoS. Mahmoud et al.
[20] have introduced a two-level software development pro-
cess, based on agile principles, and which is claimed to
be environmentally sustainable. Each software stage has
been marked with specific metric, representing its level of
sustainability. Although this process can help reduce the
energy footprint of an application’s development cycle, it
does not necessarily improve the energy efficiency of the
application. A comprehensive overview of sustainability
perspectives in software engineering is presented in [21].
This book discusses the impact of software on environment

1http://openstack-neat.org

2



Figure 1: Illustration of the architecture of cloud applications (with pattern suggestions) [19]

and provides important guidelines for making software en-
gineering “green”, i.e., reducing their environmental and
energy footprints.

TPC-benchmark [22] enables benchmarking databases
performance by simulating a series of users queries against
the database. The TPC-Energy (which was introduced re-
cently) allows examining the energy consumption of servers,
disks, and other items that consume power. TPC-benchmark
supports Atomicity, Consistency, Isolation, and Durability
(ACID) in data queries and transactions. However, in the
cloud context, most transactions are Basically Available,
has a Soft-state and are Eventually consistent.

3. Designing Cloud Applications with Patterns

Designing applications for the cloud has some chal-
lenges. In the cloud, there is no precise users requirements
because we don’t know all the users’ needs, and we don’t
know the devices from which users will access the applica-
tion. Therefore, we are unable to predict the application
workload. Typically, cloud-based applications depend on
third-party software on which we have no control. There-
fore, it is important to implement fault-tolerance mecha-
nisms to handle the potential failures of these third-party
software. Given the magnitude of these challenges, best
practices have been proposed in the form of cloud patterns
to assist and guide developers during the design and imple-
mentation of their application. In the following, we discuss
several possible problems that could be tackled with cloud
patterns.

Figure 1 illustrates different problems in cloud applica-
tions that can be solved using cloud patterns. As one can
see in Figure 1, developers face many problems during the
development of cloud based applications. In this paper,
we focus on four of these problems:

• Messaging: Cloud applications are usually distributed.
Hence, a messaging infrastructure is required to con-
nect components and services to maximize scalabil-
ity. Asynchronous messages are commonly used in
cloud applications. However, they pose many issues
such as messages ordering, poison message manage-
ment, or idempotency.

• Data Management: When deploying applications
in the cloud, developers have to distribute databases
in different locations to ensure a good performance,
scalability and-or availability. This poses issues of
data consistency and data synchronization across the
multiple instances.

• Performance and Scalability: Performance mea-
sures the responsiveness of a system when execut-
ing a request or command in a given time. Scala-
bility, on the other hand, enables a system to han-
dle increased workloads without a change in perfor-
mance, using available resources. Cloud applications
are much likely to encounter sudden increases/de-
creases in workloads than traditional applications,
hence, they require a flexible architecture that can
scale out/in on demand to ensure good performance
and high availability.

• Security: Cloud applications must defeat and pre-
vent malicious activities and prevent disclosure and–
or loss of information. These applications are ex-
posed on the Internet. Therefore, the design and de-
ployment of such applications should restrict access
to only trusted users and protect sensitive data/in-
formation.

Table 1 maps four common problems faced by develop-
ers when designing and implementing cloud-based applica-
tions, to the appropriate cloud patterns. For example, the
Gatekeeper pattern can be used whenever security is crit-
ical, and the Sharding-Based Router can be used to solve
data management issues when the data is partitionable.

3



Table 1: Four common problems in cloud area and suggested patterns

Problem in cloud area Suggested pattern
Messaging Competing Consumers, Pipes & Filters, Priority Message Queue
Performance & Scalability Competing Consumers, Priority Message Queue, Local Database Proxy, Local Sharding-Based Router
Security Gatekeeper
Data Management Local Sharding-Based Router

3.1. Cloud Patterns

We now describe in details the six cloud patterns stud-
ied in this paper.

3.1.1. Local Database Proxy

The Local Database Proxy pattern (also known as Proxy
pattern) uses data replication between master/slave databases
and a proxy to route requests [23]. Write requests are han-
dled by the master and replicated on its slaves, while Read
requests are processed by slaves. When applying this pat-
tern, components must use a local proxy whenever they
need to retrieve or write data. The proxy distributes re-
quests between master and slaves depending on their type
and workload. Slaves may be added or removed during
the execution to obtain elasticity. There could be a risk of
bottleneck on the master database when there is a need to
scale with write requests. This issue together with the lack
of strategy for write requests are the main limitations of
this pattern. The impact of this pattern on the QoS of ap-
plications has been examined by Hecht et al. [3]; however,
to the best of our knowledge, no work has empirically in-
vestigated the impact of the Local Database Proxy pattern
on the energy consumption of applications.

3.1.2. Local Sharding-Based Router

The Local Sharding-Based Router pattern (also known
as Sharding pattern) is useful when an application needs
scalability both for read and write operations [23]. Shard-
ing is a technique that consists in splitting data between
multiple databases into functional groups called shards.
Requests are processes by a local router to determine the
suitable databases. Data are split horizontally (i.e., on
rows), and each split must be independent as much as pos-
sible to avoid joins and to benefit from the Sharding. The
sharding logic is applicable through multiple strategies; a
range of value, a specific shard key or hashing can be used
to distribute data among the databases. It is possible to
scale the system out by adding further shards running on
redundant storage nodes.

Sharding reduces contentions and improves the perfor-
mance of applications by balancing the workload across
shards. Shards can be located close to specified clients
to improve data accessibility. When combined with other
patterns, Sharding can have a positive impact on the QoS
of applications (specifically when experiencing heavy loads) [3].
However, the impact of Sharding on energy consumption
is still unclear.

3.1.3. Priority Message Queue

The Priority Message Queue pattern (also known as
Priority Queue pattern) implements a First In First Out
(FIFO) queue. It is typically used to surrogate tasks to
background processing or to allow asynchronous commu-
nications between components. Priority Message Queue is
recommended when there are different types of messages.
Basically, messages with high priority values are received
and processed more quickly than those with lower priority
values. Low priority messages are pushed back to the end
of the queue. Message Queues enable designing loosely
coupled components and improve the scalability of appli-
cations [3].

3.1.4. Competing Consumers

Cloud-based application typically face heavy request
loads from users. A common technique to ensure responses
is to pass the requests through a messaging system to an-
other service that processes them asynchronously rather
than synchronously; ensuring that the business logic of
the application is not blocked. In addition, requests in
a cloud domain may increase significantly over time and
unpredictable workloads might be exposed to the applica-
tion. The Competing Consumers pattern allows applica-
tions to handle fluctuating workloads (from idle times to
peak times), by deploying and coordinating multiple in-
stances of the consumer service to ensure that a message
is only delivered to a single consumer. The architecture
recommends to use a message queue as the communication
channel (and as a buffer) between the application and the
instances of the consumer service.

The Competing Consumers pattern enables handling
wide variations in the volume of requests sent by appli-
cation instances, and improves reliability. It guarantees
that a failed service instance will not result in blocking a
producer, and messages can be processed by other work-
ing services. This pattern eliminates complex coordination
between the consumers, or between the producer and the
consumer instances, therefore increasing maintainability.
Instances of a consumer service can be dynamically added
or removed as the volume of messages change.

3.1.5. The Gatekeeper

This pattern describes a way of brokering access to
data and storage. In cloud applications, usually, instances
directly connect to the storage, maximizing the risk of ex-
posing sensitive data. If a hacker gains access to the host
environment, the security mechanisms and keys will be
compromised, therefore, the data itself can be divulged.

4



The gatekeeper is a web service designed to handle re-
quests from clients. It is the key entry point of the system.
It processes and directs requests to trusted messages on an-
other instance(s) called Trusted Host. The Trusted Host
holds the necessary code and security measures required
to retrieve data from the storage. The goal of this pattern
is to decouple application instances from storage, ensuring
that trusted hosts connect only to the gatekeeper(s) and
not directly to clients. A secure communication channel
(HTTPS, SSL, or TLS) must be employed between trusted
hosts and the gatekeeper(s). This pattern is suitable for
applications that handle sensitive/protected information
or data, and whenever the validation of requests must be
performed separately from the tasks inside a system.

3.1.6. Pipes and Filters

Cloud-based applications often perform a variety of
tasks of varying complexity. The Pipes and filters pattern
recommends to decompose the processing into a set of dis-
crete components (i.e., filters). A communication channel
(i.e., pipes) is required to convey the transformed data
(from each step) between the filters. This pattern is used
to ensure performance and scalability. It also improves re-
siliency because if a task is failed, it can be rescheduled
on another instance. Failure of an instance (filter) does
not necessarily result in the failure of the entire pipeline.
The main disadvantage of this pattern is the fact that the
time required to process a single request depends on the
speed of the slowest filter in the pipeline. There is also
a risk that one or more filters form a bottleneck. The
deployment automation and testing of pipe and filters ar-
chitectures can be complex because developers and testers
might have to deal with a variety of technologies, and iso-
lated data sources.

3.2. Software-defined Power Meters

Software-defined power meters are configurable soft-
ware libraries that can estimate the power consumption
of a software in real-time. Power estimation of software
processes can provide critical indicators to optimize the
overall energy consumed by an application. Software li-
braries that enable measuring the energy of cloud-based
applications can help monitor and improve the design of
applications, making them more energy efficient. In this
section, we briefly describe the tool (i.e., Power-API) used
in this paper to estimate the power consumption of appli-
cations.

Power-API is a system-level library that provides power
information per PID for each system component (e.g.,
CPU, network card, etc.) [4]. The energy estimation is
performed using analytical models that characterize the
consumption of the components (i.e., CPU, memory, and
disk). The accuracy of Power-API was evaluated using
the bluetooth PowerMeter (PowerSpy) [24], and results
revealed only minor variations between the energy estima-
tions of Power-API, and the energy consumption measured
by PowerSpy [4].

0 50 100 150 200 250 300

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Time (seconds)

P
ow

er
 C

on
su

m
pt

io
n 

(w
at

t)

Master

Power−API

Figure 2: Power-API distortion test

Power-API was selected for this work because of its
reported high accuracy [4], and the aggregate energy con-
sumption data for CPU, Memory and Disk were collected
by auditing multiple corresponding virtual machines. Power-
API measures power in watts, which was converted to the
unit of energy (Kilojoules). Prior to this study, we per-
formed a pilot procedure to examine the risk that Power-
API introduces noise in its own measurements. More ex-
plicitly, we conducted a test in which 10,000 records were
inserted twice with a short gap of time into our database
and both the process of Power-API and the process of the
database were measured.

The result illustrated in Figure 2 shows that Power-
API does not introduce noise in its measurements; it did
not alter the energy measurements of the master server
during the period of insertion. In the second experiment,
we used a newer released version of Power-API which sup-
ports the power estimation of CPU and Memory for CPU-
intensive applications. This version of Power-API pro-
vided a Command-Line Interface (CLI) that were embed-
ded in a bash script file in order to measure the energy
consumption of the application during each execution of
the application.

Other software-defined power meters available in the
literature include Joulemeter [25], jRAPL [26], and Power
Gadget2.

4. Study Definition and Design

Previous work has shown that cloud patterns can im-
prove the Quality of Service (QoS) of cloud applications
[3], but their impact on energy consumption is still un-
known. This study sets out to empirically investigate the
impact of six patterns on the performance (response time)
and energy consumption of cloud-based applications. The
goal of this study is to provide architectural design guide-
lines to developers and raise their awareness about the

2https://software.intel.com/en-us/articles/intel-power-gadget-20

5



trade-offs between performance and energy optimization,
during the development of cloud-based applications.

The objects of this study are six cloud based patterns
(i.e., Local Database Proxy, Local Sharding-Based Router,
Priority Message Queue, Competing Consumers, Gate-
keeper and Pipes and Filters) implemented in two cloud-
based applications. We select these cloud patterns because
they concern critical aspects of the design of cloud-based
applications (i.e., messaging, data management, security,
performance, and scalability) and they are recommended
to developers as good design practices by [19, 23].

4.1. Research Questions

Our study aims to answer the following research ques-
tions:

(RQ1) Does the implementation of Cloud patterns affect
the energy consumption of cloud-based applications?

(RQ2) Do interactions among patterns affect the energy
consumption of cloud-based applications?

4.2. Experimental Setup

To answer these research questions, we conducted the
following two experiments:

4.2.1. Experiment 1

A multi-threaded distributed application, which com-
municates through REST calls was implemented by two
master’s students from Polytech Montpellier (with two
years of programming experience) and one Master’s stu-
dent from Polytechnique Montreal (with more than five
years of programming experience). The application was
deployed on a GlassFish 4 application server. We chose
MySQL as the database management system because at
the time of our experimentations it was one of the most
popular databases for cloud-based applications. Sakila
database3 provided by MySQL was selected because it
contains a large number of records, making it interesting
for experimentations. Sakila is consistent with existing
databases. The test application was fully developed with
the Java Development Kit 1.7 (by the same three master’s
students) and it is composed of about 3,800 lines of code
and its size is 6 MB.

The master node has the following characteristics: 2
virtual processors (CPU: Intel Xeon X5650) with 8GB
RAM and 40GB disk space. This node is a virtual ma-
chine of a server located on a separate network. We have
8 slave database nodes: 4 on one server, each one has a vir-
tual processor (CPU: Intel QuadCore i5) with 1 GB RAM
and 24 GB disk space. The other four database nodes
are on a second server with the following characteristics:

3http://dev.mysql.com/doc/sakila/en/

each Virtual Machine has one virtual processor (CPU: In-
tel Core 2 Duo), 1 GB RAM and 24 GB disk space. All
the hardwares are connected on a private network behind a
switch. All the virtual machines are running on VMware
ESXi and all the servers are running Ubuntu 14.04 LTS
64-bit as operating system. The architectural design of
Experiment 1 is shown in Figure 3.

Figure 3: Architectural Design of the First Experiment

A scenario was designed in which the client is a thread
generated on the client side of our cloud-based applica-
tion. This client establishes a connection to the server
then performs a series of actions in a certain amount of
time (see Figure 4). Each client sends 100 select requests
at the peak of the scenario workload, and we measure the
response time of the application at this point by taking
the average of the response time to all clients. This will
represent the performance of the application.

Figure 4: First Experiment Test Scenario

Table 2: List of microservices and their tasks

ID Name Task
1 Microservice 1 Login service
2 Microservice 2 Search a customer and display

information
3 Microservice 3 List products
4 Microservice 4 View customer shipping infor-

mation
5 Microservice 5 Add/Edit shipping information
6 Microservice 6 Preview order and calculate

subtotal
7 Microservice 7 Submit an order

We repeated this scenario using different number of
clients. The requests performed by the clients are: select

6



or write to display or place the order respectively. The ap-
plication generated concurrent threads to simulate clients
propagating these requests. The number of clients used
in our experiments are: 100, 250, 500, 1000 and 1500.
Power-API was located on the database node and mea-
sured the amount of energy consumed by the MySQL pro-
cess. Because of the variability observed during multiple
executions of an application (caused for example by opti-
mization mechanisms like caching), we repeated each ex-
periment five times and took the average.

Figure 5: Architectural Design of the Second Experiment

4.2.2. Experiment 2

Our second application was implemented using Python
Flask microframework. This micro web framework is highly
scalable and extensible. Cloud computing services are
commonly multi-language in real world and, Java and Python
are two most often used programming languages in cloud
applications. Therefore, we set up our second experiment
using Python in order to achieve diversity and compare
results for two different programming languages. The ap-
plication reports the average response time of clients by
measuring the response time to deliver results to each
client during the execution. It includes 17 modules and
7 microservices (the list of microservices is presented in
Table 2) that are communicating with each other using
REST web services. 10 stored procedures were designed to
make the response when querying the database machines.

The microservices architectural style enables develop-
ing a single application as a suite of small services, each
running in its own process, having its own data storage.
Microservices are communicating with lightweight mech-
anisms, often an HTTP resource API and they are built
around business capabilities. Moreover, the deployment of
microservices can be fully automated and the services can
be deployed independently. In order to fully benefit from
the microservices architectural style, each service should
be elastic, resilient, composable, minimal, and complete.
Monolithic applications, on the other hand, are built on a
single unit, thus any changes to the system involves build-
ing and deploying a new version of the server-side appli-
cation. Change cycles are tied together, meaning that a
change made to a small part of the application requires the
entire monolithic application to be rebuilt and deployed.

In this work, we have implemented both a monolithic and
a microservices versions for our application. The refactor-
ing of the application into a microservices architecture was
performed by the second author.

The application was deployed on 15 virtual machines
(i.e., m3.xlarge instances from Amazon EC2 which pro-
vides a balance of compute, memory, and network re-
sources). Each instance had 4 CPU cores with 15 GB
memory available and 2 SSD 40 GB hard disks running
Ubuntu 14.04 LTS 64-bit. Requests were sent from an
application machine simulating the behavior of clients to
the interconnected virtual instances, through REST ser-
vices. Microservices were deployed on separate instances
to simulate the communication of microservices through a
network. As for the monolithic version of the application,
the clients requests were processed sequentially in one sep-
arate module. In a microservices architecture, there is no
clear leading service that drives the rest of the services. In
other words, each service module of our application con-
trols its business function and data, and they all have an
equal contribution to the application. However, the mi-
croservice 1 of the application had to be called constantly
by the other services since this service was in charge of se-
curity checks and was responsible for providing authoriza-
tions to clients. The architectural design of Experiment 2
is shown in Figure 5.

Northwind sample database4 was chosen for Experi-
ment 2. We choose this database because of its rich set of
functionalities. The Northwind database is about a com-
pany named “Northwind Traders”. The database includes
all the sales transactions that occurred between the com-
pany i.e., Northwind traders and its customers as well as
the purchase transactions between Northwind and its sup-
pliers. We installed a MySQL version5 of this database to
conduct our experiment. All the information contained in
this database is anonymized. All the views, triggers and
stored procedures used in this experiment were written
from scratch for the purpose of the experiment.

The application represents a typical SaaS application
that simulates sales representatives of the Northwind Trad-
ing Company using a Pocket PC to take orders from cus-
tomers and synchronizing the new orders back to the database
concurrently. The scenario is depicted in Figure 6. Similar
to Experiment 1, we repeated this scenario using different
number of clients. The requests performed by the clients
are: select or write to display or place the order respec-
tively. The application generates concurrent threads on
the server side, and multiprocessing in the client side to
simulate clients propagating their requests.

The number of clients used in our experiments are: 100,
250, 500, 1000, 1500, 2000, 2500 and 3000. Power-API
is located on the database node and REST server nodes,
and measures the amount of energy consumed by MySQL

4https://northwinddatabase.codeplex.com/
5http://github.com/dalers/mywind

7



processes and the REST server accepting REST calls. Be-
cause of the variability observed during multiple execu-
tions of an application, we repeated each experiment five
times and took the average.

Figure 6: Second Experiment Test Scenario

To better understand the impact of combinations of
cloud patterns, we designed two approaches (lightweight
and heavyweight approaches) mimicking the behavior of
ordinary customers and more demanding customers. These
two types of customers represent companies that are typ-
ical buyers. They are characterized by the complexity of
their queries.
The lightweight approach simulates ordinary customers
(for example, customers who do not require a specific se-
curity protection). When a sales representative faces this
type of customer, the application automatically selects the
lightweight approach to provide services. In the lightweight
approach, the application formulates simple queries (for
example, the number of security verifications can be re-
duced), which improves the response time of the applica-
tion. A set of routine services will use the combination of
Priority Message Queue, Proxy and Sharding patterns in
order to ensure scalability and data management. Since
the queries are not too complex (there is no join between
tables), these combinations are enough to keep the appli-
cation running with a high QoS.
The heavyweight approach simulates customers that
require some extra care. In this configuration, the amount
of the queries that are sent to databases exceeds the typ-
ical load for an ordinary customer and there are several
joins between the tables in order to collect and represent
data. Therefore, this second approach utilizes a combi-
nation of Sharding, Competing Consumers and Pipes and
Filters patterns, to ensure data management, and the high-
est possible scalability. Developers can also add the Gate-
keeper pattern to increase the security of the application.
In summary, we experiment with the following two config-
urations:

- Lightweight approach (Simple queries):

• MQ + Proxy

• MQ + Sharding

• Sharding + Pipes & Filters

- Heavyweight approach (Complex queries):

• Sharding + Competing Consumers + Pipes & Filters

• Sharding + Competing Consumers + Gatekeeper +
Pipes & Filters

4.3. Implementation of the Patterns

In order to evaluate the benefits and the trade-offs
between the Local Database Proxy, the Local Sharding-
Based Router and the Priority Message Queue design pat-
terns, we implemented these patterns in the applications
described in Section 4.2 and examined them through the
mentioned scenarios. The NoProxy/NoSharding version
E0 does not use any pattern. Versions E1 to E3 implement
Local Database Proxy with Random Allocation, Round-
Robin and a Custom load balancing algorithm. Versions
E4 to E6 correspond to Local Sharding-Based Router with
three sharding algorithms: Modulo, Lookup and Consis-
tent Hashing. Two different implementations of the Gate-
keeper pattern are examined: version E7 which has a mi-
croservices architecture and E8 which is monolith and per-
forms all the tasks in a series of orders. We also examine
two implementations of the Competing Consumers pat-
tern: versions E9 and E10 which correspond respectively
to a microservices and a monolithic architectural style. We
implemented the Pipes and Filters pattern following the
microservices architectural style and refer to it as E11.
Version E12 implements the Priority Message Queue pat-
tern. Since there is only one implementation of Priority
Message Queue pattern in this study, we investigate its im-
pact on energy consumption only in combination with the
other patterns. Table 3 summarizes the different versions
of the applications that were produced.

To ensure lower variance between maximum and aver-
age values and hence increase the precision of our energy
measurements, we eliminated the values of the first and
last executions. Outlier measurement values were recorded
during these two executions. In total, our application
was able to simulate a maximum of 150,000 concurrent
requests, enabling us to establish cloud-based applications
for our experiment that are capable of responding to thou-
sands of coincidental requests from clients. This level of
load is reflective of real-world cloud applications.

In our study, each experiment is independent with re-
gard to others, and simulations were terminated at a fixed
time. Even large requests and heavy loads never lasted
more than a certain amount of time predefined as the max-
imum which is 180 seconds for the first application and 75
seconds for the second application. In the following, we
explain in details the specific algorithms that were imple-
mented in each pattern.

8



Table 3: Patterns chosen for the experiments

Pattern Abbreviation Code
No Proxy, direct hit PRX-NO E0
Proxy Random PRX-RND E1
Proxy Round-Robin PRX-RR E2
Proxy Custom PRX-CU E3
Sharding LookUp SHRD-LU E4
Sharding Modulo SHRD-MD E5
Sharding Consistent SHRD-CN E6
Gatekeeper with Microservices GK-Micro E7
Gatekeeper Monolithic GK-Mono E8
Competing Consumers with
Microservices

CCP-Micro E9

Competing Consumers Mono-
lithic

CCP-Mono E10

Pipes and Filters P&F E11
Priority Message Queue MQ E12

Local Database Proxy: Three implementations of
this pattern were considered in our research; Random al-
location strategy, Round-Robin allocation strategy, and
Custom Load balancing strategy. The proxy is placed be-
tween the server and the clients. The basic approach, No-
Proxy REST web service, exposes a set of methods that are
hitting the database directly without load balancing. This
method has been implemented to test the local database
proxy pattern. It is the baseline used to compare the re-
sults of our proxy implementations. The queries are built
using parameters such as the ID of a select passed over the
REST call from each client (thread) concurrently during
each scenario.

The random approach is implemented by choosing ran-
domly an instance from the pool. The round-robin chooses
the next instance that has not yet been used in the “round”,
i.e., the first, then the second, then the third,. . . , finally
the first and so on. The custom algorithm is more reactive,
and it uses two metrics to evaluate the best slave node to
pick: the ping response time between the server and slave,
and the number of active connections on the slaves. A
thread is started every 500 ms with the purpose of mon-
itoring such metrics. After choosing the corresponding
slave, the query is executed and the result is sent back to
the function that was called. To simplify the tests, only
IDs (number identifiers) were sent back, so there was no
need to serialize any data. The query is executed conse-
quently whenever the result is null on the master node in
order to make sure that the replication did not fail. Even-
tually, if the result is null, the response sent to the client
has the http no content status. Otherwise, the result is
sent back to the client using the http ok response status.

Local Sharding-Based Router: To test this pat-
tern, we used multiple shards hosted separately. Each
shard had the same database schema and structure as sug-
gested by Sharding Algorithms6. Two tables of a modified

6http://kennethxu.blogspot.fr/2012/11/sharding-algorithm.html

version of the Sakila database were used. All the relation-
ships in both the “rental” and “film” tables were removed
since the sharding is adapted only for independent data.

Three commonly known sharding algorithms were stud-
ied in our research: Modulo algorithm, Look-up algorithm
and the Consistent Hashing algorithm. The modulo algo-
rithm divides the request primary key by the number of
running shards, the remainder is the number of the server
which will handle the request. The second sharding algo-
rithm used is the Look-up strategy. This algorithm imple-
ments an array with a larger amount of elements than the
number of server nodes available. References to the server
node are randomly placed in this array such that every
node receives the same share of slots. To determine which
node should be used, the key is divided by the number of
slots and the remainder is used as index in the array. The
third sharding algorithm used is the Consistent Hashing.
For each request, a value is computed for each node. This
value is composed of the hash of the key and the node.
Then, the server with the longest hash value processes the
request. The hash algorithms recommended for this shard-
ing algorithm are MD5 and SHA-1.

Priority Message Queue: Requests are annotated
with different priority numbers and sent in the priority
message queue of our test application. All requests are
ordered according to their priority and processed by the
database services in this order.

Competing Consumers: This pattern puts the re-
quest of each client into a message queue, then delivers the
requests to database by a simple mechanism to preserve
the load balance: The requests include a hash ID of the
priority, which will be converted to a bigInt number and
it is divided by the number of instances and the remain-
der is the server to hit. We have conducted a series of
experiments to confirm that this approach maintains load
balancing among the clients queries.

The Gatekeeper: our set up for this pattern consists
of 5 gatekeepers, 5 trusted hosts and 5 databases. Each
query from a client is being redirected to the trusted host
if it passes the security check. The security process tries to
find similarity between the query and 10 predefined SQL
injection rules. If a match is found, the query will be
discarded, otherwise the query will be transferred to the
corresponding trusted host, by using the hash ID of the
message and turning it into a bigInt number and dividing
it by 5 to obtain the remainder (i.e., the same approach
as for the competing consumers pattern) to ensure load
balancing. Then, the selected trusted host will query the
database and re-transfer the results to the gatekeeper and
ultimately, this result will be delivered back to the client.
The security mechanism will take place for every query
no matter the priority and the sender identity. However,
if the query was suspicious and considered harmful, the
gatekeeper would block the client, and the clients identifi-
cation (including the query and IP address) will be saved in
a black list. The gatekeeper will reject any further queries
sent by this specific client and provide a message explain-

9



Table 4: SQL injection rules applied in the Gatekeeper pattern

Type Rule Manifest

type-1

SELECT col1 FROM table1 WHERE col1 >1 OR 1=1;

The where clause has been short-circuited by the addition of a line such as ‘a’=’a’ or 1=1

type-2

SELECT col1 FROM table1 WHERE col1 >1 AND 1=2;

The where clause has been truncated with a comment

type-3

SELECT col1 FROM table1 WHERE col1 >1;

The addition of a union has enabled the reading of a second table or view

type-4

SELECT col1 FROM table1 WHERE col1 >1;

UPDATE table2 set col1=1; Stacking Queries, executing more than one query in one transaction

type-5

SELECT col1 FROM table1 WHERE col1 >1 UNION SELECT col2 FROM table2;

An unintentional SQL statement has been added

type-6

SELECT col1 FROM table1 WHERE col1 >1; drop table t1;

SQL where an unintentional sub-select has been added

type-7

SELECT fieldlist FROM table WHERE field = ’x’ AND email IS NULL; –’;

Schema mapping

ing the reason why the client cannot access the requested
data. Since SQL injection rules are subject to changes,
we opted in this work for simple rules, to demonstrate the
behavior of this pattern. Table 4 summarizes the SQL
injection rules applied to this pattern in our study.

Pipes and Filters: The objective of this pattern is to
decompose a task that performs complex processing into
a series of discrete elements that can be reused. This pat-
tern can improve performance, scalability, and reusability
by allowing task elements that perform the processing to
be deployed and scaled independently. This pattern was
deployed by implementing a pipeline and using a message
queue. In the monolithic version, tasks are just series of
REST calls performed one by one through the execution,
which is time consuming and a single change might result
in change in other services. On the other hand, in the case
of microservices, the application decomposes the tasks into
several interconnected microservices communicating using
REST calls.

Combined Patterns: The combination of patterns
was driven by the functionalities of the application. For
example, when Proxy/Sharding is combined with Message
Queue, this means that the application uses the message
queue to prioritize queries, then hits the database using
Proxy/Sharding pattern implementations. In our light-
weight approach, the Pipes and Filters pattern has been
applied to decompose the request into microservices, then
the Sharding pattern is used to access the databases.

In total, twelve versions of the application were ana-
lyzed as summarized in Table 3. To collect the energy
measurements required to answer our research questions,
a series of scenarios were executed. These scenarios were
designed specifically to simulate the characteristics of a
real-world cloud-based application.

4.4. Hypotheses

To answer our research questions, we formulate the fol-
lowing null hypotheses, where E0, Ex (x ∈ {1 . . . 11}), and
E12 are the different versions of the applications, as de-
scribed in Table 3.

(RQ1) Does the implementation of Cloud patterns affect
the energy consumption of cloud-based applications?

For each implementation of the patterns Local Database
proxy, Local Sharding Based Router, Competing Consumers,
Gatekeeper and Pipes and Filters, we formulate the follow-
ing null hypothesis to compare the energy consumed by the
version of the application implementing the pattern (i.e.,
Ex (x ∈ {1 . . . 11})), and the version of the application in
which no pattern is implemented, i.e., E0.
H1

x : There is no difference between the average amount
of energy consumed by design Ex and design E0.
We do not have a null hypothesis for the pattern Priority
Message Queue because in practice this pattern is used in
combination with other patterns such as the Competing
Consumers pattern, and not in isolation.

(RQ2) Do interactions among patterns affect the energy
consumption of cloud-based applications?

To answer this research question we examine common
combined implementations of our six studied patterns as
described in [19]. Specifically, we examine combinations
of cloud patterns that are recommended to address the
challenges of our lightweight and heavyweight approaches
described in Section 4.2.2.

- Lightweight approach (Simple queries)

• MQ + Proxy and MQ + Sharding. We formulate
the following null hypothesis; H1

x12 : The average
amount of energy consumed by the combination of
designs Ex (x ∈ {1 . . . 6}) and E12 is not different
from the average amount of energy consumed by each
design taken separately.

• Sharding + Pipes & Filters. We formulate the fol-
lowing null hypothesis; H1

x11 : The average amount
of energy consumed by the combination of designs
Ex (x ∈ {4 . . . 6}) and E11 is not different from the
average amount of energy consumed by each design
taken separately.

- Heavyweight approach (Complex queries):

10



• Sharding + Competing Consumers + Pipes & Fil-
ters. We formulate the following null hypothesis;
H1

x9 : The average amount of energy consumed by
the combination of designs Ex (x ∈ {4 . . . 6}) and
E11 and E9 is not different from the average amount
of energy consumed by each design taken separately.

• Sharding + Competing Consumers + Gatekeeper +
Pipes & Filters. We formulate the following null
hypothesis; H1

x7 : The average amount of energy
consumed by the combination of designs Ex (x ∈
{4 . . . 6}) and E11 and E9 and E7 is not different
from the average amount of energy consumed by each
design taken separately.

To better understand the trade-offs between the energy
consumption and the performance, we formulate the fol-
lowing null hypotheses related to the performance of the
different implementations of the applications (measured in
terms of response time):

• H2
x : There is no difference between the average re-

sponse time by design Ex and design E0.

• H2
x12 : The average response time of the combination

of designs Ex (x ∈ {1 . . . 6}) and E12 is not different
from the average response time of each design taken
separately.

• H2
x11 : The average response time of the combination

of designs Ex (x ∈ {4 . . . 6}) and E11 is not different
from the average response time of each design taken
separately.

• H2
x9 : The average response time of the combina-

tion of designs Ex (x ∈ {4 . . . 6}) and E11 and E9 is
not different from the average response time of each
design taken separately.

• H2
x7 : The average response time of the combination

of designs Ex (x ∈ {4 . . . 6}) and E11 and E9 and
E7 is not different from the average response time of
each design taken separately.

4.5. Analysis Method

Since the observations of each scenario were indepen-
dent of those of the other scenarios, we perform the Mann-
Whitney U test [27] to test H1

x, H2
x, H1

x7, H2
x7. More-

over, we computed the Cliff’s δ effect size [28] to quantify
the importance of the difference between the metric val-
ues. Cliff’s δ effect size is reported to be more robust
and reliable than the Cohen’s d effect size [29]. We per-
form all our tests using a 95% confidence level (i.e., p-
value < 0.05). Since we conduct multiple null hypoth-
esis tests, to counteract the problem of multiple compar-
isons, we apply the Bonferroni correction [30] that consists
in dividing the threshold p-value by the number of tests.
Mann-Whitney U test is a non-parametric statistical test
that examines whether two independent distributions are

the same or if one distribution tends to have higher val-
ues. Non-parametric statistical tests make no assumption
about the distributions of the metrics. Cliff’s δ is a non-
parametric effect size measure which represents the degree
of overlap between two sample distributions [28]. Cliff’s
δ effect size values range from -1 (if all selected values in
the first group are larger than the second group) to +1 (if
all selected values in the first group are smaller than the
second group), and it is zero when two sample distribu-
tions are identical [31]. A Cliff’s δ effect size is considered
negligible if it is < 0.147, small if it is < 0.33, medium if
it is < 0.474, and large if it is >= 0.474.

4.6. Independent Variables

Local Database Proxy, Local Sharding-Based Router,
Priority Message Queue, Competing Consumers, The Gate-
keeper and Pipes and Filters patterns, as well as the algo-
rithms presented in Table 3 are the independent variables
of our study.

4.7. Dependent Variables

The dependent variables measure the quality of ser-
vice in terms of response time to select queries dispatched
by the clients and the energy consumption measured by
Power-API during each scenario. The result is a two-
dimensional comparison between response time and the
amount of energy consumed. The response time is mea-
sured in nanoseconds and then converted to milliseconds.
We choose this metric because it reflects the capacity of the
applications to scale with the number of clients at peak,
with maximum number of requests. The other metric is
the power consumption provided by Power-API in watts,
which is converted to kilojoules(kJ) using the equation:
EkJ = (Pwatt x ts)/ 1000.

5. The Impact of Cloud Patterns on Performance
and Energy Consumption

This section presents and discusses the results of our
two experiments, answering the research questions described
in Section 4. The section is organized in two subsections
corresponding to our two experiments.

5.1. Results of Experiment 1

Table 5 summarizes the results of Mann–Whitney U
tests and Cliff’s δ effect sizes for the energy consumption
and the response time. We marked significant results in
bold.

Average amount of consumed energy: results pre-
sented in Table 5 show that, there is a statistically signifi-
cant difference between the average amount of energy con-
sumed by an application implementing the Local Database
Proxy pattern and an application not implementing this
pattern. The effect size is large in almost all cases. There-
fore, we reject H1

x for all Ex (x ∈ {1 . . . 3}). Regarding
the Local Sharding-Based Router pattern, except for the

11



Table 5: p-value of Mann–Whitney U test and Cliff’s δ effect size for
the first application

Version
Avg. Response Time Avg. Energy Consumption
p-value Effect Size p-value Effect Size

E0, E1 0.87 0.04 <0.05 0.44
E0, E2 0.77 0.06 <0.05 0.49
E0, E3 0.87 0.04 <0.05 0.44
E0, E4 <0.05 -0.68 0.36 -0.2
E0, E5 <0.05 -0.6 0.74 0.07
E0, E6 <0.05 -0.6 0.05 0.42
E1, E2 0.59 0.12 0.71 0.08
E1, E3 0.59 -0.12 0.48 -0.15
E1, E4 <0.05 -0.76 <0.05 -0.52
E1, E5 <0.05 -0.6 <0.05 -0.44
E1, E6 <0.05 -0.6 0.87 0.04
E2, E3 0.46 -0.16 0.56 -0.12
E2, E4 <0.05 -0.76 <0.05 -0.52
E2, E5 <0.05 -0.6 <0.05 -0.44
E2, E6 <0.05 -0.6 0.59 -0.12
E3, E4 <0.05 -0.76 <0.05 -0.51
E3, E5 <0.05 -0.6 0.08 -0.36
E3, E6 <0.05 -0.6 0.87 0.04
E4, E5 0.18 0.28 0.36 0.2
E4, E6 0.09 0.36 <0.05 0.52
E5, E6 0.59 0.12 <0.05 0.46
E1, E1 + E7 0.38 0.19 0.53 -0.13
E2, E2 + E7 0.43 0.17 0.20 -0.28
E3, E3 + E7 0.51 0.14 0.53 -0.13
E4, E4 + E7 <0.05 0.68 0.2 -0.28
E5, E5 + E7 <0.05 0.52 0.2 -0.28
E6, E6 + E7 <0.05 0.49 <0.05 -0.6
E4, E3 + E4 <0.05 0.76 0.36 -0.2
E6, E2 + E6 <0.05 0.6 0.36 -0.2

case where the pattern is implemented using the consis-
tent hashing algorithm, the difference between the amount
of energy consumed by an application implementing the
pattern and another application that did not implement
the pattern is not significantly different. In other words,
only consistent hashing tends to consume (to some extent)
less energy than no sharding strategy. However, the effect
size is low. Therefore, we cannot reject H1

x for all Ex
(x ∈ {4 . . . 6}).

Our results show that any implementation of the Local
Database Proxy pattern can significantly improve the en-
ergy efficiency of an application, while the Local Sharding-
Based Router pattern has little effect on energy consump-
tion. Figure 7 and Figure 8 summarize the results obtained
for all the implementations of the two patterns.

Average response time: results from Table 5 show
that there is a statistically significant difference between
the average response time of an application implementing
the Local Sharding-Based Router pattern and an appli-
cation not implementing this pattern. Hence, we reject
H2

x for all Ex (x ∈ {4 . . . 6}). In fact, as shown on Fig-
ure 8, all the implementations of the Local Sharding-Based
Router pattern have a negative impact on the response
time of the applications (i.e., the average response time
is increased). Among the different implementations of the

0
20

00
0

40
00

0
60

00
0

80
00

0

No of Clients

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

100 250 500 1000 1500

NoProxy

Round−Robin

Random

Custom

(a) Average Response Time

0
50

10
0

15
0

No of Clients

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

J)

100 250 500 1000 1500

NoProxy

Round−Robin

Random

Custom

(b) Energy Consumption

Figure 7: The Impact of the Local Database Proxy Pattern

Local Sharding-Based Router pattern, the Modulo algo-
rithm has the most negative impact on the response time.
We explain this result by the randomness of this algorithm,
however, more observations and tests are required to con-
firm our claim.

Regarding the Local Database Proxy pattern, there is
no statistically significant difference between the response
time of applications using any version of the pattern and
applications not using the pattern. However, Figure 7, as
well as effect size values show that Local Database Proxy
pattern has a (small) positive impact on the response time
of the applications. Yet, we cannot reject H2

x for (x ∈
{1 . . . 3}).

Combination of Patterns: Table 5 and Figure 9
show that there is no statistically significant difference
between the response time of applications implementing
the Local Database Proxy pattern and applications im-
plementing a combination of Local Database Proxy and
Priority Message Queue patterns. Consequently, we can-
not reject H2

x7 for all Ex (x ∈ {1 . . . 3}).
Regarding the combination of the Local Sharding-Based

Router pattern and the Priority Message Queue pattern,
results show that it can reduce an application’s response
time. Statistical tests show that there is a significant
difference, regardless of the type of algorithm, between
the response time of applications implementing the Lo-
cal Sharding-Based Router pattern and application imple-

12



0
50

00
0

10
00

00
20

00
00

30
00

00

No of Clients

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

100 250 500 1000 1500

NoSharding

LookUp

Modulo

Consistent

(a) Average Response Time

0
50

10
0

15
0

20
0

No of Clients

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

J)

100 250 500 1000 1500

NoSharding

LookUp

Modulo

Consistent

(b) Energy Consumption

Figure 8: The Impact of the Local Sharding-Based Router pattern

menting a combination of Local Sharding-Based Router
and Priority Message queue patterns (see Figure 10). The
effect size is large in all three cases as shown on Table 5.
Consequently, we reject H2

x7 for all Ex (x ∈ {4 . . . 6}).
Results from Table 5 show that Local Database Proxy

combined with Priority Message Queue does not signif-
icantly increase the amount of energy consumed by an
application (see Figure 9). Therefore, we cannot reject
H1

x7 for all Ex (x ∈ {1 . . . 3}). However, when the Lo-
cal Sharding-Based Router pattern is combined with the
Priority Message Queue, the consistent hashing algorithm
can impact energy efficiency negatively. In fact, as shown
on Figure 10, when the Priority Message Queue pattern is
combined with the Local Sharding-Based Router pattern
implemented using the consistent hashing algorithm, the
resulting application consumes more energy. Hence, we
reject H1

x7 for E6, but not H1
x7 for E4 and E5.

When the Local Sharding-Based Router pattern is com-
bined with Local Database Proxy, the average response
time of the application decreases significantly (see Fig-
ure 11 and Table 5). Conversely, statistical tests from
Table 5 and trends on Figure 11 show that Local Sharding-
Based Router pattern combined with Local Database Proxy
pattern has no significant impact on the energy consump-
tion of the application.

When the Local Database Proxy pattern is combined
with a Priority Message Queue, the average response time

0
20

00
0

40
00

0
60

00
0

80
00

0

No of Clients

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

100 250 500 1000 1500

Round−Robin

Random

Custom

Round−Robin+MQ

Random+MQ

Custom+MQ

(a) Average Response Time

0
20

40
60

80
10

0
12

0

No of Clients

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

J)

100 250 500 1000 1500

Round−Robin

Random

Custom

Round−Robin+MQ

Random+MQ

Custom+MQ

(b) Energy Consumption

Figure 9: The Impact of Local Database Proxy combined with Pri-
ority Message Queue

of the application decreases slightly, but not significantly,
as shown on Figure 9. However, when the Local Sharding-
Based Router pattern is combined with a Priority Mes-
sage Queue, the response time of the application improves
significantly (see the response time values of E4 E6 in Ta-
ble 5). The effect sizes are greater than 0.6, for all three
sharding algorithms.

Summary: Combining the Priority Message Queue
pattern with Local Database Proxy has no significant im-
pact neither on application response time, nor on the aver-
age amount of energy consumed by the application. On the
contrary, the combination of Priority Message Queue pat-
tern and Sharding-Based Router pattern can improve the
response time of an application experiencing heavy loads of
read requests. Besides, only the implementation of consis-
tent hashing in Local Sharding-Based Router pattern can
increase the energy consumption of the application. We
conclude that although the Local Database Proxy pat-
tern only has a small positive impact on the ability of
applications to handle large number of requests of read
queries, it can significantly improve the energy efficiency
of an application. Our first experiment shows that the
Local Sharding-Based Router pattern when implemented
using the consistent hashing strategy can improve energy
efficiency slightly in application for heavy read requests.

13



0
50

00
0

10
00

00
20

00
00

30
00

00

No of Clients

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

100 250 500 1000 1500

LookUp

Modulo

Consistent

LookUp+MQ

Modulo+MQ

Consistent+MQ

(a) Average Response Time

0
50

10
0

15
0

20
0

25
0

30
0

No of Clients

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

J)

100 250 500 1000 1500

LookUp

Modulo

Consistent

LookUp+MQ

Modulo+MQ

Consistent+MQ

(b) Energy Consumption

Figure 10: The Impact of Local Sharding-Based Router combined
with Priority Message Queue

5.2. Results of Experiment 2

Table 6 summarizes the results of Mann–Whitney U
tests and Cliff’s δ effect sizes for the versions of our sec-
ond application that implement a pattern. We marked
significant results in bold.

Average amount of consumed energy: Results
presented in Table 6 show that there is a statistically sig-
nificant difference between the average amount of energy
consumed by an application implementing any of our six
studied patterns and an application not implementing the
patterns, except the monolithic version of Gatekeeper and
Competing consumers patterns. The effect size is large
in almost all cases, and it shows an improvement of the
energy efficiency (i.e., a reduction of the energy consump-
tion). Therefore, we reject H1

x for all Ex (x ∈ {1 . . . 7}),
but not H1

x for E8 and E10. In other words, although
the six patterns improve the energy efficiency of applica-
tions in general, when the Gatekeeper or the Competing
consumers pattern are implemented in a monolithic appli-
cation, the improvement of energy efficiency is negligible.

Average response time: Results presented in Ta-
ble 6 show that, there is a statistically significant differ-
ence between the average response time of an application
implementing any of our six studied patterns and an ap-
plication not implementing the patterns. The effect size
is large in almost all the cases. Therefore, we reject H2

x

0
50

00
0

10
00

00
20

00
00

30
00

00

No of Clients

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

100 250 500 1000 1500

Modulo

Consistent

Modulo+Custom

Consistent+Round−Robin

(a) Average Response Time

0
50

10
0

15
0

20
0

No of Clients

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

J)

100 250 500 1000 1500

Modulo

Consistent

Modulo+Custom

Consistent+Round−Robin

(b) Energy Consumption

Figure 11: The Impact of Local Sharding-Based Router combined
with Local Database Proxy

for all Ex (x ∈ {1 . . . 11}). We recommend that devel-
opers interested in high performance, use these patterns
during the development of their cloud-based application
since they can significantly improve the response time of
the application. Figures 12, 13, 14 and 15 show the im-
provements on response time, that can be achieved with
the patterns.

In Figure 12, we can see that the Local Database Proxy
pattern has a large impact on the average response time
of the application. Moreover, the amount of energy con-
sumed by the application is not significantly higher in com-
parison to other versions of the application, hence we con-
clude that the Local Database Proxy pattern can improve
the performance of an application without sacrificing its
energy efficiency. The Local Sharding-Based Router pat-
tern also improves both the performance (see Table 6) and
the energy efficiency of applications (see Figure 13). How-
ever, the effect size is medium, i.e., 0.45375, 0.40125 and
0.54 respectively.

The Gatekeeper pattern can improve both performance
and energy consumption only when it is implemented in a
microservices application (see Figure 14). This pattern is
used to ensure security in cloud-based applications. When
the pattern is implemented in a monolithic application, the
amount of consumed energy increases significantly. Simi-
lar to Gatekeeper, the Competing Consumers pattern im-
proves performance and energy efficiency only when the

14



Table 6: p-value of Mann–Whitney U test and Cliff’s δ effect size for the second application, individual patterns

Version
Response Time Energy Consumption

p-value Effect Size p-value Effect Size
E0, E1 <0.05 0.95625 <0.05 0.3825
E0, E2 <0.05 0.94625 <0.05 0.3825
E0, E3 <0.05 0.84375 <0.05 0.3862
E0, E4 <0.05 0.45375 <0.05 0.3575
E0, E5 <0.05 0.40125 <0.05 0.315
E0, E6 <0.05 0.54 <0.05 0.39875
E0, E7 <0.05 0.40875 <0.05 0.4825
E0, E8 <0.05 -0.42875 0.1594 -0.18375
E0, E9 <0.05 0.5525 <0.05 0.455
E0, E10 <0.05 -0.55875 0.1094 -0.20875
E0, E11 <0.05 0.7125 <0.05 0.4725
E1, E2 0.6983 -0.05125 0.92 0.01375
E1, E3 0.2323 -0.15625 1.0 0.00005
E1, E4 <0.05 -0.65875 0.4755 -0.09375
E1, E5 <0.05 -0.665 0.116 -0.205
E1, E6 <0.05 -0.5125 0.9962 -0.00125
E1, E7 <0.05 -0.75125 <0.05 0.325
E1, E8 <0.05 -0.9975 <0.05 -0.47
E1, E9 <0.05 -0.46875 0.05708 0.2475
E1, E10 <0.05 -1.0 <0.05 -0.4975
E1, E11 <0.05 -0.59 0.0971 0.21625
E2, E3 0.2894 -0.13875 0.8445 0.02625
E2, E4 <0.05 -0.6125 0.3354 -0.12625
E2, E5 <0.05 -0.60625 0.1011 -0.21375
E2, E6 <0.05 -0.46 0.9048 -0.01625
E2, E7 <0.05 -0.72125 <0.05 0.325
E2, E8 <0.05 -0.98625 <0.05 -0.48
E2, E9 <0.05 -0.45 <0.05 0.26
E2, E10 <0.05 -1.0 <0.05 -0.52
E2, E11 <0.05 -0.51875 <0.05 0.26
E3, E4 <0.05 -0.4475 0.3601 -0.12
E3, E5 <0.05 -0.475 -0.23
E3, E6 <0.05 -0.3175 0.9504 -0.00875

Version
Response Time Energy Consumption

p-value Effect Size p-value Effect Size
E3, E7 <0.05 -0.57625 <0.05 0.336
E3, E8 <0.05 -0.9325 <0.05 -0.48
E3, E9 <0.05 -0.33875 <0.05 0.257
E3, E10 <0.05 -0.9775 <0.05 -0.51
E3, E11 <0.05 -0.34 <0.05 0.25875
E4, E5 0.8595 -0.02375 0.3306 -0.1275
E4, E6 0.2598 0.1475 0.268 0.145
E4, E7 0.6702 -0.05625 <0.05 0.3475
E4, E8 <0.05 -0.705 <0.05 -0.4437
E4, E9 0.1031 0.2125 <0.05 0.3025
E4, E10 <0.05 -0.7675 <0.05 -0.47
E4, E11 0.1116 0.2075 <0.05 0.30875
E5, E6 0.3073 0.13375 0.07575 0.23125
E5, E7 0.8295 -0.02875 <0.05 0.3975
E5, E8 <0.05 -0.665 <0.05 -0.4012
E5, E9 0.1682 0.18 <0.05 0.3525
E5, E10 <0.05 -0.72625 <0.05 -0.4
E5, E11 0.05336 0.25125 <0.05 0.37875
E6, E7 0.1901 -0.17125 <0.05 0.3275
E6, E8 <0.05 -0.75875 <0.05 0.49
E6, E9 0.4464 0.1 <0.05 0.2875
E6, E10 <0.05 -0.82125 <0.05 -0.5
E6, E11 0.4755 0.09375 <0.05 0.261
E7, E8 <0.05 -0.75875 <0.05 -0.55
E7, E9 0.0859 0.22375 0.4238 -0.105
E7, E10 <0.05 -0.835 <0.05 -0.63
E7, E11 <0.05 0.3425 <0.05 -0.171
E8, E9 <0.05 0.81 <0.05 0.54875
E8, E10 0.2894 0.13875 0.4875 -0.09125
E8, E11 <0.05 0.86 <0.05 0.52125
E9, E10 <0.05 -0.84 <0.05 -0.5887
E9, E11 0.6494 0.06 0.6356 -0.0625
E10, E11 <0.05 0.95125 <0.05 0.56

Table 7: p-value of Mann–Whitney U test and Cliff’s δ effect size for
the second application implementing a combination of patterns

Version
Avg. Response Time Avg. Energy Consumption
p-value Effect Size p-value Effect Size

E1, E1 + E12 <0.05 -0.49 0.6019 -0.06875
E2, E2 + E12 <0.05 -0.59375 0.3354 -0.12625
E3, E3 + E12 <0.05 -0.62375 0.4875 -0.09125
E4, E4 + E12 0.1869 0.43375 <0.05 -0.2575
E5, E5 + E12 <0.05 0.2425 <0.05 0.2675
E6, E6 + E12 0.3027 0.3125 <0.05 -0.3075
E4, E4 + E11 <0.05 0.52875 <0.05 0.2575
E5, E5 + E11 <0.05 0.28125 <0.05 -0.265
E6, E6 + E11 <0.05 0.57 <0.05 -0.2825
E4, E4 + E9 + E11 <0.05 -0.30125 <0.05 -0.26125
E5, E5 + E9 + E11 <0.05 -0.31125 <0.05 -0.29125
E6, E6 + E9 + E11 <0.05 -0.3575 <0.05 -0.3025
E4, E4 + E9 + E7 + E11 <0.05 -0.4925 <0.05 -0.37375
E5, E5 + E9 + E7 + E11 <0.05 -0.49375 <0.05 -0.3875
E6, E6 + E9 + E7 + E11 <0.05 -0.5175 <0.05 -0.4

application follows a microservices architectural style (see
Figure 15).

The Pipes & Filters pattern can have a positive impact
on both performance and energy consumption. Figure 16
shows the results obtained in our experiment. The average
response time of the application decreases (the trend levels
off when the number of clients increases) when the pattern
is implemented. The energy consumed by the application
is also lower in comparison with the version of the appli-
cation with no pattern (p-value << 0.05, with an effect
size of 0.7, see Table 6). We highly recommend that devel-
opers use this pattern since it significantly improves both
response time and energy efficiency. Table 7 summarizes
the results of Mann–Whitney U test and Cliff’s δ effect

sizes for the versions of our second application that imple-
ment a combination of patterns. We marked significant
results in bold. Combination of Patterns: When com-
bining the Local Database Proxy pattern with the Prior-
ity Message Queue pattern, no remarkable difference was
observed on the energy utilization of the application (in
comparison to the version with only the Local Database
Proxy pattern). We see only a slight uptick on the energy
consumption curve from Figure 17. The Mann–Whitney
U tests from Table 7 show that the observed differences
are not statistically significant (p-values are high: 0.6019,
0.3354 and 0.4875).

On the contrary, joining the Local Database Proxy pat-
ten with Priority Message Queue has a negative impact on
the average response time (see the curves on Figure 17).

The Mann–Whitney U tests from Table 7 confirm that
these observed differences are statistically significant. Hence,
we conclude that the combination of Local Database Proxy
and Priority Message Queue patterns can have a negative
impact on the performance of an application. The effect
sizes vary from medium to large.

Therefore, although the Local Database Proxy pattern
can help improve the scalability of an application, a com-
bination with the Priority Message Queue pattern can re-
sult in a performance degradation. Regarding the Local
Sharding-Based Router pattern, a combination with Prior-
ity Message Queue does not have a negative impact on re-
sponse time or energy efficiency (see Figure 18). The slight
difference observed on the energy consumption curves is
not statistically significant. The response time is improved

15



20
00

0
25

00
0

30
00

0
35

00
0

40
00

0
45

00
0

No of Clients

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

100 250 500 1000 1500 2000 2500 3000

NoProxy

Round−Robin

Random

Custom

(a) Average Response Time

50
10

0
15

0
20

0

No of Clients

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

J)

100 250 500 1000 1500 2000 2500 3000

NoProxy

Round−Robin

Random

Custom

(b) Energy Consumption

Figure 12: The Impact of the Local Database Proxy Pattern

when the Priority Message Queue pattern is added to the
Local Sharding-Based Router pattern.

To simulate customers that require extra care (i.e., the
heavyweight approach), we have implemented in our ap-
plication a combination of Local Sharding-Based Router
pattern (to guarantee the locality of the data and speed
of retrieval) and Pipes and Filters pattern (to ensure high
efficiency by enabling multitasking and increasing the com-
puting power). Our results show that the combination of
Local Sharding-Based Router and Pipes and Filter pat-
terns can significantly improve the performance of an ap-
plication (see Table 7), however, this will be detrimental
of the energy efficiency, as shown on Figure 19.

One advantage of the Competing Consumers pattern is
the fact that it enables scaling up the application, adding
more resources to the computation and data handling ser-
vices, as needed. In order to test the efficiency of this
pattern, we designed a mixed combination of the Local
Sharding-Based Router, Pipes and Filters, and Compet-
ing Consumers patterns. A request from a client would be
sharded accordingly, processed via the Pipes and Filters
and delivered through the Competing Consumers message
queue channel.

We observed that the combination of these three pat-
terns did not significantly increased the amount of energy
consumed by the application (see Figure 20). However,
the response time was impacted (we obtained significant p-

25
00

0
30

00
0

35
00

0
40

00
0

45
00

0

No of Clients

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

100 250 500 1000 1500 2000 2500 3000

NoSharding

LookUp

Modulo

Consistent

(a) Average Response Time

50
10

0
15

0
20

0

No of Clients

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

J)

100 250 500 1000 1500 2000 2500 3000

NoSharding

LookUp

Modulo

Consistent

(b) Energy Consumption

Figure 13: The Impact of Local Sharding-Based Router Pattern

values, and effect sizes of around 0.3, see Table 7). Hence,
developers should be aware that, although a combination
of these three patterns can improve the scalability of their
applications with little impact on energy efficiency, the
performance can be penalized.

Since in a typical cloud-based application, develop-
ers use a Gatekeeper to ensure that only authorized re-
quests are processed, we experimented with a combination
of Gatekeeper, Sharding-Based Router, Pipes and Filters,
and Competing Consumers patterns. Results presented in
Figure 21 shows that the resulting application is slower
and consumes more energy. The impact of a combination
of these four patterns, on both response time and energy
consumption is statistically significant (see Table 7).

The Gatekeeper seems to increase the security at the
expense of both response time and energy efficiency. This
outcome was expected because of the additional process-
ing occurring at the level of the Gatekeeper, to filter out
malicious queries.

Summary : a combination of Local Database Proxy
and Priority Message Queue patterns can have a negative
impact on the performance of an application, but not on
energy efficiency. However, a combination of Priority Mes-
sage Queue and Sharding-Based Router patterns does not
have a negative impact neither on response time or en-
ergy efficiency. When the Sharding-Based Router pattern
is combined with Pipes and Filters, the performance of

16



30
00

0
40

00
0

50
00

0
60

00
0

No of Clients

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

100 250 500 1000 1500 2000 2500 3000

NoProxy

Microservices

Monolithic

(a) Average Response Time

50
10

0
15

0
20

0
25

0

No of Clients

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

J)

100 250 500 1000 1500 2000 2500 3000

NoProxy

Microservices

Monolithic

(b) Energy Consumption

Figure 14: The Impact of Gatekeeper Pattern

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

No of Clients

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

100 250 500 1000 1500 2000 2500 3000

NoProxy

Microservices

Monolithic

(a) Average Response Time

50
10

0
15

0
20

0
25

0
30

0

No of Clients

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

J)

100 250 500 1000 1500 2000 2500 3000

NoProxy

Microservices

Monolithic

(b) Energy Consumption

Figure 15: The Impact of Competing Consumers Pattern

25
00

0
30

00
0

35
00

0
40

00
0

45
00

0

No of Clients

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

100 250 500 1000 1500 2000 2500 3000

NoProxy

Pipes & Filters

(a) Average Response Time

50
10

0
15

0
20

0

No of Clients

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

J)

100 250 500 1000 1500 2000 2500 3000

NoProxy

Pipes & Filters

(b) Energy Consumption

Figure 16: The Impact of the Pipes & Filters Pattern

20
00

0
22

00
0

24
00

0
26

00
0

28
00

0
30

00
0

32
00

0

No of Clients

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

100 250 500 1000 1500 2000 2500 3000

Round−Robin

Random

Custom

Round−Robin+MQ

Random+MQ

Custom+MQ

(a) Average Response Time

40
60

80
10

0
12

0
14

0
16

0

No of Clients

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

J)

100 250 500 1000 1500 2000 2500 3000

Round−Robin

Random

Custom

Round−Robin+MQ

Random+MQ

Custom+MQ

(b) Energy Consumption

Figure 17: The Impact of Local Database Proxy combined with Pri-
ority Message Queue

17



20
00

0
25

00
0

30
00

0
35

00
0

40
00

0

No of Clients

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

100 250 500 1000 1500 2000 2500 3000

LookUp

Modulo

Consistent

LookUp+MQ

Modulo+MQ

Consistent+MQ

(a) Average Response Time

50
10

0
15

0

No of Clients

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

J)

100 250 500 1000 1500 2000 2500 3000

LookUp

Modulo

Consistent

LookUp+MQ

Modulo+MQ

Consistent+MQ

(b) Energy Consumption

Figure 18: The Impact of Local Sharding-Based Router combined
with Priority Message Queue

the application can improve significantly. However, this
improvement can be at the expense of energy efficiency.
A combination of Sharding-Based Router, Pipes and Fil-
ters, and Competing Consumers patterns can improve the
scalability of an application, with little impact on energy
efficiency. However, the application may experience a per-
formance degradation. When the Gatekeeper is added to
an application, both response time and energy efficiency
can be affected.

6. Discussion

In general, there appear to be a trade-off between the
response time and the energy consumption. Developers
should be careful when selecting a cloud pattern for their
application. Table 8 summarizes the impact on response
time and energy efficiency of the six studied patterns. The
Message Queue pattern is not mentioned in Table 8 be-
cause this pattern is generally used in combination with
other patterns.

Performance & Scalability: Most of the cloud-based
applications require high performance and scalability. Cloud
computing, in fact, tries to provide the infrastructure with
which an application can scale to thousand, even millions
of concurrent users. Local Database Proxy and Competing
Consumers patterns aim to improve the performance and
the scalability of applications. The results of this study

20
00

0
25

00
0

30
00

0
35

00
0

40
00

0

No of Clients

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

100 250 500 1000 1500 2000 2500 3000

LookUp

Modulo

Consistent

LookUp+P&F

Modulo+P&F

Consistent+P&F

(a) Average Response Time

50
10

0
15

0

No of Clients

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

J)

100 250 500 1000 1500 2000 2500 3000

LookUp

Modulo

Consistent

LookUp+P&F

Modulo+P&F

Consistent+P&F

(b) Energy Consumption

Figure 19: The Impact of Local Sharding-Based Router combined
with Pipes & Filters

suggests that all the three algorithms used to implement
Local Database Proxy and Competing Consumers patterns
can improve response time and energy consumption (see
Table 8).

Data Management: Cloud infrastructures offer the
possibility to store and access large amounts of data quickly.
Sharding algorithms can have a positive impact on increas-
ing productivity, specially in No-SQL databases which are
designed to bring scalable data storage to cloud. We ob-
served that the two algorithms LookUp and Consistent
Hashing are able to lower energy consumption and increase
the performance of the applications. On the contrary, the
Modulo algorithm did not improve response time or energy
efficiency.

Security: Applications deployed in the cloud face many
of the same threats as traditional corporate networks. Be-
cause of the large amount of data stored on cloud servers,
most cloud providers are prime targets for attackers. The
magnitude and sensitivity of the data stored in cloud servers
make security breaches more severe. The Gatekeeper pat-
tern aims to secure the access to resources hosted in the
cloud. However, when used in a monolithic application,
this pattern can increase the response time and the en-
ergy consumption of the application. We recommend that

18



Table 8: Impact of Patterns on Energy Efficiency and Response Time∗

Context Problem Pattern Algorithm Energy Response Time

Performance & Scalability Local Database Proxy
PRX-RND Decreasing ↓ Decreasing ↓
PRX-RR Decreasing ↓ Decreasing ↓
PRX-CU Decreasing ↓ Decreasing ↓

Data Management Local Sharding-Based Router
SHRD-LU Decreasing ↓ Decreasing ↓
SHRD-MD Increasing ↑ Increasing ↑
SHRD-CU Decreasing ↓ Decreasing ↓

Performance & Scalability Competing Consumers
CCP-Mono Increasing ↑ Increasing ↑
CCP-Micro Decreasing ↓ Decreasing ↓

Security The Gatekeeper
GK-Mono Increasing ↑ Increasing ↑
GK-Micro Decreasing ↓ Decreasing ↓

Messaging Pipes & Filters P&F Decreasing ↓ Decreasing ↓
∗The Message Queue pattern is not mentioned because this pattern is generally used in combination

with other patterns, and we did not analyze the impact of an isolated implementation of this pattern.

20
00

0
25

00
0

30
00

0
35

00
0

40
00

0
45

00
0

50
00

0

No of Clients

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

100 250 500 1000 1500 2000 2500 3000

LookUp

Modulo

Consistent

LookUp+CC+P&F

Modulo+CC+P&F

Consistent+CC+P&F

(a) Average Response Time

50
10

0
15

0
20

0

No of Clients

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

J)

100 250 500 1000 1500 2000 2500 3000

LookUp

Modulo

Consistent

LookUp+CC+P&F

Modulo+CC+P&F

Consistent+CC+P&F

(b) Energy Consumption

Figure 20: The Impact of Local Sharding-Based Router combined
with Competing Consumers and Pipes & Filters Patterns

developers make use of this pattern primarily in micro-
services applications, since it can significantly improve the
performance and the energy efficiency of micro-services ap-
plications.

Messaging: Pipes and Filters pattern uses message
queues to provide an asynchronous communications pro-
tocol. By doing so, the sender and receiver of the message
(application and service pool instances) do not need to in-
teract with the message queue at the same time. This re-
sults in scalable and high performing architectures, which
significantly increases the reliability and availability of the
cloud-based applications. Our study have shown that Pipes
and Filters patterns also increase the response time and

20
00

0
25

00
0

30
00

0
35

00
0

40
00

0
45

00
0

50
00

0
55

00
0

No of Clients

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

100 250 500 1000 1500 2000 2500 3000

LookUp

Modulo

Consistent

LookUp+CC+GK+P&F

Modulo+CC+GK+P&F

Consistent+CC+GK+P&F

(a) Average Response Time

50
10

0
15

0
20

0

No of Clients

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

J)

100 250 500 1000 1500 2000 2500 3000

LookUp

Modulo

Consistent

LookUp+CC+GK+P&F

Modulo+CC+GK+P&F

Consistent+CC+GK+P&F

(b) Energy Consumption

Figure 21: The Impact of Local Sharding-Based Router combined
with Competing Consumers, Gatekeeper and Pipes & Filters Pat-
terns

the energy efficiency of applications.
Developers and software architects can consult the guide-

lines from Table 9 to select patterns among our six studied
cloud patterns during the development of their applica-
tions.

7. Threats to Validity

Any empirical study is subject to threats to validity.
This section discusses threats to the validity of our work
following the guidelines provided by Wohlin et al. [32]:

19



Table 9: Guidelines for selecting the six patterns

Application’s
most important
non-functional
requirement

Local Database
Proxy

Local Sharding-
Based Router

Priority Message
Queue

Competing Con-
sumers

The Gatekeeper Pipes and Filters

Security – – – – © –
Energy efficiency © § © § § ©
Performance © § © § § ©
Scalability © © © © – ©

Construct validity threats concern the relation between
theory and observations. In this study, they are measure-
ment errors. We repeated each experimentation five times
and computed average values, in order to mitigate the po-
tential biases that could be induced by perturbations on
the network or the hardware, and our tracing. The Power-
API tool was carefully compiled and calibrated before each
run of the application. The first and last values were elim-
inated to obtain lower variance between the average and
maximum. We believe that these operations increased the
quality of our measurements.

Internal validity threats concern our selection of sub-
ject systems and analysis methods. Although we have used
a well-known benchmark, and well-known patterns and al-
gorithms, some of our findings may still be specific to our
studied applications, the tool used to measure energy con-
sumption (i.e., PowerAPI), and the configuration of our
cloud environment.

External validity threats concern the possibility to gen-
eralize our findings. These results have to be interpreted
carefully as they may depend on the specific set up of our
experiments. However, since we obtained consistent re-
sults from the two experiments that involved applications
implemented by two different teams in two different pro-
gramming languages (Java and Python), we believe the
findings to be robust. Nevertheless, further validations
with different applications and possibly more patterns, are
desirable to improve our understanding of the impact of
cloud patterns on the energy consumption of applications.

Reliability validity threats concern the possibility of
replicating this study. We attempt to provide all the nec-
essary details to replicate our study. All the data used in
this paper are available online: https://goo.gl/Cczot4

and https://goo.gl/MB1Yvk.
Finally, conclusion validity threats refer to the rela-

tion between the treatment and the outcome. We paid
attention not to violate the assumptions of the performed
statistical tests. We mainly used non-parametric tests that
do not require making assumptions about the distribution
of the metrics.

8. Conclusion

In this study, we examine the impact on energy con-
sumption of six cloud patterns (i.e., Local Database Proxy,
Local Sharding-Based Router, the Priority Message Queue,
Competing Consumers, Gatekeeper, and Pipes and Filters

patterns), with the aim to provide some guidance to de-
velopers about the usage of cloud patterns. More specif-
ically, we conducted two experiments with different ver-
sions of two cloud-based applications, implementing the
patterns. Our results show that any implementation of
the Local Database Proxy pattern can significantly im-
prove the energy efficiency of a cloud-based application,
while the Local Sharding-Based Router pattern only has
a small effect on energy consumption. In fact, only the
consistent hashing algorithm seems to have a positive ef-
fect on the energy efficiency of applications using the Lo-
cal Sharding-Based Router pattern. Overall, the Local
Database proxy appears to be more adapted for appli-
cations experiencing heavy loads of read requests, while
the Local Sharding-Based Router is not suitable for such
applications, but seems more appropriate for applications
handling huge write requests loads.

In addition, our results show that combining the Prior-
ity Message Queue pattern with the Local Database Proxy
pattern has no significant impact neither on the applica-
tion’s response time, nor on the average amount of en-
ergy consumed by the application. Local Sharding Based
Router when combined with Local Database Proxy im-
proves response time. Interestingly, the implementation
of the custom proxy algorithm in a Local Database Proxy
pattern combined with the modulo algorithm in a Local
Sharding-Based Router pattern can improve the response
time of an application, without penalizing its energy effi-
ciency. We also observed that migrating an application to
a microservices architecture can improve the performance
of the application, while significantly reducing its energy
consumption. A combination of Sharding-Based Router,
Pipes and Filters, and Competing Consumers patterns can
improve the scalability of an application, with little impact
on energy efficiency. However, the application may experi-
ence a performance degradation. Although the Gatekeeper
can improve the security of a cloud-based application, this
is done at the expense of both response time and energy
efficiency.

The study presented in this paper can be extended
to different relational databases and NoSQL databases,
where multiple fine grained optimizations are performed
to improve service availability. NoSQL databases are not
using the relational model, and they are increasingly used
in big data applications, which are consuming more and
more energy these days, and hence would significantly ben-
efit from energy-aware designs.

20

https://goo.gl/Cczot4
https://goo.gl/MB1Yvk


References

[1] F. Prosperi, M. Bambagini, G. Buttazzo, M. Marinoni,
G. Franchino, Energy-aware algorithms for tasks and bandwidth
co-allocation under real-time and redundancy constraints, in:
Emerging Technologies & Factory Automation (ETFA), 2012
IEEE 17th Conference on, IEEE, 2012, pp. 1–8.

[2] I. El Korbi, S. Zeadally, Energy-aware sensor node relocation in
mobile sensor networks, Ad Hoc Networks 16 (2014) 247–265.

[3] G. Hecht, B. Jose-Scheidt, C. De Figueiredo, N. Moha,
F. Khomh, An empirical study of the impact of cloud patterns
on quality of service (qos), in: 6th International Conference
on Cloud Computing Technology and Science, IEEE, 2014, pp.
278–283.

[4] A. Bourdon, A. Noureddine, R. Rouvoy, L. Seinturier, Power-
API: A Software Library to Monitor the Energy Consumed at
the Process-Level, ERCIM News 92 (2013) 43–44.
URL https://hal.inria.fr/hal-00772454

[5] S. A. Abtahizadeh, F. Khomh, Y.-G. Guéhéneuc, How green
are cloud patterns?, in: Computing and Communications Con-
ference (IPCCC), 2015 IEEE 34th International Performance,
IEEE, 2015, pp. 1–8.

[6] G. Pinto, F. Castor, Y. D. Liu, Mining questions about software
energy consumption, in: MSR, 2014, pp. 22–31.

[7] C. Pang, A. Hindle, B. Adams, A. E. Hassan, What do program-
mers know about software energy consumption?, IEEE Software
33 (3) (2015) 83–89.

[8] A. Ampatzoglou, G. Frantzeskou, I. Stamelos, A methodology
to assess the impact of design patterns on software quality, In-
formation and Software Technology 54 (4) (2012) 331–346.

[9] F. Khomh, Y.-G. Guéhéneuc, Do design patterns impact soft-
ware quality positively?, in: Software Maintenance and Reengi-
neering, 2008. CSMR 2008. 12th European Conference on,
IEEE, 2008, pp. 274–278.

[10] M. Vokáč, W. Tichy, D. I. Sjøberg, E. Arisholm, M. Aldrin,
A controlled experiment comparing the maintainability of pro-
grams designed with and without design patterns—a replication
in a real programming environment, Empirical Software Engi-
neering 9 (3) (2004) 149–195.

[11] L. Prechelt, B. Unger, W. F. Tichy, P. Brossler, L. G. Votta, A
controlled experiment in maintenance: comparing design pat-
terns to simpler solutions, Software Engineering, IEEE Trans-
actions on 27 (12) (2001) 1134–1144.

[12] K. Aras, T. Cickovski, J. A. Izaguirre, Empirical evaluation
of design patterns in scientific application, Technical Report
TR-2005-08, Department of Computer Science and Engineering,
University of Notre Dame.

[13] C. A. Ardagna, E. Damiani, F. Frati, D. Rebeccani, M. Ughetti,
Scalability patterns for platform-as-a-service, in: Cloud Com-
puting (CLOUD), 2012 IEEE 5th International Conference on,
IEEE, 2012, pp. 718–725.

[14] B. G. Tudorica, C. Bucur, A comparison between several nosql
databases with comments and notes, in: Roedunet International
Conference (RoEduNet), 2011 10th, IEEE, 2011, pp. 1–5.

[15] R. Burtica, E. M. Mocanu, M. I. Andreica, N. Ţăpuş, Practical
application and evaluation of no-sql databases in cloud comput-
ing, in: Systems Conference (SysCon), 2012 IEEE International,
IEEE, 2012, pp. 1–6.

[16] R. Cattell, Scalable sql and nosql data stores, ACM SIGMOD
Record 39 (4) (2011) 12–27.

[17] K. Sachs, S. Kounev, J. Bacon, A. Buchmann, Perfor-
mance evaluation of message-oriented middleware using the
specjms2007 benchmark, Performance Evaluation 66 (8) (2009)
410–434.

[18] A. Beloglazov, Energy-efficient management of virtual machines
in data centers for cloud computing, Ph.D. Thesis, Department
of Computing and Information Systems, The University of Mel-
bourne.

[19] A. Homer, J. Sharp, L. Brader, M. Narumoto, T. Swanson,
Cloud Design Patterns: Prescriptive Architecture Guidance for
Cloud Applications, Microsoft patterns & practices, 2014.

[20] S. S. Mahmoud, I. Ahmad, A green model for sustainable soft-
ware engineering, International Journal of Software Engineering
and Its Applications 7 (4) (2013) 55–74.

[21] C. Calero, M. Piattini, Green in Software Engineering, Springer,
2015.

[22] R. Nambiar, M. Poess, A. Dey, P. Cao, T. Magdon-Ismail,
A. Bond, et al., Introducing tpcx-hs: the first industry standard
for benchmarking big data systems, in: Technology Conference
on Performance Evaluation and Benchmarking, Springer, 2014,
pp. 1–12.

[23] S. Strauch, V. Andrikopoulos, U. Breitenbuecher, O. Kopp,
F. Leyrnann, Non-functional data layer patterns for cloud appli-
cations, in: Cloud Computing Technology and Science (Cloud-
Com), 2012 IEEE 4th International Conference on, IEEE, 2012,
pp. 601–605.

[24] W. Vereecken, W. Van Heddeghem, D. Colle, M. Pickavet,
P. Demeester, Overall ict footprint and green communication
technologies, in: 4th International Symposium on Communi-
cations, Control and Signal Processing (ISCCSP 2010), IEEE,
2010.

[25] M. Goraczko, A. Kansal, J. Liu, F. Zhao, Joulemeter: Compu-
tational energy measurement and optimization (2011).

[26] K. Liu, G. Pinto, Y. D. Liu, Data-oriented characterization of
application-level energy optimization, in: International Con-
ference on Fundamental Approaches to Software Engineering,
Springer, 2015, pp. 316–331.

[27] D. J. Sheskin, Handbook of parametric and nonparametric sta-
tistical procedures, crc Press, 2003.

[28] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, Appro-
priate statistics for ordinal level data: Should we really be using
t-test and cohen’sd for evaluating group differences on the nsse
and other surveys, in: annual meeting of the Florida Association
of Institutional Research, 2006, pp. 1–33.

[29] J. Cohen, Statistical power analysis for the behavioral sciences,
Lawrence Erlbaum Associates, Inc, 1977.

[30] A. Dmitrienko, G. Molenberghs, C. Chuang-Stein, W. Offen,
Analysis of Clinical Trials Using SAS: A Practical Guide, SAS
Institute, 2005.
URL http://www.google.ca/books?id=G5ElnZDDm8gC

[31] N. Cliff, Dominance statistics: Ordinal analyses to answer or-
dinal questions, Psychological Bulletin 114 (3) (1993) 494.

[32] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
A. Wesslén, Experimentation in software engineering, Springer
Science & Business Media, 2012.

21

https://hal.inria.fr/hal-00772454
https://hal.inria.fr/hal-00772454
https://hal.inria.fr/hal-00772454
https://hal.inria.fr/hal-00772454
http://www.google.ca/books?id=G5ElnZDDm8gC
http://www.google.ca/books?id=G5ElnZDDm8gC

	Introduction
	Related Work
	Object-Oriented Design Patterns and Software Quality
	Evaluation of Cloud Patterns
	Green Software Engineering

	Designing Cloud Applications with Patterns
	Cloud Patterns
	Local Database Proxy
	Local Sharding-Based Router
	Priority Message Queue
	Competing Consumers
	The Gatekeeper
	Pipes and Filters

	Software-defined Power Meters

	Study Definition and Design
	Research Questions
	Experimental Setup
	Experiment 1
	Experiment 2

	Implementation of the Patterns
	Hypotheses
	Analysis Method
	Independent Variables
	Dependent Variables

	The Impact of Cloud Patterns on Performance and Energy Consumption
	Results of Experiment 1
	Results of Experiment 2

	Discussion
	Threats to Validity
	Conclusion

