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Abstract—Cloud Computing has emerged as a key technology
to deliver and manage computing, platform, and software services
over the Internet. Task scheduling algorithms play an important
role in the efficiency of cloud computing services as they aim to
reduce the turnaround time of tasks and improve resource utiliza-
tion. Several task scheduling algorithms have been proposed in
the literature for cloud computing systems, the majority relying
on the computational complexity of tasks and the distribution
of resources. However, several tasks scheduled following these
algorithms still fail because of unforeseen changes in the cloud
environments. In this paper, using tasks execution and resource
utilization data extracted from the execution traces of real world
applications at Google, we explore the possibility of predicting the
scheduling outcome of a task using statistical models. If we can
successfully predict tasks failures, we may be able to reduce the
execution time of jobs by rescheduling failed tasks earlier (i.e.,
before their actual failing time). Our results show that statistical
models can predict task failures with a precision up to 97.4%,
and a recall up to 96.2%. We simulate the potential benefits of
such predictions using the tool kit GloudSim and found that they
can improve the number of finished tasks by up to 40%. We also
perform a case study using the Hadoop framework of Amazon
Elastic MapReduce (EMR) and the jobs of a gene expression
correlations analysis study from breast cancer research. We find
that when extending the scheduler of Hadoop with our predictive
models, the percentage of failed jobs can be reduced by up to
45%, with an overhead of less than 5 minutes.

Keywords-Failure Prediction, Tasks Scheduling, Cloud, Google
Clusters, Hadoop, Amazon Elastic MapReduce.

I. INTRODUCTION

Cloud Computing has emerged as a key technology that

delivers and manages services over the Internet. Customers

can lease services provided by cloud computing systems,

ramping up or down the capacity as they need and paying

only for what they use. Nowadays, cloud computing services

are used for several applications such as Internet of Things,

Image Processing, Data Mining, and Web Analytics [1] [2].

Task scheduling problems are of paramount importance in

cloud environments. Indeed, an efficient scheduling of tasks

and jobs across the various heterogeneous virtual clusters

that constitute a cloud is critical to ensure good computation

time and resource utilisation. Although several task scheduling

algorithms have been proposed in the literature for cloud

computing systems, cloud schedulers still experience many

failures due to unforeseen events such as unpredicted demands

of services or hardware outages.We believe that an efficient

scheduling of tasks requires a proactive response to changes

in cloud environments. If we can predict changes in cloud

environments accurately, we may be able to adjust scheduling

decisions accordingly and reduce the amount of task schedul-

ing failures. Recently, Chen et al [3], [4] examined tasks

failures in compute clouds and suggest that predicted failed

tasks be killed immediately without processing them, in order

to avoid wasting resources. However, although killing these

predicted failed tasks may reduce resources wastage, it does

not guarantee a good level of QoS (Quality of Service), since

the killed tasks are likely to affect the overall performance of a

cloud application. A better decision would be to reschedule the

tasks quickly on appropriate clusters with adequate resources

in order to ensure their timely and successful completion.

In this paper, we explore the possibility of predicting

the scheduling outcome of a task using statistical models

and historical information about the execution of previously

scheduled tasks. Our goal is to achieve early rescheduling

of potential failed tasks in order to improve tasks and

jobs execution time and resources utilisation. We use

statistical modelling to establish and inspect dependencies

between tasks and jobs characteristics such as execution

time, scheduling time, resources usage, machines workload,

scheduling constraints, and tasks scheduling outcomes.

Using tasks execution and resource utilization data from

Google applications, collected over a period of one month

in 2011 [5], we address the following three research questions:

RQ1) How often does a scheduled task or job is Failed,
Evicted, Lost, or Killed?

We observed that 42% of the jobs and 40% of the tasks from

the Google dataset were not finished successfully. We also

found that unfinished (i.e., evicted, failed or killed) jobs and

tasks are characterized by long waiting times and execution

times. Moreover, we noticed that a job often fails because of

the failures of some of its tasks, and tasks also fail because

of the failure of dependent tasks.

RQ2) Can we predict the outcome of scheduling events
based on cluster log files?

First, we determined the variables that affect directly the

scheduling outcome of task or job. Then, we applied Decision

Tree, Boost, GLM, CTree, Random Forest and Neural Network

algorithms to predict whether or not a scheduled task will fail.

Our best prediction model is obtained with Random Forest.

This model achieves a precision up to 97.4%, and a recall

up to 96.2%. Cloud service providers could make use of

such prediction models to improve the performance of their

scheduling algorithms.
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RQ3) Which benefits can be achieved by predicting the
outcome of scheduling events?

We evaluate the potential benefits of our prediction models

using the tool kit GloudSim which was built to simulate the

original workload of Google applications [6]. We examine

whether our models can identify and predict failure events

when scheduling tasks and enable better scheduling decisions.

Results show that prediction models can help reduce the

execution time of the jobs and tasks. Also, the early failure

predictions reduce the number of failed tasks by up to 40%.

To demonstrate the practicality of our prediction models in a

real world setting, we implement and deploy the obtained pre-

diction models on Amazon EC2, extending the scheduler of the

Hadoop framework of Amazon EMR [6]. We reproduce and

execute a series of jobs from a gene expression correlations

analysis study in breast cancer research [7]. Results show

that the extended version of Hadoop’s scheduler generates

better scheduling policies, i.e., the percentage of failed jobs

is reduced by 45%. This improvement of the performance of

the scheduler is achieved at a minimum cost of less than 5

minutes over a total execution time of 30 minutes.

The remainder of this paper is organized as follows: Section

II describes the case study design, our proposed methodology

to process the data from Google Traces. Section III describes

the results of RQ1 and RQ2. The simulation of the benefits

of our proposed prediction models with GloudSim (i.e., RQ3)
is presented in Section IV. Section V presents the results

of the case study with Hadoop. Section VI discusses threats

to the validity of our work, Section VII summarizes the

related literature and Section VIII presents the conclusion and

discusses future works.

II. METHODOLOGY

In this section, we will describe the design of our study, the

studied system and our data extraction and analysis approaches

to answer the following research questions:

• RQ1) How often does a scheduled task or job is Failed,

Evicted, Lost, or Killed?

• RQ2) Can we predict the outcome of scheduling events

based on cluster log files?

• RQ3) Which benefits can be achieved by predicting the

outcome of scheduling events?
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Fig. 1: Overview of Our Proposed Methodology

A. Case Study Design

In order to answer our three research questions, we per-

formed an empirical study using large-scale data (i.e., 158

GB) collected from Google clusters. A Google cluster is a

set of different machines that are inter-connected with high-

bandwidth network dedicated to large and distributed clusters.

The machines of one cluster are sharing the same scheduling

resources allocation and management systems. The schedulers

of these machines receive and schedule a large number of jobs

(i.e., users’ applications). A job is composed of one or multiple

tasks [5]. Jobs are classified into four categories : single−task,
sequential−tasks, parallel−tasks and mix−mode−tasks. Each
task is a Linux program involving one or multiple processes.

Every task or job has its own resources requirements in terms

of CPU, RAM and Disk Space, and its own scheduling priority
and constraints. The Google dataset contains six tables in CSV

(Comma-Separated Values) format: Task Event, Job Event,
Machine Attribute, Task Constraint, and Task Usage [5]. More

details about the Google traces are described in [8].

B. Data Extraction and Processing

Figure 1 describes our proposed methodology to extract

and analyse Gloogle traces files. First, we parse the CSV

files containing scheduling events and the resources usage of

tasks and jobs. Then we extract the attributes describing the

tasks/jobs. Next, we map the failure events of tasks to the

failure events of jobs, to identify correlations between them.

The remainder of this section elaborates more on each of these

steps.

1) Extraction of Tasks/Jobs Attributes: We implemented a

Java program to parse task (respectively job) events and usage

files and extract useful attributes. For each task, we extract

the following metrics: job ID; task ID; waiting time; service

time; scheduling class; priority; requested and used CPU, RAM
and Disk Space; number of previous dependent tasks that were
finished, killed, failed, evicted, lost or unscheduled; number of

times the task was rescheduled after being failed and the final

status of the task. For each job, we extract the: job ID; waiting

time; service time; scheduling class; number of finished, killed,

failed, evicted, lost or unscheduled tasks within this job; total

number of tasks composing the job and the final status of

the job. Description of these attributes and our rationale for

selecting them can be found in [8].

2) Identification/Profiling of the Failed Tasks/Jobs: To

identify failed tasks/Jobs we look for one of the following

status : failed, killed, lost, evicted and unscheduled. Tasks/jobs

with a dependent task/job that was failed is consider to be

failed. If there are some missing information in the files about

a task/job’s final status, we consider that the tasks/job is lost.

3) Mapping between Failed Tasks and Jobs: Since jobs

are composed of one or multiple tasks. We extracted the

distribution of tasks within each job according to their final

status finished, failed, killed, evicted, lost and unscheduled to

analyse the correlation between tasks scheduling outcomes and

job scheduling outcome.

III. CASE STUDY RESULTS

This section presents and discusses the results of our first

two research questions:
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RQ1: How often does a scheduled task or job is Failed,
Evicted, Lost, or Killed?

Motivation: This question is preliminary to the others (i.e.,
RQ2 and RQ3). It aims to examine the proportion of failed,

killed, evicted, lost, and unscheduled jobs that occurred in

Google clusters over a period of one month. If these events

are very frequent, then they are worth studying in more

details. We also examine the waiting and service times of jobs

(respectively tasks) in each category to evaluate the impact of

task and job failures on processing costs.

Approach: We address this question by extracting infor-

mation about unfinished tasks and jobs from our data set

following the method described in Section II-B2. We used all

jobs files. However, we experienced very long processing times

(i.e., lasting multiple days) when analysing the task files. We

decided to reduce the amount of data to process by randomly

sampling 2% (10 files out of 500) of the tasks files, in order

to speed up our analysis. However, we verified the relevance

of our sample by re-sampling the data-set multiple times (i.e.

5 times) and comparing the results of our analysis.

Findings: Only 58.47% of the submitted jobs were
finished successfully and the rest were killed, failed, un-
scheduled or evicted as shown in Table I. We also observed

that few jobs (i.e., 0.8%) were not scheduled. Also, the number
of killed task is very important (almost 40%) compared to the

finished ones. Furthermore, we also found that failed and killed

TABLE I: Distribution of Jobs across Google Traces Files
Job Status Nbr Jobs %

Finished 379586 58.47%

Killed 255280 39.33%

Failed 9080 1.4%

Evicted 14 0.0%

Lost 0 0.0%

Unscheduled 5169 0.8%

Total 649129 100%

jobs are characterized by long waiting times, as described

in Figure 2a. Meaning that a reduction of the amount of

failed and killed jobs can help reduce processing times on

clusters, which would result in energy and resources savings.

We also noticed that killed and failed jobs have longer service

time compared to other finished jobs, as shown in Figure 2b.

Therefore, it is very important to identify the main reasons

that lead to jobs failure in order to reduce their processing

cost (in terms of service and waiting times) and consequently

improve the cluster performance.
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Fig. 2: Waiting and Service Time of Jobs (log scale)

TABLE II: Distribution of Task across 10 Google Traces Files
Task Status Nbr Tasks %

Finished 33020 52.22%

Killed 8473 13.40%

Failed 7044 11.14%

Evicted 12798 20.24%

Lost 0 0.0%

Unscheduled 1897 3%

Total 63234 100%

More than 24% of tasks were failed or killed and
only 52% of tasks were finished successfully. However,
97% of tasks were scheduled successfully, i.e., only 3%
of tasks were not scheduled and were resubmitted for
scheduling (some tasks were resubmitted up to 182 times).
We also observed a high percentage of evicted tasks (i.e.,
20%) as shown in Table II. Evicted tasks had lower priority

compared to production and monitoring tasks. In addition,

we also observed that evicted tasks have long waiting time

and service time compared to other tasks (see Figure 3a and

Figure 3b). Also, failed and killed tasks are characterized by

long waiting and execution time. Therefore, it is crucial to

reduce the amount of failed and evicted tasks if we want to

optimize jobs and tasks processing times (jobs are composed

of multiple tasks). We repeated the analysis on all the other

samples collected from the Google trace data and obtain

similar results; suggesting that the observed high rates of job

and task failures are not specific to the studied sample but

rather likely representative of the general situation of jobs and

tasks scheduling issues in Google clusters.
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Fig. 3: Waiting and Service Time of Tasks (log scale)

RQ2: Can we predict the outcome of scheduling events based
on cluster log files?

Motivation: In RQ1, we observed that scheduled tasks and
jobs experience high failure rates. In this research question,

we examine the correlation between the characteristics of

tasks (respectively jobs) and scheduling outcomes, in order to

predict tasks failures and eventually prevent their occurrence.

Specifically, our goal is to determine whether the scheduling

outcome of a task can be predicted early on before it actually

happens. Such predictions can be used to reschedule potential

failing tasks quickly on appropriate clusters with adequate

resources in order to ensure their timely and successful com-

pletion.

Approach: We extract attributes of the jobs and tasks

as described in Section II-B. We use the Spearman rank

correlation [9] to test the association between these metrics
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and task scheduling outcomes. We also perform a Variance

Inflation Factor (VIF) analysis to examine multi-collinearity

between the metrics. We use a threshold of 5 to decide on

the multi-collinearity of the metrics, i.e., metrics with VIF

result greater than 5 are considered as correlated. We choose

several regression and classification algorithms in R [10] to

build models: GLM (General Linear Model), Random Forest,

Neural Network, Boost, Tree and CTree (Conditional Tree).

More details about these algorithm are presented in [8]. We

use different training and testing data sets for both jobs and

tasks. We apply 10-fold random cross validation to measure

the accuracy, the precision, and recall of the prediction models

[11]. In the cross validation, each data set is randomly split

into ten folds. Nine folds are used as the training set, and the

remaining one fold is used as the testing set.

Findings:
a) Job Level: We analysed the correlation between job

attributes and jobs scheduling outcomes. We observed multi-

collinearity between the following attributes: total number of

tasks, service and waiting time and number of unscheduled/lost

task (i.e., VIF results were over 5). We found a strong

correlation between the number of finished, failed, killed and

evicted tasks within a job (with VIF values of respectively

1.87, 4.17, 3.65 and 2.42) and the final status of the job.

Therefore we conclude that, when there are dependencies

between the tasks composing a job, the scheduling outcome of

the job is impacted by the scheduling outcome of its contained

tasks. Random Forest achieves the best precision and recall
when predicting the outcome of job scheduling. It can
achieve an average accuracy of 85.6%, a precision of 94.2%
and a recall of 85.9%. Table III summarises the performance
of the six models. Only 10 job files mapped to the tasks files

were used in the construction of the models because of our

processing resources limitation. In fact, the 10 files contained

2, 594 jobs and 6, 3234 tasks which processing took 100

minutes (processing 10 cross-validations on one file took only

9.5 minutes).

TABLE III: Accuracy, Precision, Recall (In %)
# File Algo. Acc. Pre. Rec.

10

Tree 66.7 83.7 66.7
Boost 75 89.1 75
Glm 68.8 90.7 61.7
CTree 61.8 89.7 54.9

Random Forest 85.6 94.2 85.9
Neural Network 56 67.6 66.6

b) Tasks Level: We analysed the relation between task

attributes and scheduling outcomes and obtained a strong

correlation between the number of previously finished, killed,

failed and evicted tasks, priority and the scheduling outcome

of tasks (having respectively these VIF values: 1.14, 1.02,

1.07, 1.03, 1.06). We observed multi-collinearity between the

number of rescheduled tasks, service time, waiting time, and

the amount of requested/used resources (CPU, RAM, Disk). In
addition, we noticed that the resources assigned to each task

were higher than the requested resources (which can be ex-

plained by the overbooking strategy followed by Google [12]).

Overall, tasks characterized by dependent tasks that failed in

the past have a high probability to fail in the future. Also,

tasks with low priority values have a high probability to be

evicted [13]. When predicting failed tasks, Random Forest can

achieve an average accuracy of 95.8%, a precision of 97.4%
and a recall of 96.2% (see Table IV). From Table IV, we also

observe that results obtained with 1 file are quite similar to

the results obtained with 10 files. We explain this result by

the fact that the distribution of failure events in these files are

very similar (as shown in RQ1).

TABLE IV: Accuracy, Precision, Recall (In %)

Algo. Acc. Pre. Rec.
1 F.* 10 F. 1 F. 10 F. 1 F. 10 F.

Tree 74 66.2 84.8 77 74.3 66.7

Boost 88.6 89.3 99.5 99.6 80.8 81.4

Glm 70.8 74.5 97 99.6 52.6 55.2

CTree 87.4 92.5 94.9 98 85.6 98.2

Random Forest 95.8 97.3 97.4 98.1 96.2 97.7
Neural Network 50 50 56.4 50 50 50

* F. = File

IV. RESULTS SCHEDULING OUTCOMES PREDICTION:

GOOGLE CLUSTER

RQ3: Which benefits can be achieved by predicting the out-
come of scheduling events?

Motivation: Results from RQ2 show that a Random Forest

model can predict task failure events with high precision (i.e.,
97.4%) and recall (i.e., 96.2%). Therefore, rather than waiting
for a scheduled task to fail, a scheduler equipped with such

predictions can reschedule the tasks quickly on appropriate

clusters with adequate resources. For example by restarting

on a different node a task predicted to fail on its current node

because of insufficient resources. To quantify the benefits that

can be achieved by predicting the scheduling outcome of tasks

early, we measure the execution time and numbers of finished

tasks and jobs of a scheduler equipped with a Random Forest

prediction model.

Approach: We used the simulation toolkit GloudSim to

reproduce the execution traces from the dataset. Indeed, the

GloudSim toolkit was developed to simulate the original

workload of Google applications in order to support academic

research [6]. We deployed GloudSim using 8 virtual machines

(VMs) managed by a XEN hypervisor. Each VM had a one

Core(TM)2 Quad CPU (i.e., 2.66GHz) and 1024 MB of

memory. We implemented a script to collect the following data

about submitted tasks : priority, scheduling class, number of

previous failure events and requested resources. We trained

the random Forest model from RQ2 using historical data

generated by GloudSim about scheduled tasks and used it to

predict the scheduling outcome of each new task submitted

for scheduling. We used a real-time learning algorithm to

update the scheduling policies at fixed time intervals (i.e.,
every 10 minutes). Also, our proposed prediction algorithm

can be used off-line to add the new learned scheduling

rules periodically. We extend the scheduler implemented in

GloudSim to integrate the Random Forest prediction model

of tasks. If a scheduled task was predicted to fail, the new
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scheduler would resubmit the task directly in the scheduling

queue without executing it. Only tasks that were predicted

to succeed would be processed on the scheduler. On the

new scheduler, tasks that are predicted to fail are enqueued

until they get a prediction of success. Consequently, if many

tasks in a submitted job are predicted to fail, the execution

of the job can take a long time and the job may even fail

since the tasks will be rescheduled until they are predicted to

succeed (which may not occur). We compare the scheduling

performance of the new scheduler and the original scheduler

implemented in GloudSim, by executing between 100 and 800

tasks and between 100 and 400 jobs. We considered three types

of tasks and jobs during the comparison: single (100 tasks-

100 jobs), batch (800 tasks-110 jobs) and mix (600 tasks-400

jobs). The performance of the schedulers were measured in

terms of execution times and numbers of finished tasks and

jobs. We choose these measures because the execution time of

jobs and tasks are two important metrics that capture resource

utilisation in the cluster. The number of failure events is a

good measure of the quality of a scheduler.

Findings:
a) Job Level: Overall, the number of finished jobs is

increased and the number of failed jobs decreased when
extending the GloudSim scheduler with our Random
Forest prediction model. In addition, the execution times
of the jobs were optimized (the number of rescheduling
of failed jobs dropped, reducing the total execution time
of the jobs). The improvement is larger for batch jobs as

shown on Figure 4a and Figure 4c compared to mix jobs

as described in Figure 4b and Figure 4d. For single jobs,

the number of finished and failed jobs is almost the same

with and without prediction of tasks failure. We explain this

result by the fact that our prediction model performs better

when a job is composed of multiple dependant tasks; the

number of failed dependant tasks and the number of killed

dependant tasks are two main characteristics of job failure.

In general, we conclude that prediction models of tasks can

help reduce jobs failure rates because the job scheduling

outcome is impacted by the scheduling outcome of its tasks.

Moreover, the execution time of jobs was optimized for

the batch and mix jobs which can be explained by the

reduction of the number of failure events within these jobs, as

shown in Figure 7c and Figure 7e. However, for single jobs,

the execution time is the same with or without prediction

(see Figure 7a). We attribute this outcome to the fact that

the distribution of failure events is the same in the two

configurations (i.e., with and without prediction). Overall,

reducing the number of failed tasks can help to avoid the

starvation problem of tasks waiting on the queue until the

successful processing of their dependent tasks, and long

scheduling delays in cluster scheduler.

b) Task Level: At task level, we also obtained a
reduction of the number of failures and an increase of
the number of successful execution when extending the
GloudSim scheduler with our Random Forest prediction
model. Similar to jobs, batch tasks show the larger improve-
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Fig. 5: Distribution of Finished and Failed Tasks

ments (see Figure 5a and Figure 5c in comparison to Figure 5b

and Figure 5d). Single tasks show no improvements. Moreover,

we noticed that the number of scheduled tasks was improved.

This was expected since the prediction model enables the

quick rescheduling of tasks that are predicted to fail. However,

we noticed that the number of task failures is still high

compared to the number of finished tasks. This is due to the

fact that these tasks were failing because of other scheduling

constraints (resources, task constraints, etc). Our rescheduling

scheme was mainly based on dependencies between tasks but

it can be extended to include those other constraints if they

are reflected in training data. These failed tasks that we could

not predict their failure affect the final scheduling outcome

of the jobs. Furthermore, we observed that the execution time

was optimized for batch and mix tasks as shown in Figure 7d

and Figure 7f since the submitted tasks were processed and
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Fig. 6: Improvement of the Predictive Model: Task Level

finished without waiting for other submitted or queued tasks to

be finished. We explain this improvement by the fact that the

scheduler knew in advance which tasks should be scheduled

first to ensure the successful processing of the tasks. The

execution time of single tasks remained the same as presented

Figure 7b. This is probably due to the fact that our model

achieves good prediction, when information about previous

killed, evicted and failed dependant tasks are available, which

is not the case for single tasks.
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Fig. 7: Total Execution Time of Finished Jobs and Tasks

Moreover, we evaluated the improvement of our new sched-

uler (i.e., the scheduler extended with our Random Forest

model) by computing the number of tasks that were failed

without prediction but succeeded (i.e., their execution finished
successfully) when scheduled with the new scheduler. We

also computed the number of tasks that succeeded without

prediction but failed when scheduled with the new scheduler.

Overall, the number of finished tasks was improved by

40% when scheduling was done with the new scheduler
as shown in Figure 6a and Figure 6b. 2% of tasks that
succeeded without prediction failed when scheduled with
the new scheduler. These failures are due to the false
positive predictions of our prediction model. The model
is not totally accurate.

V. APPLICATION: HADOOP ON AMAZON EMR

We implemented and deployed the prediction models from

Section II on Amazon EC2, extending the standard scheduler

of the Hadoop framework on Amazon EMR. To evaluate the

performance of these extended schedulers, we selected an

application used for gene expression correlations analysis in

the context of Breast cancer research. The application is used

to uncover factors causing breast cancer by identifying dif-

ferential gene expressions between different conditions (e.g.,
cancerous versus normal cells). This application was recently

parallelized by Tzu-Hao et al [7], using the MapReduce

programming model and deployed on Hadoop [14]. Since

the application performs sensitive analysis, any job failure

on Hadoop may lead to inaccurate information and wrong

conclusions about the disease. The application is composed

of 9 jobs [7] shown in Figure 8. These jobs are dependent

and any failure occurrence may propagate inaccurate results

and incur delays that will affect the total execution time of

the application. We emulated the behaviour of this application

by running the same flow (presented on Figure 8) using the

wordcount example provided by Apache with Hadoop as job

unit; linking the output of these dependent jobs together as on

Figure 8, to obtain the final output.
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Fig. 8: Flow of Gene Expression Correlation Analysis

We ran the analysis on Amazon EMR using 4 machine

instance of type m3.large(ECPU=6.5, VCPU=2, MEM=7.5
GB, Instance Storage=32, Network Performance=Moderate).
The first machine was the master node submitting the jobs

to two other machines considered as the workers. The last

machine was the secondary master node. We ran different

simulations on these machine instances to collect log files

that we parsed to extract attributes described in Section II and

train the prediction models. We compared the performance

of the six models described in Section II and found that

the best results are achieved with Neural Networks, i.e.,
accuracy (72.8%), precision (97.2%) and recall (72.7%). We

used different training and testing data sets when assessing the

performance of the models. Table V summarizes the results

achieved by the six models.

Using Hadoop’s scheduler extended with the Neural Net-

work prediction model, refreshing its scheduling policies every
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TABLE V: Accuracy, Precision, Recall (In %)

Algo. Acc. Pre. Rec.

Tree 41.9 84.1 42.7

Boost 38.1 72.8 39.2

Glm 26.5 77.8 26.0

CTree 61.8 89.7 54.9

Random Forest 24.0 69.9 23.7

Neural Network 72.8 97.2 72.7

5 minutes, we performed different simulations by submitting

jobs to worker nodes and injecting an early failure on Job1, a

late failure on Job8 and 2 mixed failures (late and early) on

Job1 and Job8. For each of these simulations, we measured

the total execution time and the total number of failed jobs

and compared the obtained results with those of the default

Hadoop scheduler. We also measured the execution time of

the jobs for different numbers of learning iterations.
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Fig. 9: Total Number of Failed Jobs in Hadoop

The Hadoop’s scheduler extended with the Neural Network

prediction model can reduce the number of job failures by

up to 45% (see Figure 9b, Figure 9c and Figure 9d). In our

proposed scheduling scheme, if the job satisfies its dependency

requirement, it will be submitted to the worker to be executed

or it will be rescheduled and restarted from the beginning

to ensure its successful completion. However, we noticed

that there are still some jobs which are still failing although

they were predicted to be completely finished. This is due to

the failure related to cluster environment (errors occur while

executing the job, insufficient resources, long running tasks,

etc). Moreover, the execution time of jobs is significantly

reduced with more learning (see Figure 9a). We explain this

results by the fact that more learnings (i.e.,., more trainings of
the model on larger historical data) improve the performance

of the prediction model, enabling it to reschedule earlier

multiple jobs that would have failed.

VI. THREATS TO VALIDITY

This section discusses the threats to validity of our study

following the guidelines for case study research [15].

Construct validity threats concern the relation between

theory and observation. Our modelling approach assumes that

tasks and jobs characteristics alone can explain scheduling

outcomes, when in reality, this may not be the case. It is

possible that other factors such as scheduling class or resources

allocation strategy also play a role in scheduling decisions.

However, in our data set we found a low correlation between

scheduling class and scheduling outcomes. According to [5],

this low correlation is due to the fact that the scheduling class

which represents the latency-sensitivity of a task/job mostly

affects local machine policies for accessing cluster resources.

They are therefore more likely to affect resource usages than

scheduling outcomes.

Internal validity threats concern our selection of subject

systems, tools, and analysis method. Although the Google data

set used in this study may not contain all the different kinds of

task and jobs used in the industry, it represents the execution

of real applications from a major company (i.e., Google). The
GloudSim scheduler used in RQ3 does not represent of all

existing schedulers in the industry. However, it is designed to

reproduce the scheduler used in some Google clusters.

External validity threats concern the possibility to gen-

eralize our results. Our study is based on large-scale data

(i.e., 158 GB) collected from Google clusters. Nevertheless,

further validation on larger and diverse sets of tasks and jobs

is desirable.

VII. RELATED WORK

There is a large body of research that aimed to characterize

the task and jobs contained in the Google cluster traces used

in this paper. We classify these works into the following

categories.

A. Scheduling Characterization

The characterization of scheduling events has been the focus

of many workload analysis studies. Recently, [16] addressed

the batch jobs scheduling in distributed data centres and

proposed GreFar to optimize the energy cost and fairness

across different clusters which are characterized by schedul-

ing delays constraints. Zhang et al. used the Google cluster

data to propose Harmony, a heterogeneity-aware framework

that can minimize scheduling delays and the total energy

consumption by controlling the number of machines that are

provisioned [13] [17]. The performance of Harmony was

found to be better than GreFar [16]. In [18], Sharma et al.

showed that task placement have a large impact on scheduling

delays: task waiting time can be increased by a factor of 2

to 6 due to the cluster and task constraints. They proposed

a methodology that takes into account resources requirement

and task placement.
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B. Failure Analysis and Prediction

Failure analysis and prediction have become popular in

researches on distributed systems, since they allow for early

identification of failure and can improve the performance of

the cluster. Fadishei et al. [19] used the Grid Workload Archive

project to analyse the correlation between job failures and

resources attributes (e.g., resources utilisation and scheduler

characteristics). They found that scheduler load, execution

hour of day and CPU-intensity are among the most factors

that can affect failure rates. Ganesha was proposed by Pan

et al [20] as a black-box tool to identify failures between

faulty and normal nodes in MapReduce. Xin Chen et al. used

Google trace files to identify and predict jobs failure in batch

applications. They used Recurrent Neural Networks to perform

their predictions. This model was able to reduce resources

utilisation by between 6% and 10% [3] [4]. They recommend

that predicted failed tasks be killed immediately without

processing, in order to avoid wasting resources. However,

killing predicted failed tasks is likely to affect the overall

performance of a cloud application. A better decision would

be to reschedule the tasks quickly on appropriate clusters with

adequate resources. To the best of our knowledge, our work is

the first that proposes an approach to predict and reschedule

failed tasks in order to improve the performance of cloud

systems. In addition, our work evaluates the performance of

many statistical models in predicting failed tasks. Also, we

show that Random Forest achieves better results compared to

Neural Networks, both in terms of precision and recall.

VIII. CONCLUSION

Task scheduling is an important issue that greatly impacts

the performance of cloud computing systems. In this paper,

we examined task failures in Google clusters data and found

that 42% of the jobs and 40% of the tasks were not finished

successfully. We noticed that a job often fails because of the

failures of some of its tasks, and tasks also fail because of the

failure of dependent tasks. We investigated the possibility of

predicting the scheduling outcome of a task using statistical

models and historical information about the execution of

previously scheduled tasks and found that Random Forest

models can achieve a precision up to 97.4%, and a recall up

to 96.2%. We also extended the schedulers implemented in

GloudSim and Hadoop to incorporate task failure predictions;

the goal being to achieve early rescheduling of potential failed

tasks (i.e., early on before their actual failing time). We

compared the scheduling performance of the new scheduler

and the original scheduler implemented in GloudSim, in terms

of execution times and numbers of finished tasks and jobs, and

found that the number of finished tasks (respectively jobs)

can be increased by up to 40 % (respectively 20 %) and

the execution time reduced by the new scheduler. In the case

of Hadoop, the new scheduler can reduce the number of job

failures by up to 70% with an overhead time of less than 5

minutes. Cloud service providers could improve the perfor-

mance of their task scheduling algorithms by extending them

with our proposed failure prediction models. Since the extra

layer of prediction can have an impact on the performance

of cloud applications (i.e., training and applying the proposed
prediction model can cause delays in scheduling decisions),

although we found it to be less than 5 minutes in our case

study on Hadoop, in future work, we plan to examine in

details the trade-offs between precision and execution time

when selecting a prediction model, as well as the frequency at

which the predictions should be performed in order to ensure

optimal scheduling response times.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Communications ACM, 51(1):107–113, (2008).

[2] W. Zhao, Y. Peng, F. Xie, and Z. Dai, “Modeling and simulation of
cloud computing: A review,” in IEEE Asia Pacific Cloud Computing
Congress (APCloudCC), pages 20-24, (2012).

[3] X. Chen, C.-D. Lu, and K. Pattabiraman, “Failure analysis of jobs in
compute clouds: A google cluster case study,” in IEEE 25th International
Symposium on Software Reliability Engineering (ISSRE), pages 167-177,
(2014).

[4] ——, “Failure prediction of jobs in compute clouds: A google cluster
case study,” in IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), pages 341-346, (2014).

[5] Traces of google workloads. [Online]. Available: http://code.google.
com/p/googleclusterdata/, (Last Access April,2015).

[6] F. C. Sheng Di, “Gloudsim: Google trace based cloud simulator with
virtual machines,” Journal of Software Practice and Experience, (2014).

[7] T.-H. C., S.-L. W., W.-J. W., J.-T. H., and C.-W. Ch., “A novel
approach for discovering condition-specific correlations of gene expres-
sions within biological pathways by using cloud computing technology,”
in BioMed Research International, (2014).

[8] M. Soualhia, F. Khomh, and S. Tahar, “Predicting scheduling
failures in the cloud,” Department of Electrical and Computer
Engineering, Concordia University, Tech. Rep., 2015. [Online].
Available: http://arxiv.org/abs/1507.03562

[9] M. Cortina-Borja, “Handbook of parametric and nonparametric statisti-
cal procedures,” (2012).

[10] The r project for statistical computing. [Online]. Available: http:
//www.r-project.org/, (Last Access April,2015)

[11] B. Efron, “Estimating the error rate of a prediction rule: improvement
on cross-validation,” Journal of the American Statistical Association,
78(382):316-331 (1983).

[12] F. Caglar and A. Gokhale, “ioverbook: intelligent resource-overbooking
to support soft real-time applications in the cloud,” in 7th IEEE Inter-
national Conference on Cloud Computing (IEEE CLOUD), (2014).

[13] Q. Zhang, M. Zhani, R. Boutaba, and J. Hellerstein, “Harmony: Dynamic
heterogeneity-aware resource provisioning in the cloud,” in IEEE 33rd
International Conference on Distributed Computing Systems (ICDCS),
pages 510-519 (2013).

[14] Amazon elastic mapreduce (amazon emr). [Online]. Available:
http://aws.amazon.com/elasticmapreduce/, (Last Access April,2015).

[15] R. K. Yin, Case Study Research: Design and Methods - Third Edition,
3rd ed. SAGE Publication, (2002).

[16] S. Ren, Y. He, and F. Xu, “Provably-efficient job scheduling for energy
and fairness in geographically distributed data centers,” in IEEE 32nd
International Conference on Distributed Computing Systems (ICDCS),
pages 22-31, (2012).

[17] Q. Zhang, M. Zhani, R. Boutaba, and J. Hellerstein, “Dynamic
heterogeneity-aware resource provisioning in the cloud,” IEEE Trans-
actions on Cloud Computing, 2(1):14-28, (2014).

[18] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R.
Das, “Modeling and synthesizing task placement constraints in google
compute clusters,” in Proceedings of the 2Nd ACM Symposium on Cloud
Computing, pages 1-14, (2011).

[19] H. Fadishei, H. Saadatfar, and H. Deldari, “Job failure prediction in grid
environment based on workload characteristics,” in 14th International
CSI Computer Conference CSICC, pages 329-334, (2009).

[20] X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Ganesha:
Blackbox diagnosis of mapreduce systems,” SIGMETRICS Perform.
Eval. Rev., 37(3):8–13, (2010).

65


