
Université de Montréal

Patterns and Quality of Object-oriented Software Systems

par
Foutse Khomh
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Résumé

Lors de ces dix dernières années, le coût de la maintenance des systèmes orientés objets

s’est accru jusqu’ à compter pour plus de 70% du coût total des systèmes. Cette situation

est due à plusieurs facteurs, parmi lesquels les plus importants sont: l’imprécision des

spécifications des utilisateurs, l’environnement d’exécution changeant rapidement et la

mauvaise qualité interne des systèmes. Parmi tous ces facteurs, le seul sur lequel nous

ayons un réel contrôle est la qualité interne des systèmes. De nombreux modèles de qualité

ont été proposés dans la littérature pour contribuer à contrôler la qualité. Cependant,

la plupart de ces modèles utilisent des métriques de classes (nombre de méthodes d’une

classe par exemple) ou des métriques de relations entre classes (couplage entre deux classes

par exemple) pour mesurer les attributs internes des systèmes. Pourtant, la qualité des

systèmes par objets ne dépend pas uniquement de la structure de leurs classes et que

mesurent les métriques, mais aussi de la façon dont celles-ci sont organisées, c’est-à-dire

de leur conception, qui se manifeste généralement à travers les patrons de conception et

les anti-patrons.

Dans cette thèse nous proposons la méthode DEQUALITE, qui permet de construire

systématiquement des modèles de qualité prenant en compte non seulement les attributs

internes des systèmes (grâce aux métriques), mais aussi leur conception (grâce aux pa-

trons de conception et anti-patrons). Cette méthode utilise une approche par apprentis-

sage basée sur les réseaux bayésiens et s’appuie sur les résultats d’une série d’expériences

portant sur l’évaluation de l’impact des patrons de conception et des anti-patrons sur la

qualité des systèmes. Ces expériences réalisées sur 9 grands systèmes libres orientés objet

nous permettent de formuler les conclusions suivantes:

• Contre l’intuition, les patrons de conception n’améliorent pas toujours la qualité

des systèmes; les implantations très couplées de patrons de conception par exemple

affectent la structure des classes et ont un impact négatif sur leur propension aux

changements et aux fautes.
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• Les classes participantes dans des anti-patrons sont beaucoup plus susceptibles de

changer et d’être impliquées dans des corrections de fautes que les autres classes

d’un système.

• Un pourcentage non négligeable de classes sont impliquées simultanément dans des

patrons de conception et dans des anti-patrons. Les patrons de conception ont un

effet positif en ce sens qu’ils atténuent les anti-patrons.

Nous appliquons et validons notre méthode sur trois systèmes libres orientés objet afin

de démontrer l’apport de la conception des systèmes dans l’évaluation de la qualité.

Mots clés: patrons de conception, anti-patrons, modèles de qualité, apprentissage,

réseaux bayesiens.



Abstract

Maintenance costs during the past decades have reached more than 70% of the overall

costs of object-oriented systems, because of many factors, such as changing software envi-

ronments, changing users’ requirements, and the overall quality of systems. One factor on

which we have a control is the quality of systems. Many object-oriented software quality

models have been introduced in the literature to help assess and control quality. However,

these models usually use metrics of classes (such as number of methods) or of relationships

between classes (for example coupling) to measure internal attributes of systems. Yet, the

quality of object-oriented systems does not depend on classes’ metrics solely: it also de-

pends on the organisation of classes, i.e., the system design that concretely manifests itself

through design styles, such as design patterns and antipatterns.

In this dissertation, we propose the method DEQUALITE to systematically build

quality models that take into account the internal attributes of the systems (through

metrics) but also their design (through design patterns and antipatterns). This method

uses a machine learning approach based on Bayesian Belief Networks and builds on the

results of a series of experiments aimed at evaluating the impact of design patterns and

antipatterns on the quality of systems. These experiments, performed on 9 large object-

oriented open source systems enable us to draw the following conclusions:

• Counter-intuitively, design patterns do not always improve the quality of systems;

tangled implementations of design patterns for example significantly affect the struc-

ture of classes and negatively impact their change- and fault-proneness.

• Classes participating in antipatterns are significantly more likely to be subject to

changes and to be involved in fault-fixing changes than other classes.

• A non negligible percentage of classes participate in co-occurrences of antipatterns

and design patterns in systems. On these classes, design patterns have a positive

effect in mitigating antipatterns.
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We apply and validate our method on three open-source object-oriented systems to

demonstrate the contribution of the design of system in quality assessment.

Keywords: design patterns, antipatterns, quality models, machine learning, Bayesian

Belief Networks.
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Chapter 1

Introduction

1.1 Research Context: Software Quality

Large object-oriented software systems are now pervasive in our society. They are ev-

erywhere from document managers to embedded systems, such as navigation systems in

aerospace, and they play a vital role in our life. Software systems are complex because

they achieve many different, and often conflicting objectives and they comprise many

components which are custom made and complex themselves [Bruegge and Dutoit, 1999].

Software systems are subject to constant change because users requirements are complex

and evolve over time. However, this constant change is not without cost.

Systems, like people, get old [Parnas, 1994]. They increase in complexity and degrade in

effectiveness [Lehman, 1996], unless the quality of the systems is controlled and continually

improved; when the design of a system is poor, new changes to the system often degrade

quality instead of improving it. Parnas attributed this degradation to a phenomenon

that he called Ignorant surgery. This phenomenon occurs when changes are made on a

system by people who do not understand its original design; these new changes sometimes

invalidate the original design of the system and cause the design to degrade. Worst of

all, after several of these changes, neither the original designers of the system, nor those

who made the change understand the system. As a result, every new maintenance activity

on the system becomes very expensive and the documentation increasingly inaccurate,

making future changes even more difficult. Aging systems are often “faulty” because of

error introduced when changes are made and the cost for removing these errors is high

[Parnas, 1994]. Over the past two decades, maintenance have become the most time and

resource consuming activity in the life cycle of systems. Maintenance costs have grown



1.2. Problem Statement and Thesis 2

to more than 70% of the overall costs of object-oriented systems [Pressman, 2001]; an

increase due in part to aging systems.

Therefore, achieving good quality is essential to control and reduce the maintenance

cost of object oriented systems. This goal require means to measure the quality of systems.

However, quality has different meanings eg., the capacity of a system to change at low cost,

or the absence of bugs. In this dissertation, quality refers to change-proneness and fault-

proneness. Quality attributes are non-functional requirements used to evaluate quality,

eg., maintainability and reliability.

Many quality models have been proposed to help assess the quality of object-oriented

systems, eg., [Dromey, 1996 ; McCall, 2001 ; Bianchi et al., 2002 ; Bansiya and Davis,

2002 ; Zhu et al., 2002 ; Singh and Goel, 2008]. A quality model is a set of quality

attributes related to a set of metrics. The relationship between quality attributes and

metrics specifies the quality evaluation process [ISO 9126, 1991]. The main goal of quality

models is to facilitate the continuous improvement of a system [Boehm et al., 1978 ;

Dromey, 1996].

Briand and Wust [2002], who, surveyed quality models organised them in two cate-

gories: quality models based on mining software repositories and those based on exper-

iments. They remarked that no quality model considered system design. They are all

limited only to internal attribute of classes such as size, complexity and coupling or, at

best, of pairs thereof, and disregard their organisation. Recently, some researchers have

proposed process metrics from historical repositories [Moser et al., 2008] and complexity

metrics based on code change processes [Hassan, 2009], to improve quality assessment,

but no study investigated the possible benefits of considering classes organisation, i.e.,

system design, in the evaluation of their quality. Yet, the design of systems is the first

thing developers should master when performing maintenance activities, if they want to

avoid Ignorant surgeries that cause systems aging.

1.2 Problem Statement and Thesis

Design specifications are intensional and local [Eden and Kazman, 2003]. Their imple-

mentation results in located groups of classes with specific organisation in a system. The

most popular forms of design implementations in object-oriented software systems are de-

sign patterns, code smells, and antipatterns. We use them as baseline for design in this

dissertation.



1.2. Problem Statement and Thesis 3

Design patterns [Gamma et al., 1994] are proven “good” solutions to recurrent de-

sign problems in object-oriented software design. They are used by developers either to

generate an architecture [Beck and Johnson, 1994] or to enhance an architecture by super-

imposition [Hannemann and Kiczales, 2002]. Claimed advantages of design patterns in-

clude improved reusability, comprehensibility, and maintainability; the latter thanks to

their supposed ability to make systems more robust to changes: “Each design pattern lets

some aspect of system structure vary independently of other aspects, thereby making a

system more robust to a particular kind of change” [Gamma et al., 1994]. In practice,

design patterns offer design motifs [Guéhéneuc and Antoniol, 2008]: ideal solutions that

describe the roles played by classes to implement the motifs. Design motifs are an integral

part of any reasonably well-developed system [Gamma et al., 1994].

Antipatterns are conjectured in the literature to negatively affect the quality and evo-

lution of systems [Brown et al., 1998]. Antipatterns are “poor” solutions to recurring

design problems, for example Brown’s 40 antipatterns that describe common pitfalls in

the software industry. Antipatterns are generally the result of a developer’s lack of knowl-

edge and–or experience in solving a design problem or applying some patterns: “something

that looks like a good idea, but which backfires badly when applied” [Coplien and Har-

rison, 2005]. In practice, antipatterns relate to and manifest themselves as code smells,

symptoms of implementation and–or design problems [Fowler, 1999] in source code. An-

tipatterns and design patterns concern the design of one or more classes.

Besides, very few studies quantitatively assesses the impact of design patterns and

antipatterns on specific quality attributes. Existing studies limited to qualitative results,

for example Venners [2005] claimed that design patterns improve the quality of systems

while Wendorff [2001], suggested that their use do not always result in “good” designs;

MacNatt and Bieman [2001] hinted that a tangled implementation of patterns may impacts

quality negatively, and Du Bois et al. [2006] argued that refactoring of some antipatterns

may improve understandability.

Vokac [2004] analysed the corrective maintenance of a large commercial system over

three years and compared the fault rates of classes that participated in design motifs

against those of classes that did not. Vokac’s work is the best attempt to build a predictive

model for fault-proneness based on design patterns. His work inspired this dissertation, in

particular his use of logistic regression to analyse the correlations between design motifs

and fault-proneness. Other studies deal with the changeability and resilience to change

of design patterns [Aversano et al., 2007] and of classes playing a specific role in design

patterns [Di Penta et al., 2008], or their impact on the maintainability of a large commercial
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system [Wendorff, 2001] but neither did attempt to provide means to measure the quality

of systems using the evaluation of the design of these systems. Nor did provide quantitative

evidence of the claimed relation between design patterns, antipatterns, and quality.

These previous work lead us to the formulation of the following thesis:

Thesis:

Considering system design (design patterns and antipatterns) leads to more accurate

quality models than using only the internal attributes of classes.

To verify our thesis, we propose and follow a method, DEQUALITE1 (Design Enhanced

QUALITy Evaluation), to build quality models that measure the quality of object-oriented

systems by taking into account both their internal attributes, i.e., the structure of their

classes and their designs. To take into account the design of a system in an evaluation

of quality, we should be able to characterise this design and understand its impact on

quality. Therefore, through DEQUALITE, we perform a series of experiments intended

for the evaluation of the impact of design patterns and antipatterns on the quality of

systems.

1.3 DEQUALITE

DEQUALITE starts with the observation that the design of systems affects its quality

eg., when a design pattern implementation is recognised in a part of a system, the com-

prehension of classes involved in this implementation is improved. From this observation,

DEQUALITE describes the following four steps, inspired by Dromey’s approach [1995],

to build a quality model mapping quality attributes of a system to its design.

1. Identify a set of quality attributes.

2. Identify and classify the most significant, tangible, quality-carrying design specifica-

tions of the system.

3. Propose a set of axioms for linking system design to quality attributes.

4. Evaluate the model, identify its weaknesses, and either refine it with new information

on the system, like class metrics, or discard it and start again.

1DEQUALITE in French means good quality.
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We use DEQUALITE as “fil conducteur” of the presentation of our contributions.

Through the steps of DEQUALITE, we perform a series of experiments proving that

design patterns and antipatterns impact the quality of systems. We build quality models

that take into account design patterns and antipatterns and prove that they outperform

state-of-the-art quality models built with class metrics only. The following section presents

details on the steps.

1.4 Scenario: Building a Quality Model with DEQUALITE

At Step 1, we select the quality attributes change- and fault-proneness. Section 4.4

defines and explains their measurement. Remark that other quality attributes can

also be consider with DEQUALITE.

At Step 2, we select design specifications: design patterns, and antipatterns. Once

the design specifications are identified, we need to answer the following research

questions:

1. What is the impact of design patterns on the change- and fault-proneness of

classes? We investigate whether classes playing roles in design motifs are more

change- or fault-prone than others.

2. What is the impact of antipatterns on the change- and fault-proneness of classes?

We investigate whether classes participating in antipatterns are more change-

or fault-prone than others.

3. What is the interaction between antipatterns and design patterns and their im-

pact on the change- and fault-proneness of classes? We investigate the co-

occurrence of antipatterns and design patterns on classes, and its effect i.e., if

this co-occurrence is for example related to higher or lower change-proneness

w.r.t. antipatterns and design patterns alone.

We discuss these research questions in more details in the following chapters of this

dissertation.

At Step 3, we use the results of Step 2 to propose and build Bayesian Belief Networks

(BBNs) quality models taking into account design patterns and antipatterns.

At Step 4, we evaluate and refine the models from Step 3.

In summary, DEQUALITE describes steps to build and operationalise BBNs for the as-

sessment of the quality of classes from their internal structure and their design.
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1.5 Contributions

The main contributions of this dissertation are:

1. The development of a method, named DEQUALITE to systematically build quality

models that take into account both the internal attributes of the systems and their

design. This method permits us to build quality models that outperform state-of-

the-art models built with class metrics only.

2. A study of the perceived impact of design patterns on quality. We found that design

patterns are perceived by developers as not always improving the quality of systems.

3. An empirical study of the impact of playing roles in a (some) design pattern(s) for

a class, on the internal (class metrics) and external (change- and fault-proneness)

characteristics of classes. We found that playing roles in design motifs significantly

affects the structure of classes as well as their change- and fault-proneness.

4. An empirical study of the impact of code smells on class change-proneness. We found

that classes with code smells are significantly more likely to be subject to changes

than other classes.

5. An empirical study of the impact of antipatterns on class change- and fault-proneness.

We found that classes participating in antipatterns are significantly more likely to

be subject to changes and to be involved in fault-fixing changes than other classes.

6. An empirical study of the interaction between antipatterns and design patterns in

systems. We found that when antipatterns and design patterns co-occur in a class,

the negative effect of antipattern is mitigated.

1.6 Roadmap

The remainder of this dissertation provides the following content:

Chapter 2 (p. 8) reviews related work on quality models, design patterns, and antipat-

terns quality analysis

Chapter 3 (P. 22) reports our preliminary studies. We present and discuss the results

of three pilots studies performed during our investigation of the relation between

system design and quality.
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Chapter 4 (P. 42) presents the setting of the experiments reported in this dissertation.

This setting includes tools, variables and the statistical methods used in our exper-

iments.

Chapter 5 (P. 56) presents a descriptive and analytic study of classes playing zero, one,

or two roles in a (some) design pattern(s). The descriptive study shows that a

non-negligible proportions of classes play one or two roles in design patterns. The

analytic part of the study showing that internal (class metrics) and external (change-

and fault-proneness) characteristics of classes are differently impacted by playing one

and two roles.

Chapter 6 (P. 80) explores the impact of antipatterns on systems change- and fault-

proneness, and provides quantitative evidence of the negative impact of antipatterns

on classes change- and fault-proneness.

Chapter 7 (P. 104) investigates the interactions between design patterns and antipatterns

in systems, and analyzed the effects of their co-occurrence in classes. Results suggest

a positive effect of design patterns on antipatterns; design patterns mitigates the

negative impact of antipatterns on classes.

Chapter 8 (P. 121) presents case studies of DEQUALITE and discuss the relevance of

obtained quality models.

Chapter 9 (P. 136) presents the conclusions of this dissertation and outlines some direc-

tions of future research.

Appendix A (P. 160) presents the definitions of metrics used in this dissertation.

Appendix B (P. 163) presents the complete list of code smells and antipatterns considered

in this dissertation with their definitions.

Appendix C (P. 167) presents detailed information on the distribution of antipatterns

and design patterns in systems.



Chapter 2

Related Work

Shewhart, who was a statistician at AT&T Bell Laboratories in the 1920s’, is regarded as

the founder of statistical quality improvement and of the modern process improvement,

which is based on his concept of process control, consisting in monitoring a process through

the use of control charts [O’Regan, 2002]. In 1946, Deming, then working for the U.S.

Occupation Force in Japan, applied these concepts to the manufacturing industry and

the management of companies. Deming’s work will lead to the Quality Movement that

is best summarizes by Fujitsu’s slogan “Quality built-in, with cost and performance as

prime consideration”.

In 1990, a growing interest in the quality assurance of software systems and the need of

the software industry to standardize the evaluation of the quality of software systems led

to the definition by the ISO (International Organization for Standardization) [1991] of a

standard specifying six areas of importance for software evaluation (sometimes referred to

as Quality Attributes, Software Metrics, or Functional and Non-Functional Requirements).

These areas include: functionality, reliability, usability, efficiency, maintainability, and

portability. For each area, the standard attempts to specify how they can be measured.

The intention of this standard is to breakdown software systems into quality attributes that

can be measured in terms of cost benefit, i.e., quality attributes with a direct impact on

systems’ costs. However, the standard fails to provide means to measure these attributes.

Therefore, many software metrics and software quality models have been introduced in

the literature to help developers and quality analysts with the assessment of these quality

attributes.

Briand and Wüst [2002] in their survey of quality models for object oriented systems

found that although quality models have been introduced over the years, none of them
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considered the organisation of classes in their evaluation of the quality of systems. They

all focus on the evaluation of internal attributes of classes (such as size, filiation, and

cohesion) or, at best, of pairs thereof. Moreover, except for the quality model introduced

by Bansiya and Davis [2002], existing models do not link explicitly internal attributes to

external quality characteristics. For example maintainability, which attempts to measure

the effort required to diagnose, analyse, and apply a change to a system: most quality

models propose measurements of internal attributes that influence the effort required to

modify a system, like source code complexity, but fail to specify how maintainability

is impacted by these internal attributes. This lack of explicit link renders difficult the

practical use of these quality models because quality analysts and managers are first and

fore most interested in external characteristics, like maintainability to plan development

and maintenance activities.

Many principles and techniques exist to help developers design systems with good

quality characteristics; among them, design patterns, which are “good” solution to recur-

ring design problems, form an interesting bridge between internal attributes of systems,

external quality characteristics, and software designs because they link internal attributes

(concrete implementation of systems) and subjective quality characteristics (subjective

perceptions on systems), such as reusability [Gamma et al., 1994].

Since their popularisation in the software engineering community by the publication

of the landmark book of Gamma et al. [1994], design patterns have gained importance

for system design. The publication by Webster [1995] of the first book on “antipatterns”,

which are “poor” solutions to recurring design problems reinforced the importance of

design styles.

Design patterns and antipatterns have been the subject of many studies aimed at

their specification, detection, and analysis of their relation to software quality. Some

authors like Venners [2005] claimed that design patterns improve the quality of systems,

yet others, like Wendorff [2001], have suggested that their use do not always result in

“good” designs. McNatt and Bieman [2001] hinted that a tangled implementation of

patterns may impacts negatively quality while Du Bois et al. [2006] showed that the

decomposition of the antipattern “god class” into a number of collaborating classes using

well-known refactorings improves understandability.

In this chapter, we present the state-of-the-art on quality models, design patterns, and

antipatterns’ quality analyses. We start with an overview of quality models (Section 2.1).

We also report work that studied design patterns and their relation to software quality

(Sections 2.2) and work that studied antipatterns and their relation to software quality
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(Section 6). We conclude this chapter with a discussion (Section 2.4) on the limitations

of the presented work with regard to our thesis.

2.1 Quality Models

Zuse [1991] introduced the first approach to quantify the internal structure of procedu-

ral software systems. Since then, the large and rapid adoption of the object-oriented

paradigm by the software engineering community and the multiple challenges introduced

by it prompted researchers to turn their attention to the quality of object-oriented systems.

In their review of quality models for object-oriented systems, Briand and Wüst [2002] or-

ganised this literature in two categories: mining software repositories and experiments.

In addition to these two categories, we consider in the following also a third category of

models of software quality attributes. We discuss some of the main work related to this

dissertation along these three categories.

2.1.1 Mining Software Repositories

The Mining Software Repositories field analyzes data available in systems repositories and

performs correlational studies to uncover interesting relations among variables defined on

systems. These studies account for the majority of the studies on software quality. A

situation that Briand and Wüst [2002] attributed to the fact that they are usually the

only option in industrial settings. In software quality analysis, researchers generally use

univariate and multivariate analysis to demonstrate the relationship between one or more

measures of the structural properties of some systems and an external quality character-

istic. In this case, the structural properties of the systems are the independent variables

while the external quality characteristic is the dependent variable. There are three possi-

ble results to a correlational study: a positive correlation, a negative correlation, and no

correlation. In the following, we focus on the more commonly used techniques in corre-

lational studies: correlation coefficients (Pearson, Spearman, Kendall), negative binomial

regression, logistic regression, linear ordinary least-squares regression, and exponential

least-squares regression. Many of these techniques are often used both for univariate and

multivariate analyses.

Correlations. Harrison et al. [1998] used Spearman’s correlation to study the relation-

ship between two coupling metrics: CBO [Chidamber and Kemerer, 1991] and NAS, which

measures the Number of Associations between a class and its peers. NAS can be compute
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directly from design documents, such as the Object Model of OMT [Harrison et al., 1998].

They studied five object-oriented systems and found a strong relationship between CBO

and NAS. They concluded that only one of these metrics is needed to assess the level of

coupling in a system at design time. However, they argued that NAS could provide inter-

esting early coupling estimates because it is available early in a system design, is simple

to compute from design documents, and is easy to interpret. They also tested the rela-

tionship between coupling and understandability, the number of errors, and error density.

For all the studied systems, they found no relationships between class understandability

and coupling. They reported that limited evidence support a link between an increased

coupling and an increased error density.

Negative Binomial. Weyuker et al. [2008] presented a study comparing the effective-

ness of a negative binomial regression (NBR) model and a recursive partitioning (RP)

model on three large industrial systems. Their intent was to find an alternative to neg-

ative binomial regression that could overcome the restrictions imposed by NBR both on

linearity and additivity. Moreover, as well mentioned in their work [Weyuker et al., 2008],

there is ample evidence in the world that complex systems do not always obey simple

models. To achieve their goal, they used the same predictor variables in two models (a

NBR and a RP model) and found that the negative binomial model was able to identify

files that contain 76 to 93 percent of faults while the recursive partitioning model identified

files that contain 68 to 85 percent. They attributed their results to a possible insufficient

tuning of the model fitting procedures but doubted that this shortfall of RP could be

overcome by tweaking either the model, with for examples alternatives like C4.5, or by

using specific parameters. They concluded their work by suggesting random forests as a

more promising alternative. We plan to investigate that in future work.

Logistic Regression. Briand et al. [2002] presented a study assessing whether models

of fault-proneness, based on design measurement, were applicable across systems, i.e., if

they could be viable decision making tools when applied from one object-oriented system

to another. They selected two systems developed with a nearly identical development

team, using a similar technology (object-oriented analysis and design and Java) but dif-

ferent design strategies and coding standards. To build the fault-proneness models, they

first performed an univariate logistic regression analysis for each individual measure (inde-

pendent variable) against the dependent variable, i.e., no fault/fault. Second, they build

multivariate prediction models using logistic regression and Multivariate Adaptive Regres-

sion Splines (MARS). They justified the combination of MARS and logistic regression by
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the need to achieve high accuracy and obtain models with more realistic functional forms.

The validation of their models suggested that a model generated by MARS outperforms

logistic regression models where the relationship between the logit and the independent

variables is linear (log-linear model). They also introduced a cost-benefit model and ap-

plied it to assess the economic viability of fault-proneness models as a function of factors,

such as defect detection effectiveness. They applied a fault-proneness model built on one

of the systems to the other system and concluded that it can provide substantial benefits,

even when used across systems.

Linear Ordinary Least-Squares Regression. Brito e Abreu and Melo [1996] pre-

sented a study evaluating the impact of object-oriented design on software quality at-

tributes (defect density and rework). They used the MOOD metric suite to measure the

use of object-oriented design mechanisms. They collected data from the development of

eight small-size C++ information management systems based on identical requirements

and assessed the referred impact (i.e., impact of object-oriented design on defect density

and rework) by means of the linear ordinary least-squares regression and the Pearson cor-

relation. They used the coefficient of determination (R2) to evaluate their model. They

discussed how object-oriented design mechanisms, like inheritance, polymorphism, infor-

mation hiding, and coupling, influenced the defect density and rework of systems. They

also built some predictive models based on object-oriented design metrics and concluded

on the importance of quantifying the influence of object-oriented design mechanism on

quality, because it can help in the training of novice designers by the means of heuristics

[Brito e Abreu et al., 1995] embedded in design tools and also project managers during

the planning process.

Exponential Least-Squares Regression. Misic and Tesic [1998] presented an empir-

ical study looking for appropriate measures of quality and establishing simple, usable, and

cost-effective models for the control and estimation of the quality of object-oriented sys-

tems. They performed their study on a set of seven systems developed in a small software

company within a period of 18 months. They collected data on the internal characteris-

tics of the systems and performed an analysis in two steps: first, they applied a Pearson

correlation analysis to identify candidate measures of structural properties with strong

mutual dependence. Second, they used simple and exponential least-squares regression to

derive a number of models for pairs of measures that were found to be correlated. They

computed the R2 of each model and selected the models suitable for estimation. They

discussed these models and suggested that external characteristics such as “effort” corre-
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lates well with the total number of classes and the total number of methods. However,

they concluded on the necessity to apply their results with care as they were obtained on

small-size systems.

2.1.2 Experiments

Experiments in the context of software quality are studies that attempt to demonstrate

relations between some structural properties of systems (independent variables) and some

external characteristics, like understandability (dependent variable). In these studies,

subjects are required to undertake some software development tasks on a set of systems

during which the structural properties of the systems are controlled and the performance

of the subjects measured. Briand and Wüst [2002] in their survey of quality models found

that controlled experiments were far fewer in number than correlational studies.

The first experiment on the quality of object oriented systems was presented by Lake

and Cook [1992]. Their study attempted to relate flat and deep inheritance structure to

understandability, modifiability, and debugability. Their experiment was performed with

two groups of five and six students that were asked to perform three different tasks on

four C++ systems (an APL compiler, Borland’s C++ library, some C++ instructional

code, and an accounting system). The measurements of these systems revealed that they

generally consisted of few unconnected classes (less than 20) with little use of inheritance.

Only in few cases, the systems were having inheritance trees with depth three or more, the

majority of classes being at the same level. The result of their experiment suggested that

developers more effectively debug and modify classes with lower depth of inheritance. Since

then, other controlled experiments have investigated relations between some aspects of

system understandability and maintainability and inheritance [Daly et al., 1996 ; Harrison

et al., 2000].

Daly et al. [1996] performed a series of subject-based laboratory experiments, includ-

ing an internal replication, to test the effect of depth of inheritance on the maintainability

of object-oriented systems. The study was performed on two object-oriented systems im-

plemented in C++. Both were simple database systems. Two versions of each system

were used, a version with inheritance and a version with no inheritance (flat). 31 students

enrolled in an object-oriented programming course participated in the experiments. First,

the subjects were timed performing identical maintenance tasks on a system with a hier-

archy with three levels of inheritance and on the equivalent system with no inheritance.

Second, a replication was performed. Third, a second experiment with a design similar to

the first one was performed. Again, subjects were timed performing identical maintenance
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tasks on a system with a hierarchy with five levels of inheritance and on the equivalent

system with no hierarchy. The results of these experiments showed that a system with

three levels of inheritance is easier to modify (i.e., takes less time) than a system with no

inheritance. However, a system with five levels of inheritance takes longer to modify than

a system without inheritance. The depth of inheritance thus has an impact on systems

maintenance.

Harrison et al. [2000] replicated Daly’s study. They analysed a C++ system without

any inheritance and a corresponding system containing three levels of inheritance, as well

as a second larger C++ system without inheritance and a corresponding system with

five levels of inheritance. Both systems were modeling databases for a University human

resource system. Their results suggested that systems without inheritance were easier

(i.e., took less time) to modify than systems with either three or five levels of inheritance.

However, they also pointed out that while modifying a flat system is easier than modifying

one with five inheritance levels, one should be careful to imply that in general, the systems

without inheritance are easier to understand. They claimed that the size and functionality

of a system has a greater impact on its understandability than the amount of inheritance

used.

Wood et al. [1999] studied the structure of object-oriented C++ systems to assess the

relation between the use of inheritance and software maintenance. They concluded that

the use of inheritance in object-oriented systems may inhibit software maintenance. In

their study, the authors used a multi-method approach based on structured interviews,

surveys, and controlled experiments. They justified the use of this approach by arguing

that the combination of complementary techniques led to more robust conclusions and

greater understanding of the factors lying behind empirical results.

2.1.3 Models of Software Quality Attributes

This section presents work that proposed models to assess object-oriented quality at-

tributes, such as reusability, quantitatively. In these studies, the overall quality of systems

is defined through a set of quality attributes. Relations between these attributes are de-

fined and metrics are proposed to measure them. However, there is not yet a consensus on

what are important quality attributes. The relations among different quality attributes is

still unclear. Many quality models have been introduced in the literature, each attempting

to define quality attributes so that they can be measured objectively. The vast majority of

these quality models are hierarchical models to avoid overlaps between quality attributes.

In the following, we discuss the main quality models defined in the literature.
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McCall’s Quality Model. The first quality model was introduced by McCall et al.

[1977] at the US Air-Force electronic system decision department. The rationale of this

model was to measure the relation between internal and external quality characteristics

of a system. The quality attributes defined in the model were selected to reflect both

the users’ views and the developers’ priorities. Therefore, three major perspectives were

considered in their definition and selection: software revision, software transition, and

software operations. Software revision includes the ability of systems to undergo changes,

their maintainability, flexibility, and testability. Software transition concerns the porta-

bility, the reusability, and the interoperability while software operations correctness, reli-

ability, efficiency, integrity, and usability. McCall’s model organised these three external

quality characteristics in a hierarchy of factors, criteria, and metrics, which were decom-

posed in 11 attributes describing the external view of the system, as viewed by the users.

The model also introduced 23 quality attributes to describe the internal characteristics of

the system, as perceived by developers. A set of metrics was defined and used to provide

a scale and method for measurement. The metrics were computed by people answering

“yes” or “no” questions. The main contribution of this model was to provide a baseline

relation between quality characteristics and metrics. However, because of its subjective

measurement of quality, relaying on people answering questions, McCall’s model has been

largely criticized and not used in practice.

Boehm’s Quality Model. Following McCall’s quality model, Boehm [1976 ; 1978]

proposed a model that attempted to qualitatively define the quality of a software through

a given set of attributes and metrics. Boehm’s model is similar to McCall’s in that it also

organised the quality attributes in a hierarchy with high-level characteristics, intermediate-

level characteristics, and primitive characteristics. It added some more characteristics to

McCall’s model, emphasizing maintainability and hardware performance. Boehm’s model

targeted various dimensions, considering the types of users expected to be working with the

system [Vinayagasundaram and Srivatsa, 2007]. General utility (high-level characteristic)

was refined into portability, utility, and maintainability, which represented basic high-level

requirements of actual use. The utility was further refined into reliability, efficiency, and

human engineering, while maintainability was refined into testability, understandability,

and modifiability. The intermediate-level characteristic included seven quality attributes

that Boehm claimed to represent the attributes expected from a system: portability,

reliability, efficiency, usability, testability, understandability, and flexibility. The primitive

characteristics provided the foundation for defining quality metrics. While McCall’s model

primarily focused on the precise measurement of high-level characteristics, Boehm’s quality
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model explored a wider range of characteristics with an extended and detailed focus on

maintainability. Boehm’s model is considered an important predecessor of todays’ quality

models

ISO/IEC 9126-1. In 1991, in an attempt to standardize the evaluation of software

systems, the International Organization for Standardization (ISO) proposed the ISO 9126

standard that is divided into four parts addressing respectively: quality model; external

metrics; internal metrics; and quality-in-use metrics [ISO 9126, 1991]. ISO 9126 Part One,

referred to as ISO/IEC 9126-1, specifies six areas (quality characteristics) of importance

for software quality evaluation and provides, for each of these areas, specifications that at-

tempt to make them measurable (these characteristics are broken into sub-characteristics).

The six areas are: functionality, reliability, usability, efficiency, maintainability, and porta-

bility. The main limitation of this model is that it does not show clearly how these sub-

characteristics can be measured. However, it has the advantage of clearly identifying

internal attributes and external characteristics of systems.

Dromey’s Quality Model. In an attempt to build a model broad enough to work for

different kinds of systems, Dromey proposed a quality model recognizing that “a more

dynamic idea for modeling the process is needed to be wide enough to apply for different

systems” [Dromey, 1995 ; Dromey, 1996] because quality evaluation differs for each system.

In this model, Dromey focused on the relationship among quality attributes and their

sub-attributes and attempted to connect system properties with quality attributes. The

principal elements of Dromey’s model were:

• Product properties that influence quality.

• High-level quality attributes.

• Means of linking the system properties with the quality attributes.

Dromey’s quality model is built on a five-step process:

1. Choose a set of high-level quality attributes necessary for the evaluation.

2. List all the components/modules in the system.

3. Identify quality-carrying properties for the components/modules (properties of the

component that have the most impact on the software quality attributes from the

list created in the previous steps).
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4. Determine how each property affects the quality attributes.

5. Evaluate the model and identify its weaknesses.

Dromey’s Quality Model introduced eight high-level quality characteristics, the six

from ISO/IEC 9126-1 and reusability and process maturity [Vinayagasundaram and Sri-

vatsa, 2007]. The most important issue with this model is his primary focus on the software

system, specifically the code.

QMOOD Quality Model. In 2002, based on Dromey’s work [Dromey, 1995 ; Dromey,

1996], Bansiya and Davis [2002] introduced QMOOD, a hierarchical model for the as-

sessment of the quality of object-oriented systems. Their quality model consisted in six

equations that established relationships between six object-oriented design quality char-

acteristics (reusability, flexibility, understandability, functionality, extendibility, and effec-

tiveness) and 11 identified structural design properties of the object-oriented paradigm

among which: encapsulation, coupling, polymorphism, data abstraction, and hierarchies.

A set of object-oriented metrics was introduced to measure these design properties. This

model has been validated on large industrial systems: Microsoft Foundation classes (5

versions), Borland Object Windows Library (4 versions), and 14 versions of a medium-

size industrial system written in C++ and implementing an interpreter for a fictitious

language named “COOL”. A key characteristic of the QMOOD model was that “it could

be easily modified to include different relationships and weights”. The authors claimed

that it provided “a practical quality assessment tool adaptable to a variety of demands”.

QMOOD is the most used model and also the most referenced model in recent studies.

2.2 Studies on Design Patterns and Quality

Since their introduction by Gamma et al. [1994], there has been a growing interest in

the use of design patterns. Many pieces of work are related to design patterns, from

their definition [Kampffmeyer and Zschaler, 2007] to their identification [Guéhéneuc and

Antoniol, 2008]. We present here work on the impact of design motifs (i.e., concrete

solutions of design patterns) on object-oriented quality.

Bieman et al. [2001a ; 2003] examined common recommended programming styles,

including design patterns, on several different software systems and concluded that in

contrast with common lore, the use of design patterns could lead to more change-prone

classes rather than less change-prone classes during evolution. With McNatt, Bieman also
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performed a qualitative study of the coupling between motifs [2001] and claimed that, when

motifs were loosely composed and abstracted, maintainability, modularity, and reusability

were well supported by the motifs. However, they concluded on the need for further studies

to examine different motif compositions and their impact on quality.

Di Penta et al. [2008] studied the change-proneness of classes playing different roles

and the kinds of changes affecting these classes. Their results confirmed the expected,

theoretical impact of motifs. For example, they found that in Abstract Factory, classes

playing concrete roles changed more often than those playing abstract roles. They also

highlighted deviations from the intuition, in the case of Composite for example, in which

classes playing the role of Composite can be complex and undergo many changes. In their

other study [Aversano et al., 2007], they focused on resilience to change and concluded

that design motifs changed frequently and that the amount of co-change did not depend

on the motif, but on the roles played by the motif to support the systems features. They

also reported that design motifs were often changed either in their implementation or

by adding subclasses or changing method interfaces; which caused a higher co-change on

client classes.

Hannemann and Kiczales [2002] studied the use of aspect-oriented programming and

show that 17 of the 23 design patterns [Gamma et al., 1994] could benefit from their

“aspectisation” to overcome: the impact of motifs on systems and of systems on motifs;

the loss of motif modularity and of traceability; the invasiveness of motifs; the difficulty to

reason about classes involved in several motifs. They proposed AspectJ implementations

of the motifs that they claimed to “better align dependencies in the code with dependencies

in the solution structure”.

Lange and Nakamura [1995] demonstrated that design patterns could serve as a guide

in system exploration and thus make the process of system understanding more efficient.

Through motif-driven system exploration, they showed that if design motifs were recog-

nized at a certain point in the understanding process, they helped in “filling in the blanks”

and in further exploring a system, thus improving the understandability of the system.

However, this study was limited to the Observer, Composite, and Decorator patterns.

Masuda et al. [1999] studied the impact of applying design patterns in systems. They

implemented a set of systems with two releases for each: one release using design patterns,

the other not using design patterns. Using the C&K metrics, they showed that there is

no statistically significant impact of applying patterns and suggested that new, more

appropriate metrics should be devised for pattern-based systems.
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Ng et al. [2007] investigated whether design motifs deployed in software systems were

used or not by maintainers when doing the following tasks: T1 adding a new class as a

concrete participant, T2 modifying the existing interfaces of a participant, and T3 intro-

ducing a new client. Their study focused on perfective maintenance as they claimed that

it is the most common maintenance activity. They divided design motifs along three types

of programming elements: concrete participants, abstract participants, and clients. They

claimed that performing an anticipated change typically entails the completion of one or

more of the tasks T1, T2, and T3, respectively. Their experiment involved 215 subjects

who were asked to perform 6 anticipated changes in 3 systems with a total of 17.8 KLOC

and over 230 classes in 12 packages. The experiments involved six design patterns that

together cover creational, structural, and behavioral patterns. The results of these experi-

ments showed that almost all subjects performed T1, a majority of the subjects performed

T3, but, on average, only about half of the subjects performed T2. These results suggested

that the tasks differed in popularity when a maintainer completes an anticipated change.

The authors further found that the code implemented by the subjects who used the de-

ployed design motifs (by performing tasks T1, T2 and T3, respectively) were significantly

less faulty than the code done by subjects who did not used them. Suggesting a positive

impact of design patterns on fault-proneness.

Tatsubori et al. [1998] proposed one of the first attempt to integrate design motifs

directly in a programming language. They used the OpenJava meta-object protocol to

extend the Java programming language with a new syntax to express straight-forwardly

design motifs in source code without the complexity involved in giving all implementation

details. They illustrated their approach with the Adapter pattern and the Visitor pattern

written in OpenJava. They claimed that systems with comments are more understandable

than systems using design patterns and concluded that there is little evidence on a positive

impact of design patterns on quality.

Vokac [2004] analysed the corrective maintenance of a large commercial system. He

performed an automatic identification of design motifs on weekly snapshots of this system

over a period of three years and compared fault rates for classes playing roles in design

motifs with other classes. Classes in motifs were less fault-prone than others with differ-

ences in fault rates ranging from 63 percent to 154 percent on average. He also noticed

that the Observer and Singleton motifs are correlated with larger classes; classes playing

roles in Factory Method were more compact, less coupled, and less fault-prone than others

classes; and, no clear tendency existed for Template Method. His work provided the first

quantitative evidence of a relationship between design motifs and class fault-proneness.
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Wendorff [2001] evaluated the use of design motifs in a large commercial software sys-

tems. They discussed two categories of inappropriate implementations of design patterns.

In the first category, patterns were simply misused by developers who had not under-

stood their rationale. The second category contained patterns that do not fall into the

first category, but which do not match the project’s requirements. They analyzed this

second category and found the inappropriate implementations to be caused by: develop-

ers who overestimated the future volatility of requirements and opted for motifs to build

flexibility; changes in requirements over the lifetime of the system that caused motifs to

become obsolete; application of patterns without any regard for the quality goals of the

system (for example, a software developer wanted just to gain some experience with some

patterns); and the addition of useless features caused by a desire to embellish implemen-

tation of design patterns and make them look like those in the book. They concluded

that design patterns do not improve a system design necessarily, that a design could be

over-engineered [Kerievsky, 2004], and that the cost of removing patterns is high.

Wydaeghe et al. [1998] presented a study on the concrete use of six design patterns

when building an OMT editor. They discussed the impact of these patterns on reusability,

modularity, flexibility, and understandability. They also discussed the difficulty of the

concrete implementation of these patterns. They concluded that although design patterns

offer several advantages, not all patterns had a positive impact on quality attributes.

However, this study was limited to the authors’ own experience and thus their evaluation

of the impact of these patterns on quality could hardly be generalized to other contexts

of development.

2.3 Studies on Antipatterns and Quality

Brown [1998] described antipatterns as the result of developers not having sufficient knowl-

edge and–or experience in solving a particular problem or having misapplied some design

patterns. He suggested that antipatterns make maintenance harder, decreasing the quality

of systems. He did not provide any quantitative evidence to support his claim.

The first work to investigate quantitatively the relation between antipatterns and qual-

ity were [Ignatios et al., 2003 ; Ignatios et al., 2004], who performed controlled experiments

with 20 students on two systems to understand the impact of God Classes on the under-

standability and maintainability of systems. The results of their study suggested that God

Classes affect the evolution of design structures and considerably affects the subjects’ use

of inheritance. Du Bois et al. [2006], described later that the decomposition of these God
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Classes into a number of collaborating classes, using well-known refactorings, improved

the maintainers’ comprehension of these classes.

Wei and Raed [2007] investigated the relationship between the probability of a class

to be faulty and some antipatterns based on three versions of Eclipse and showed that

classes with the antipatterns God Class, Shotgun Surgery, and Long Method have a higher

probability to be faulty than other classes. They concluded on the need for broader studies

to validate their results.

Recently, Olbrich et al. [2009], analysed the historical data of Lucene and Xerces over

several years and concluded that God Classes and Shotgun Surgery have a higher change

frequency than other classes; with God Classes featuring more changes. They neither

performed an analysis to control the effect of the size on their results nor studied the

kinds of changes affecting these antipatterns. We address this limitation in Chapter 6.

2.4 Summary

This previous work raised the awareness of the software-engineering community about the

impact of design patterns and antipatterns on software quality. In this dissertation, we

build on this previous work and propose more detailed and extensive empirical studies of

the impact of design patterns, code smells, and antipatterns on code evolution phenomena.

Our aim is to analyse the impact of design patterns and antipatterns on quality and build

quality models that assess the quality of object-oriented systems by taking into account

both the internal attributes of the systems and these design styles. Although some work

have assessed some architectural characteristics of systems [Brito e Abreu and Melo, 1996 ;

Daly et al., 1996 ; Harrison et al., 1998 ; Wood et al., 1999], none has provided predictive

quality models taking into account the design of systems.

To date, no method exists to help build quality models taking into account the design

of systems. No quality models presented in the literature has assessed the design quality

of systems directly [Briand and Wüst, 2002]. These quality models all used class-based

metrics or metrics on pairs of classes. In this dissertation, we propose a method called

DEQUALITE, to build quality models that measure the quality of object-oriented systems

by taking into account both their internal attributes and their design.
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Pilot Studies

This chapter presents the results of three pilots studies performed during our investigation

of the relations between systems design and quality. These results are important to better

understand the choices made in this dissertation.

Eden et al. [2003] with their “Intension/Locality thesis” defined design specifications

as “local and intensional”, i.e., specifications which are abstract in the sense that they

can be formally characterised by the use of logic variable but are limited only to a part

of the system. Design concretely manifests itself in systems through design styles such as:

design patterns, code smells, and antipatterns. Code smells are generally considered more

low-level and symptomatic antipatterns. In fact, the presence of some specific code smells

can, in turn, manifest in antipatterns [Brown et al., 1998], of which code smells are parts

of.

Therefore, to achieve our goal of taking into account systems design in quality eval-

uations, we use design patterns, code smells, and antipatterns as baseline for design and

investigate the existence of relations between them and system quality. The pursuit of

this investigation led us to perform three pilot studies.

The first pilot study concerns the relation between design patterns and quality. We

surveyed software developers to assess their perceived impact of the 23 design patterns

from the catalog by Gamma et al. [1994] on the quality of systems. The result of this

study revealed a relation between design patterns and quality and also the need for more

extensive analysis of this relation. In Chapter 5, we perform experiments to further analyse

and quantify this relation.

In the second pilot study, we investigated the relation between code smells and classes

change proneness. The general perception on code smells is that they hinder the main-
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tenance and evolution of systems [Fowler, 1999]. Finding a relation between these code

smells and system quality would bring evidence to the possible existence of a relation

between antipatterns and quality. In this pilot study, instead of performing a survey, we

performed an experiment to assess their relation with classes change-proneness. The re-

sults of this study revealed a strong relation between code smells and change proneness

and laid the ground for the broader study on the relation between antipatterns and quality

presented in Chapter 6.

The third pilot study concerned the fault proneness of classes generally measured using

data obtained by merging information extracted from issues reporting systems, such as

Bugzilla, and versioning systems, such as Concurrent Version System (CVS). Most quality

modeling studies presented in the literature currently use this approach. For example,

Gyimóthy et al. [2005] report an empirical study in which CVS and Bugzilla data are used

to identify error-prone classes. However, many work have recently casted doubts about

the quality of data contained in these repositories [Ayari et al., 2007 ; Bird et al., 2009].

Some have pointed out the negative impact bias data may have on predictive activities,

eg., [Bird et al., 2009] found that although some approaches for building models in the

presence of bias do exist, bias in data significantly affects the performance of prediction

models. These concerns about the quality of data stored in issues reporting systems left us

with the following question: Do Issues Reporting Systems report faults? In our third pilot

study, we answered this question through the analysis of three issues reporting systems.

The remaining of this chapter summarizes the key results of our three pilot studies

and highlights our choices for next studies. We only present key results for the sake of

completeness and simplicity. Interested readers can find details in our referenced papers

[Khomh and Guéhéneuc, 2008a ; Antoniol et al., 2008 ; Khomh et al., 2009a].

3.1 Pilot Study 1: Do Design Patterns Impact Quality?

The intuition behind this pilot study is that design patterns have an impact on the quality

of systems. Our hypothesis follows common lore: H0: design patterns impact software

quality positively. Our goal is to quantify and qualify this impact to confirm or refute the

hypothesis.

Development and maintenance are manual activities performed by engineers. Thus,

engineers’ evaluation is important. In this study, we chose to survey developers to assess

their perceived impact of design patterns on the quality of their systems.
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3.1.1 Definition of the Questionnaire

Following previous work [Gamma et al., 1994 ; Bansiya and Davis, 2002 ; Guéhéneuc et

al., 2005], we chose the following set of quality attributes, based on their relevance to

design patterns:

• Attributes related to design:

− Expandability: The degree to which the design of a system can be extended.

− Simplicity: The degree to which the design of a system can be understood

easily.

− Reusability: The degree to which a piece of design can be reused in another

design.

• Attributes related to implementation:

− Learnability: The degree to which the code source of a system is easy to learn.

− Understandability: The degree to which the code source can be understood

easily.

− Modularity: The degree to which the implementation of the functions of a

system are independent from one another.

• Attributes related to runtime:

− Generality: The degree to which a system provides a wide range of functions

at runtime.

− Modularity at runtime: The degree to which the functions of a system are

independent from one another at runtime.

− Scalability: The degree to which the system can cope with large amount of

data and computation at runtime.

− Robustness: The degree to which a system continues to function properly

under abnormal conditions or circumstances.

Each quality attribute was evaluated by participants to the survey using a six-point

Likert scale:

A - Very positive.

B - Positive.

C - Not significant.

D - Negative.
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E - Very Negative.

F - Not applicable.

The sixth value allowed developers not to answer a question if they did not know or

were not sure about the impact of a design pattern on a quality attribute.

For every design pattern in [Gamma et al., 1994] and for every quality attribute from

our set, the developers were asked to assess the impact of the pattern on the quality of a

system in which the pattern would be used appropriately, as they would during a technical

review [Pressman, 2001] or possibly while performing a program comprehension-related

activity during maintenance and evolution. The questionnaire is available in [Khomh and

Guéhéneuc, 2008b] and online1.

3.1.2 Data Collection and Processing

We collected developers’ evaluations between January and April 2007 by posting our ques-

tionnaire on three mailing lists, refactoring, patterns-discussion, and gang-of-4-patterns.

Among the many answers that we received, we selected the questionnaires of 20 devel-

opers with a verifiable experience in the use of design patterns in software development

and maintenance. This number of collected evaluations is larger than in any previous

work.

A pre-analysis led us to realise that the differences between Positive and Very

Positive answers were due to some developers being less strict than others and, thus, their

Very Positive evaluations were not directly relevant. This fact has been confirmed in

discussions with the developers. For example, for Builder and expandability, we had 19%

of developers considering the pattern Very Positive while 63% considered it Positive

and 18% considered it Neutral. Therefore, we chose to aggregate answers A and B and

answers D and E: Positive = A and B, Neutral = C, and Negative = D and E.

Using the previous three-point Likert scale, we computed the frequencies of the answers

on each quality attribute: Positive, Neutral, and Negative and we carried out a Null

hypothesis test to assess the perceived impact of the patterns on the quality attributes.

Answers F were not considered because they represented situations where the developers

did not know or did not want to evaluate the impact of a pattern.

1http://khomh.net/experiments/thesis/
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Table 3.1 – Estimation of the impact of the three design patterns on
quality attributes.

Attributes
Composite A.Factory Flyweight
E R(%) E R(%) E R(%)

Expendability + 0.00 + 0.00 − 1.76

Simplicity + 5.92 + 30.36 − 0.00

Reusability + 15.09 + 50.00 − 15.09

Learnability + 1.76 − 15.09 − 0.00

Understandability + 5.92 − 15.09 − 0.00

Modularity + 5.92 + 0.37 − 5.92

Generality + 1.76 + 1.76 − 0.15

Mod. at Runtime + 30.36 − 30.36 − 0.15

Scalability − 30.36 − 1.76 + 1.76

Robustness − 0.15 − 0.00 − 1.76

8 + / 2 − 5 + / 5 − 1 + / 9 −

3.1.3 Analyses and Results

We now summarize the results obtained for three design patterns: Abstract Factory, Com-

posite, and Flyweight, and the three quality attributes mentioned by the GoF [Gamma et

al., 1994, page xiii]: reusability, expandability, and understandability.

We chose to present results for this three design patterns first because of their popularity—

they are among the most commonly used patterns—and second because they appear to

be globally considered as positive, neutral, and negative.

3.1.3.1 Quantitative Results

Using the results collected from the questionnaires, we carried out Null hypothesis tests

to quantify the impact of the design patterns on the quality attributes and then confirm

or refute the hypothesis H0.

The Null hypothesis test yields the results summarized in Tables 3.1, and 3.2. Full

results for all patterns from [Gamma et al., 1994] and details of the test can be found in

[Khomh and Guéhéneuc, 2008b]. In these tables, the sign + means that, with our Null

hypothesis test, the impact of the pattern on the quality attribute is positive else the sign

is − (it can be negative or neutral). The number next to a sign represents the risk of

making this decision. We computed this risk using the cumulative density of the Bernoulli

distribution.

We now present a brief qualitative discussion of the results.
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Table 3.2 – Estimation of the impact of design patterns on the three
quality attributes.

Design Patterns
Expendability(%) Understandability(%) Reusability(%)
E R(%) E R(%) E R(%)

A.Factory + 0.00 − 15.09 + 50.00
Builder + 0.15 + 0.37 − 15.09
F.Method + 1.76 − 30.36 + 15.09
Prototype + 30.36 + 30.36 + 30.36
Singleton − 0.15 + 0.15 − 0.37
Adapter + 30.36 − 30.36 + 5.92
Bridge + 0.37 + 50.00 − 30.36
Composite + 0.00 + 5.92 + 15.09
Decorator + 0.15 − 30.36 − 5.92
Facade + 30.36 + 1.76 − 5.92
Flyweight − 1.76 − 0.00 − 15.09
Proxy − 30.36 − 5.92 + 50.00
Ch.Of.Resp + 0.15 − 5.92 + 30.36
Command + 5.92 − 5.92 − 5.92
Interpreter + 5.92 + 5.92 + 30.36
Iterator + 0.15 + 50.00 + 5.92
Mediator + 30.36 + 30.36 − 1.76
Memento − 5.92 − 30.36 − 15.09
Observer + 0.15 − 30.36 + 50.00
State + 5.92 + 30.36 − 1.76
Strategy + 1.76 + 15.09 − 30.36
T.Method + 0.37 − 15.09 + 30.36
Visitor + 5.92 − 1.76 − 1.76

19 + / 4 − 11 + / 12 − 11 + / 12 −

Composite. By analysing Table 3.1, it appears that the Composite pattern is mostly

perceived as having a positive impact on the quality of systems. All quality attributes

are impacted positively but for scalability and robustness, which are considered neutral.

Given the purpose of the Composite pattern, having a neutral impact on scalability is

rather surprising.

Abstract Factory. Table 3.1 shows that half the quality attributes are considered as

positively impacted while the other half is not. It is not surprising that the pattern is

overall judged as neutral given its purpose and complexity. What is surprising, however,

is that learnability and understandability are felt negatively impacted.

Flyweight. Table 3.1 reports that this pattern is perceived as impacting negatively all

quality attributes but scalability. Given the purpose of the pattern, it is not surprising that
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its impact on scalability is judged positively. The negative perception could be explained

by the less frequent use of Flyweight in comparison with Composite and Abstract Factory.

Expandability. Table 3.2 presents the analysis of the developers’ evaluations of the

impact of the design patterns on expendability. All developers felt that expandability is

improved when using patterns, in conformance with previous claims [Gamma et al., 1994].

Reusability. Table 3.2 shows that reusability is felt as being slightly more negatively

impacted by design patterns, with 13 neutral or negative patterns and 10 positive patterns.

This result is rather surprising as the use of patterns is claimed to improve reusability

[Gamma et al., 1994].

Understandability. Table 3.2 presents the analysis of understandability. Similarly to

reusability, developers felt that understandability was rather slightly negatively impacted

by the use of patterns.

3.1.4 Summary

This pilot study revealed that design patterns are perceived by developers as having an

impact and that they do not always improve the quality of systems. Some patterns are

reported to decrease some quality attributes and to not necessarily promote reusability,

expandability, and understandability. This result confirms the intuition behind our work

that design patterns do impact the quality of systems. This pilot study also revealed the

need for more detailed studies to assess this impact of design patterns on the quality of

systems. In Chapter 5, we analyse and quantify the impact of some single and tangled

design patterns implementations on the internal characteristics of classes and evolution

phenomena (change- and fault-proneness).

3.2 Pilot Study 2: Do Code Smells Impact Change-proneness?

Code smells are “poor” solutions to recurring implementation problems, opposite to id-

ioms [Coplien, 1991] and, to some extent, to design patterns [Gamma et al., 1994], because

they pertain to implementation while design patterns pertain to design. In practice, code

smells are in-between design and implementation: they may concern the design of a class,

but they concretely manifest themselves in the source code as classes with specific imple-
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mentation. They are usually revealed through particular metric values [Marinescu, 2004].

At a higher level of abstraction, the presence of some specific code smells can reveal some

antipatterns [Brown et al., 1998], of which code smells are symptoms [Brown et al., 1998 ;

Fowler, 1999]. One example of a code smell is the ComplexClass smell, which occurs in

classes with a very high McCabe complexity when compared to other classes in a system.

As discussed in Chapter 2, despite the existence of many work on code smells and

antipatterns, the only work that attempted to study the relation between code smells and

fault-proneness was by Wei and Raed [2007]. No other previous work has contrasted the

change-proneness of classes with code smells with that of other classes to study empirically

the impact of code smells on this software evolution phenomena. In the following, we study

29 code smells [Brown et al., 1998 ; Fowler, 1999], shown in Table 3.3.

Table 3.3 – List of code smells considered in this study (definitions are
presented in Appendix B).

AbstractClass ChildClass
ClassGlobalVariable ClassOneMethod
ComplexClassOnly ControllerClass
DataClass FewMethods
FieldPrivate FieldPublic
FunctionClass HasChildren
LargeClass LargeClassOnly
LongMethod LongParameterListClass
LowCohesionOnly ManyAttributes
MessageChainsClass MethodNoParameter
MultipleInterface NoInheritance
NoPolymorphism NotAbstract
NotComplex OneChildClass
ParentClassProvidesProtected RareOverriding
TwoInheritance

3.2.1 Study Definition and Design

Context: We analyze the change history of two systems, Azureus and Eclipse, having

different sizes and belonging to different domains. Azureus2, now known as Vuze, is

an open source BitTorrent client written in Java. BitTorrent is a protocol that allows

to exchange files over the Internet. Eclipse3 is an open-source integrated development

environment used both in open-source communities and in industry. It is mostly written

in Java, with C/C++ code used mainly for widget toolkits. It is also developed partly by

a commercial company, IBM, and thus is more likely to embody industrial practices. It

2http://azureus.sourceforge.net/
3http://www.eclipse.org/
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Table 3.4 – Summary of the 9 releases of Azureus (changes are counted
from one release to the next, Azureus 4.2.0.2 is thus excluded).

D
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2008-06-16 3.1.0.0 589,049 2,954 669
2008-07-01 3.1.1.0 604,527 3,026 7,035
2008-10-15 4.0.0.0 690,116 3,045 383
2008-10-24 4.0.0.2 648,942 3,099 387
2008-11-20 4.0.0.4 651,642 3,111 1,589
2009-01-26 4.1.0.0 664,163 3,149 238
2009-02-05 4.1.0.2 664,554 3,149 478
2009-02-25 4.1.0.4 664,810 3,150 1,341
2009-03-23 4.2.0.0 680,238 3,210 106

Total 9 5,858,041 27,893 12,226

has been used by other researchers in related studies, eg., to predict faults [Zimmermann

et al., 2007].

We analysed 9 releases of Azureus, from release 3.1.0.0 to 4.2.0.0, in the years 2008-

2009. Characteristics of the analysed releases are shown in Table 3.4. We analysed 13

releases of Eclipse available on the Internet between 2001 and 2008. Table 3.5 summarises

the analysed releases and their key figures.

Research Questions: Based on the data collected from Azureus and Eclipse, our study

aimed at answering three research questions on the relationship between code smells and

classes change-proneness,

• RQ1: What is the relation between code smells and class change proneness? We

investigate whether classes with code smells are more change-prone than others by

testing the null hypothesis: H01: the proportion of classes undergoing at least one

change between two releases does not significantly differ between classes with code

smells and other classes.

• RQ2: What is the relation between the number of code smells in a class and its

change-proneness? We are also interested to evaluate whether classes with a higher

number of code smells are more change-prone than others by testing the null hy-

pothesis: H02: the number of code smells in change-prone classes is not significantly

higher than the number of code smells in classes that do not change.
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Table 3.5 – Summary of the 13 analysed releases of Eclipse (changes are
counted from one release to the next, Eclipse 3.4 is thus excluded).

D
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2001-11-07 1.0 781,480 4,647 21,553
2002-06-27 2.0 1,249,840 6,742 26,378
2003-06-27 2.1.1 1,797,917 8,730 10,397
2003-11-03 2.1.2 1,799,037 8,732 11,534
2004-03-10 2.1.3 1,799,702 8,736 15,560
2004-06-25 3.0 2,260,165 11,166 11,582
2004-09-16 3.0.1 2,268,058 11,192 24,150
2005-03-11 3.0.2 2,272,852 11,252 49,758
2006-06-29 3.2 3,271,516 15,153 2,745
2006-09-21 3.2.1 3,284,732 15,176 11,854
2007-02-12 3.2.2 3,286,300 15,184 10,682
2007-06-25 3.3 3,752,212 17,162 7,386
2007-09-21 3.3.1 3,756,164 17,167 40,314

Total 13 31,579,975 151,039 243,903

• RQ3: What is the relation between particular kinds of code smells and change prone-

ness? Also, we analyse whether particular kinds of code smells contribute more than

others to changes by testing the null hypothesis: H03: classes with particular kinds

of code smells are not significantly more change-prone than other classes.

Variable Selection: We relate the following dependent and independent variables to

test the previous null hypotheses and, thus, answer the associated research questions.

• Independent variables: We have as many independent variables as kinds of code

smells; we investigate the presence of 29 different kinds of code smells. Each variable

si,j,k indicates the number of times a class i has a smell j in a release rk. For RQ1,

we aggregate these variables into a Boolean variable Si,k indicating whether a class i

has at least one smell of any kind. For RQ2, we consider the number of changes ci,k

a class i to underwent between rk and rk+1, and convert ci,k into a Boolean variable

Ci,k (true if the class underwent at least one change, false otherwise).

• Dependent variables: The dependent variables measure the phenomena related to our

independent variables. Our dependent variable for RQ1 and RQ3 is the class change

proneness, which is measured, as the number of changes ci,k that a class i underwent

between release rk (in which it has some code smells) and the subsequent release

rk+1. For RQ1 and RQ3, we are interested to distinguish classes that underwent,
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between two releases, at least one change. In RQ2, we compare the number of

code smells in change-prone classes with that in non-change-prone classes, using as

dependent variable the total number of code smells sti,k a class i has in a release rk.

Analysis Method:

• In RQ1, to attempt rejecting H01, we test whether the proportion of classes exhibit-

ing (or not) at least one change, significantly varies between classes with (some)

code smells and other classes. We use Fisher’s exact test presented in Chapter 4 and

compute odds ratio (OR).

• In RQ2, we use the (non parametric) Wilcoxon test (see Chapter 4) to compare the

number of code smells in change-prone classes with the number of code smells in

non-change-prone classes. We also test the hypothesis with the (parametric) t-test.

Other than testing the hypothesis, it is of practical interest to estimate the magnitude

of the difference of the number of code smells in classes with and without changes:

we use the Cohen d effect size (see [Sheskin, 2007] and Chapter 4) to estimate this

magnitude.

• In RQ3, we use a logistic regression model (see [Hosmer and Lemeshow, 2000] and

Chapter 4) to relate change-proneness with the presence of particular kinds of code

smells. While in other contexts (eg., [Gyimóthy et al., 2005]), logistic regression mod-

els were used for prediction purposes; as in [Vokac, 2004], we use logistic regression

to reject H03. Then, for each smell and for the 9 analysed Azureus releases and for

the 13 Eclipse releases, we count the number of times that the p-values obtained by

the logistic regression are significant. During the procedure for building the logistic

regression model, we discard variables that are highly correlated to others—that can

happen between some code smells—thus the model only contains a non-redundant

set of code smells useful to warn against classes change-proneness.

3.2.2 Study Results

We now report the results of our study to address the three research questions.

3.2.2.1 RQ1: Smells and Change Proneness

Tables 3.6 and 3.7 report, for each analysed release of Azureus and Eclipse, the number

of classes (1) with code smells and that changed; (2) with code smells but that did not
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Table 3.6 – Azureus: contingency table and Fisher test results for classes
with at least one smell that underwent at least one change.
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p-values OR
3.1.0.0 220 1967 20 1433 < 0.01 8.01
3.1.1.0 564 1686 101 1381 < 0.01 4.57
4.0.0.0 83 2238 7 1519 < 0.01 8.05
4.0.0.2 106 2206 12 1510 < 0.01 6.04
4.0.0.4 435 1886 39 1484 < 0.01 8.77
4.1.0.0 50 2297 11 1533 < 0.01 3.03
4.1.0.2 112 2235 11 1533 < 0.01 6.98
4.1.0.4 112 2236 12 1532 < 0.01 6.39
4.2.0.0 37 2353 3 1580 < 0.01 8.28

change; (3) without code smells but with changes; and, (4) with neither code smells nor

changes. The tables also report the result of Fisher’s exact test and ORs when testing

H01.

Results for Azureus in Table 3.6 show that the proportions are significantly different,

therefore, we reject H01. Moreover, ORs are very high (always greater than 3); in most

cases the odds for classes with code smells to change is six times higher or more than

for classes without code smells. H01 rejection and the ORs provide a posteriori concrete

evidence of the negative impact of code smells on change-proneness. Developers should be

wary of classes with code smells, because they are more likely to be the subject of their

maintenance effort. Although changes are not necessary bad, too frequent changes are

costly.

For Eclipse, except for the 3.0 release series, proportions are significantly different,

thus allowing to reject H01. There is a greater proportion of classes with code smells that

change with respect to other classes. In some cases (eg., releases 1.0, 2.0, 2.1.2, 2.1.3, and

the 3.0 release series), ORs are close to 1, i.e., the odds is even that a class with a code

smell changes or not. In the other releases, the odds of changing are 2 to 3.6 times in

favour of classes with code smells.

We conclude that the odds to change are in general higher for classes with code smells.

Code smells classes are therefore likely to be more change-prone and therefore less main-

tainable.
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Table 3.7 – Eclipse: contingency table and Fisher test results for classes
with at least one smell that underwent at least one change.
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p-values OR
1.0 2042 1731 417 448 < 0.01 1.27
2.0 3673 1373 767 236 0.02 0.82
2.1.1 2224 3838 193 964 < 0.01 2.89
2.1.2 2400 3664 359 798 < 0.01 1.46
2.1.3 2942 3125 516 642 0.01 1.17
3.0 3415 4880 684 1032 0.32 1.06
3.0.1 6216 2087 1294 423 0.69 0.97
3.0.2 5784 2520 1194 524 0.91 1.01
3.2 1819 9621 115 2210 < 0.01 3.63
3.2.1 2778 8680 291 2038 < 0.01 2.24
3.2.2 3321 8144 409 1921 < 0.01 1.92
3.3 1778 10844 145 2364 < 0.01 2.67
3.3.1 4337 8290 682 1830 < 0.01 1.40

3.2.2.2 RQ2: Number of Smells and Change Proneness

Tables 3.8 and 3.9 report, for Azureus and Eclipse respectively, results of the Wilcoxon

two-tailed test, t-test, and Cohen d effect size, aimed at comparing the number of code

smells in classes that changed or not. For Azureus, the p-values are always significant with

a high effect size, indicating that; for all analysed releases, change-prone classes are those

with a higher number of code smells. For Eclipse, results are significant (although with

a small effect size), except for the 3.0 release series, where differences are not significant,

thus confirming the findings from RQ1 regarding the limited relation of code smells with

change-proneness for this release series. In summary we can reject H02 , i.e., classes with

a higher number of code smells are more change-prone than others.

3.2.2.3 RQ3: Kinds of Smells and Change Proneness

Tables 3.10 and 3.11 show the results of the logistic regression for the correlations between

changes and the different kinds of code smells. The tables summarise the number of

analysed releases in which each kind of code smells was significant in the logistic regression

model. Code smells that are significant for at least 75% of the releases (7 for Azureus,

10 for Eclipse) are highlighted in boldface. In Azureus, only the code smell NotAbstract
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Table 3.8 – Azureus: Wilcoxon and t-test results for number of code
smells in classes that are change-prone or not.

Releases Wilcoxon t-test Cohen
p p d

3.1.0.0 < 0.01 < 0.01 0.72
3.1.1.0 < 0.01 < 0.01 0.71
4.0.0.0 < 0.01 < 0.01 1.01
4.0.0.2 < 0.01 < 0.01 0.86
4.0.0.4 < 0.01 < 0.01 0.83
4.1.0.0 < 0.01 < 0.01 0.59
4.1.0.2 < 0.01 < 0.01 0.93
4.1.0.4 < 0.01 < 0.01 0.85
4.2.0.0 < 0.01 < 0.01 1.02

Table 3.9 – Eclipse: Wilcoxon and t-test results for number of code
smells in classes that are change-prone or not.

Releases Wilcoxon t-test Cohen
p p d

1.0 0.79 0.03 0.06
2.0 < 0.01 < 0.01 −0.08
2.1.1 < 0.01 < 0.01 0.31
2.1.2 < 0.01 < 0.01 0.13
2.1.3 0.04 < 0.01 0.07
3.0 0.07 0.10 0.03
3.0.1 0.11 0.26 −0.03
3.0.2 0.12 0.28 −0.02
3.2 < 0.01 < 0.01 0.41
3.2.1 < 0.01 < 0.01 0.29
3.2.2 < 0.01 < 0.01 0.25
3.3 < 0.01 < 0.01 0.41
3.3.1 < 0.01 < 0.01 0.18

has a significant impact on change proneness in more than 75% of releases. AbstractClass

and LargeClass are significant in more than 50% of the releases (5 out of 9). In Eclipse,

the code smells that have a significant effect on change-proneness for 75% of the releases

or more are HasChildren, MessageChainsClass, and NotComplex. In summary, although

results sometimes depend on the particular context—eg., system analysed and particular

release—we can reject H03, i.e., there are code smells that are more related than others

to change-proneness.

3.2.3 Summary

In this section, we reported an exploratory study, performed on 9 releases of Azureus

and 13 releases of Eclipse, which provides empirical evidence of the negative impact of
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Table 3.10 – Azureus: number of significant p-values in the 9 anal-
ysed releases obtained by logistic regression for the correlations between
change-proneness and kinds of code smells. Boldface and gray back-
ground indicate significant p-values for at least 75% of the releases.

Smells Proneness to
Changes

AbstractClass 5
ChildClass 3
ClassGlobalVariable 2
ClassOneMethod 1
ComplexClassOnly 2
ControllerClass 2
DataClass 4
FewMethods 2
FieldPrivate 1
FieldPublic 2
FunctionClass 2
HasChildren 1
LargeClass 5
LargeClassOnly –
LongMethod –
LongParameterListClass 1
LowCohesionOnly 2
ManyAttributes –
MessageChainsClass 4
MethodNoParameter 2
MultipleInterface 4
NoInheritance 3
NoPolymorphism 3
NotAbstract 7
NotComplex 2
OneChildClass 1
ParentClassProvidesProtected –
RareOverriding 1
TwoInheritance –

code smells on classes change-proneness. We showed that classes with code smells are

significantly more likely to be subject to changes than other classes. We also showed that

some specific code smells are more likely to be of concern during evolution. Building on

these results, we perform and report in Chapter 6 a larger study on antipatterns and

classes change- and fault- proneness.

3.3 Pilot Study 3: Do Issues Reporting Systems Report

Faults?

Issues Reporting Systems (IRS) are valuable assets for managing maintenance activities.

They are widely used in open-source projects as well as in the software industry. Al-

though they should be used mostly to manage issues related to corrective maintenance,



3.3. Pilot Study 3: Do Issues Reporting Systems Report Faults? 37

Table 3.11 – Eclipse: number of significant p-values in the 13 anal-
ysed releases obtained by logistic regression for the correlations between
change-proneness and kinds of code smells. Boldface and gray back-
ground indicate significant p-values for at least 75% of the releases.

Smells Proneness to
Changes

AbstractClass 1
ChildClass 6
ClassGlobalVariable 2
ClassOneMethod 4
ComplexClassOnly 8
ControllerClass 4
DataClass 4
FewMethods 2
FieldPrivate 6
FieldPublic 8
FunctionClass 1
HasChildren 11
LargeClass 8
LargeClassOnly –
LongMethod 9
LongParameterListClass 6
LowCohesionOnly 5
ManyAttributes 9
MessageChainsClass 10
MethodNoParameter 8
MultipleInterface 5
NoInheritance –
NoPolymorphism 3
NotAbstract 1
NotComplex 10
OneChildClass 2
ParentClassProvidesProtected –
RareOverriding 4
TwoInheritance –

they happen to collect many other kinds of issues: requests for enhancements, refactor-

ing/restructuring activities, and organizational issues. These different kinds of issues are

simply labeled as “bug” for lack of a better classification or of knowledge about the possible

kinds.

In this pilot study, we analysed data contained in IRS of three open source systems,

Eclipse, JBoss, and Mozilla, to understand to which extent these data are related to

corrective maintenance issues.
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3.3.1 Study Definition and Design

Context: The context of this study consists in the IRS of the three well-known, industrial-

strength, open-source systems4.

Eclipse is an open-source integrated development environment (see Section 3.2.1 for

a description). We mirrored locally the CVS and bug repositories of Eclipse at the end

of 2006 and extracted all the bugs. Then, we selected 10,386 bugs which were tagged as

either “Verified” or “Resolved”, i.e., bugs for which a resolution is known.

The Mozilla suite is an open-source suite implementing a Web browser and other tools,

such as a mailer and a newsreader. It was ported on almost all software and hardware

platforms. It is developed mostly in C++, with C code accounting for only a small

fraction of the system. As for Eclipse, we are interested in the 92,858 bugs that are tagged

as “Verified” or “Resolved”.

JBoss is an enterprise-application platform and Web-service application stack to de-

velop, deploy, and manage Java service-oriented enterprise applications. It is almost en-

tirely developed in Java and XML plus shell scripts and batch files. As for Mozilla and

Eclipse, we concentrated our effort on bugs for which a resolution was known. JBoss bugs

are store in Jira. We use a RSS feeder to extract the 3,207 issues classified as “Resolved”.

In this study, we chose to select issues with the “Resolved” or “Closed” status to avoid

duplicated bugs, rejected issues, or issues awaiting triage.

Research Questions: Our study aims at answering the following research question:

• RQ1: To what extent the information contained in issues posted on IRS is related

to faults?

Analysis Method: We proceed in two steps to answer RQ1:

1. We validate manually 1,800 randomly-selected issues from the three IRSs and com-

pute the proportion of fault-related issues.

2. We use the 1,800 manually validated issues as oracle and build classifiers. With these

classifiers, we automatically classify the remaining issues and estimate the overall

proportion of fault-related issues.

4http://www.eclipse.org/,
http://www.mozilla.org/, and
http://www.jboss.org/
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Classification: The magnitude of the numbers of issues in these systems makes it clearly

infeasible to manually classify each of these issues as either corrective maintenance (faults)

or not. Therefore, instead of manually validating all the issues in the three IRS, we

randomly sampled and manually classified 600 issues for each system. Overall, we classified

1,800 distinct issues.

We organised the issues in bundles of 150 entries each. For every subset, we asked

three developers to classify the issues manually. They were asked to state if the issues

were a corrective maintenance (hereby referred to as “fault”) or a non-corrective main-

tenance (enhancement, refactoring, re-documentation, or other, i.e., “non-fault”). The

classifications went through a simple majority vote. An issue was considered a corrective

maintenance if at least two out of the three developers classified it as a corrective mainte-

nance (i.e., “fault”). Otherwise the issue was considered as a non-corrective maintenance

(i.e., “non-fault”).

We used these manually classified issues as oracle. We processed them to extract

their characteristics that were used as independent variables in our various supervised

techniques.

Specifically, we mapped each IRS issue into a vector of raw frequencies of terms ap-

pearing in the issue’s description; example of terms are: “failure”, “crash”, or “should”.

Next, we augmented each issue from the oracle with its class {0, 1}, i.e., {non fault,

fault}. This column was used by the machine learning techniques during the training

phase.

Finally, we performed the automatic classification of IRS issues using theWeka tool5, in

particular we used the symmetrical uncertainty attribute selector, the standard probabilis-

tic naive Bayes classifier, the alternating decision tree (ADTree), and the linear logistic

regression classifier. Our choice was motivated by the observation that these machine

learning techniques produce classifiers more easily interpretable. We present and discuss

these techniques in Chapter 4.

3.3.2 Study Results

Table 3.12 reports the results of the manual classification. The last column of the table

reports issues that have nothing to do with fault fixing or evolution: eg., user complains

of an incompatibility with a version of an operating system library, requests of an obsolete

5www.cs.waikato.ac.nz/ml/weka/
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Table 3.12 – Manual classification of the 1,800 IRS issues for Mozilla,
Eclipse and JBoss.

Systems Faults Non Faults Others

Mozilla 270 209 121
Eclipse 194 382 24
JBoss 345 99 156

release, requests of fault fixing of a component not belonging to the system, requests for

write access to SVN/CVS repository, configuration help, and so on.

The results suggest that Eclipse, JBoss, and Mozilla IRS contain a large fraction of

non-fault issues; only 44.9% of the 1,800 issues are faults.

We also found that the information contained in issues posted on IRS can be indeed

used to automatically classify such issues, distinguishing faults from other activities, with

a precision between 64% and 98% and a recall between 33% and 97% and a correct decision

rate as high as 82%.

The automatic classification of the remaining issues confirmed that less than half are

relate to corrective maintenance, i.e., faults.

3.3.3 Summary

This study shows that IRS, in open-source development, have a far more complex use

than simple bookkeeping of corrective maintenance and studies based on IRS issues should

carefully consider which issues are used to build their predictive models. Out of our 1,800

manually-classified issues, we found only 44.9% to be related to faults. Globally, less than

half of the issues posted on IRS are faults. For our experiments in the Chapter 6 of this

dissertation, we will rely as much as possible on manually-validated data. We will use a

set of manually-validated and publicly-available faults for Mylyn and Rhino [Eaddy et al.,

2008]. This choice reduces biases found in previous models from the literature (see [Bird

et al., 2009]).

3.4 Conclusion

This chapter presented the results of three preliminary studies on design patterns, code

smells, and quality of data. In the first study, we surveyed developers to assess their

perception of the impact of the 23 design patterns from [Gamma et al., 1994] on ten quality
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attributes. Contrary to common lore, the results suggested that although design patterns

impact the quality of systems, they do not always improve this quality. Some patterns

are considered by developers to decrease certain quality attributes and to not necessarily

promote reusability, expandability, and understandability as claimed in [Gamma et al.,

1994]. Building on these results, we perform and report in Chapter 5 a detail analysis of

design patterns implementations and their impact on the quality of systems.

The second study concerned the change proneness of code smells. We studied 9 releases

of Azureus and 13 releases of Eclipse and found that classes with smells are significantly

more likely to be subject to changes than other classes; with specific code smells like

MessageChainClass, NotAbstract, and HasChildren more likely to be of concern during

evolution. This result provides empirical evidence of the negative impact of code smells

on classes change-proneness. In Chapter 6, we extend this study and report a larger study

on antipatterns and classes change- and fault- proneness.

The third study investigated data contained in the IRS of three open source systems,

Eclipse, JBoss, and Mozilla to understand the extend to which these data are related to

corrective maintenance issues. From these IRS, we manually-classified 1,800 randomly-

selected issues and automatically classified the others. We found less than half of these

issues to be related to corrective maintenance. Consequently, we chose to use a set of

manually-validated and publicly-available faults for Mylyn and Rhino [Eaddy et al., 2008]

for the experiments reported in this dissertation.



Chapter 4

Experimental Settings

This chapter presents the techniques and tools used in the following experiments. First, we

present a brief review of the literature on design patterns and antipatterns identification

techniques followed by a description of the tools used in this dissertation. We also describe

the variables and the statistical methods used in our experiments.

4.1 Design Motif Identification

This section introduces and discusses the techniques and tools used to identify classes

playing roles in design motifs (a design motif is a concrete solution of a design patterns

[Guéhéneuc and Antoniol, 2008]), historically called design motif identification techniques.

The first tool to identify design motifs in systems was proposed by Brown [1996]. He

reverse-engineered Smalltalk code to identify the Composite, Decorator, Template Method,

and Chain of Responsibility design motifs from the catalog [Gamma et al., 1994]. He

introduced KT, a design motif identification tool based on information retrieved from class

hierarchies; association and aggregation relationships, as well as the messages exchanged

between classes of a system.

Following Brown’s work, Krämer and Prechelt [1996] introduced the Pat system to

identify occurrences of design motifs in C++ source code. In their work, design motifs from

a library are expressed as Prolog predicates and systems (extracted from C++ headers)

as Prolog facts. They reported a precision of 40% on four C++ systems and five design

motifs.
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Shull et al. [1996] introduced the first attempt to identify recurring design motifs in

a system without resorting to a pre-defined library of motifs. They proposed a manual

method, BACKDOOR (Backwards Architecting Concerned with Knowledge Discovery of

Object Oriented Relationships), to infer systematically occurrences of motifs in a system.

They illustrated their method on seven student systems. Tonella and Antoniol [1999] used

concept analysis to also identify occurrences of recurring motifs without a pre-defined

library. They were able to retrieve many occurrences of the Adapter design motif.

Other techniques introduced for design motif identification include the framework

SOUL for Smalltalk [Wuyts, 1998]. This framework allows a direct representation of

the abstract syntax tree of the Smalltalk source code as logic facts. Using these facts,

it is possible to build a repository of predicates to identify classes whose structures and

organizations correspond to design motifs.

Antoniol et al. [1998 ; 2001] presented a systematic approach to recover design mo-

tifs from design and code. Their approach is based on a multi-stage reduction strategy

performed using metrics and meant to avoid combinatorial explosion on large systems. It

maps code and design into an intermediate representation, called Abstract Object Lan-

guage (AOL), and represents a motif as a tuple of classes and relations among classes. It

uses metrics and methods calls to determine motifs constituent’s candidate sets.

Seeman and von Gudenberg [1998] proposed an approach to identify occurrences of de-

sign motifs using data collected from a compiler, including inheritance hierarchies, method

invocations, class names, and method names. These data are used to abstract the system

as a graph. From this graph, binary classes relationships are inferred to build a new graph

in which design motifs are inferred based on a library of pre-defined motifs using first

order logic. Philippow et al. [2005] proposed an identification algorithm for occurrences

of design motifs based on tailored heuristics. Their heuristics used negative data about

the relationships and characteristics of classes playing roles in design motifs to improve

precision. They provided the complexity of their algorithms on many design motifs and

concluded on the need for user interaction during their identification process.

Niere et al. [2001 ; 2002] proposed the use of fuzzy set theory to handle variant

implementations of design motifs when searching for their occurrences. They described

an approach for the identification of occurrences of design motifs in systems handling

complete and incomplete occurrences. In their work, they divided motifs into sub-motifs,

for example association. They implemented their approach in Fujaba.

Keller et al. [1999] proposed the SPOOL environment for the recovery of components

and design rationale in software systems. At the heart of the SPOOL environment is
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a UML meta-model to describe various models of a system. These models are reverse-

engineered from C++, Java, or Smalltalk source code through a UML/CDIF parser. With

their environment, motif identification can be manual, semi-automatic, or full-automatic,

based on stored abstract models of design motifs. SPOOL also includes various visual-

isation techniques. A validation was performed on two industrial systems and ET++

using the Template Method, Factory Method, and Bridge design motifs. Only numbers of

occurrences are reported.

Tsantalis et al. [2006] implements an approach based on similarity scoring between

graph vertices to identify design motifs in systems. The tool takes as inputs both the

system and the motif graph and computes similarity scores between their vertices. Due

to the nature of its underlying graph algorithm, this approach is able to recognize not

only the motifs described in [Gamma et al., 1994] but also variants. The approach uses

an implicit notion of main roles (roles with the most unique characteristics) and do not

consider roles played by artifacts other than classes or interfaces (for example methods).

Therefore, the approach fails to distinguish between motifs like Adapter and Command

because the distinction between them would require data on their methods. The tool

analyses Java bytecode and identifies the two main participants of each motif. The tool

is able to detect the following motifs: Object Adapter/Command, Composite, Decorator,

Factory Method, Observer, Prototype, Singleton, State/Strategy, Template Method, and

Visitor. In it detection results, it reports the main participants of classes belonging to

a motif and their descendants. A validation of the tool on three open-source systems

(JHotDraw, JRefactory, and JUnit) reported few false negatives and no false positives.

Kaczor et al. [2009] proposed a design motifs identification algorithm based on bit-

vectors. Design motifs and systems are converted into sequences of characters by con-

verting their graphs into Eulerian graph and traversing these graphs using the Chinese

postman algorithm. They illustrated their algorithm using the Composite design motifs

and reported 100% recall on three systems.

Some design motifs identification approaches use dynamic analysis. In this category,

Ng et al. [2009] proposed to identify occurrences of behavioural and creational design

motifs using dynamic analysis. They described both motifs and systems in the form of

scenario diagrams (subsets of sequence diagrams) and used explanation-based constraint

programming to identify complete and incomplete occurrences. They reported results

for Memento and Visitor motifs in JHotDraw that showed good precision, recall, and

performance.
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In this dissertation, we use the PTIDEJ framework (Pattern Trace Identification, De-

tection, and Enhancement in Java) by Guéhéneuc [2005 ; 2009]. The PTIDEJ framework

implements the DeMIMA detection approach by Guéhéneuc and Antoniol [2008] and the

approaches by Kaczor et al. [2009] and Ng et al. [2009] presented above. Combining

these approaches, PTIDEJ is able to detect 13 design motifs, namely: Abstract Factory,

Adapter, Command, Composite, Decorator, Factory Method, Observer, Prototype, Sin-

gleton, State, Strategy, Template Method, and Visitor.

DeMIMA [Guéhéneuc and Antoniol, 2008], a multilayered approach for design motif

identification, consists of three layers. The first two layers are for the recovery of an

abstract model of the source code, including binary class relationships. A third layer is

intended for the identification of design motifs in the abstract model. The approach uses

explanation-based constraint programming to automatically provide (1) explanations on

the identified occurrences: the roles and relationships that led to identify a certain micro-

architecture as an occurrence of a motif and (2) approximations from the given motifs:

the relaxations of the constraints needed for a micro-architecture to be identified as an

approximated occurrence of a motif. It provides a complete mapping between roles in a

motif and classes in an occurrence. Thus, with this approach, it is possible to find all the

roles that each class plays for a set of motifs in a system. DeMIMA ensures a recall of

100% by automatically relaxing appropriate constraints and precision is between 34% and

80% on average [Guéhéneuc and Antoniol, 2008].

4.2 Antipatterns Detection

Webster [1995] wrote the first book on “antipatterns” in object-oriented development; his

contribution covers conceptual, political, coding, and quality-assurance problems. Riel

[1996] defined 61 heuristics characterising good object-oriented programming to assess

software quality manually and improve design and implementation. Fowler [1999] defined

22 code smells, suggesting where developers should apply refactorings. Mäntylä [2003]

and Wake [2003] proposed classifications of code smells. Brown et al. [1998] described

40 antipatterns, including the well-known Blob. These books provide in-depth views on

heuristics, code smells, and antipatterns aimed at a wide academic and industrial audience.

Several approaches to specify and identify occurrences of code smells and antipatterns

have been proposed in the literature. They range from manual approaches, based on

inspection techniques [Travassos et al., 1999], to metric-based heuristics [Marinescu, 2004 ;

Munro, 2005 ; Moha et al., 2009], where antipatterns are identified according to sets of rules



4.2. Antipatterns Detection 46

and thresholds defined on various metrics. Manual approaches were defined, for example,

by Travassos et al. [1999], who introduced manual inspections and reading techniques to

identify code smells.

Marinescu [2004] presented a metric-based approach to identify code smells with de-

tection strategies, which captures deviations from good design principles and consists of

combining metrics with set operators and comparing their values against absolute and rel-

ative thresholds. Similarly to Marinescu, Munro [2005] proposed metric-based heuristics

to identify code smells; the heuristics are derived from a template similar to the one used

for design motifs. He also performed an empirical study to justify the choice of metrics

and thresholds for detecting code smells.

Rao and Reddy [2008] proposed the use of design change propagation probability

matrix to detect two bad smells: Shotgun Surgery and Divergent Change. In their identi-

fication process, they quantified and used design change propagation between classes that

are connected directly and indirectly. They claimed that this quantification was essential

for an effective detection of the smells. They applied their method on three small size

systems and suggested, for the two studied smells, refactorings to improve the quality of

designs. They introduced a framework implementing the approach.

Some visualisation techniques, for example [Simon et al., 2001], were used to find

a compromise between fully-automatic identification techniques, which are efficient but

lose track of the context, and manual inspections, which are slow and subjective. Other

approaches perform fully-automatic identification and use visualisation to present the

identification results [van Emden and Moonen, 2002 ; Lanza and Marinescu, 2006].

In this dissertation, we use our approach, BDTEX [Khomh et al., 2009b], and DECOR

(Defect dEtection for CORrection) by Moha et al. [2009], to specify and identify antipat-

terns and code smells. DECOR is a detection approach based on a thorough domain

analysis of code smells and antipatterns in the literature; analysis on which is based a

domain-specific language. DECOR also proposes algorithms and a platform to automat-

ically convert rule cards into detection algorithms [Moha et al., 2009]. DECOR can be

applied on any object-oriented system because it is based on PADL and POM, described

in details in Section 4.3.

Moha et al. [2009] reported that DECOR current detection algorithms for antipatterns

ensure 100% recall and have precisions between 41.1% and 87% for three antipatterns:

Blob, SpaghettiCode, and SwissArmyKnife. The detection algorithms for these three

antipatterns have an average accuracy of 99% for the Blob, of 89% for the SpaghettiCode,

and of 95% for the SwissArmyKnife; and a total average of 94%.
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DECOR is able to detect the following antipatterns from [Brown et al., 1998 ; Fowler,

1999]: AntiSingleton, Blob, ClassDataShouldBePrivate (CDSBP), ComplexClass, Large-

Class, LazyClass, LongMethod, LongParameterList (LPL), MessageChains, RefusedParent-

Bequest (RPB), SpaghettiCode, SpeculativeGenerality (SG), SwissArmyKnife. These an-

tipatterns are representative of design and implementation problems with data, complexity,

size, and the features provided by a class.

In addition to antipatterns detection algorithms, DECOR also provides code smells de-

tection algorithms (antipatterns are defined in terms of code smells; however, some code

smells are also considered antipatterns) with a higher precision (80% on average) for the

following code smells: AbstractClass, ChildClass, ClassGlobalVariable, ClassOneMethod,

ComplexClassOnly, ControllerClass, DataClass, FewMethods, FieldPrivate, FieldPublic,

FunctionClass, HasChildren, LargeClass, LargeClassOnly, LongMethod, LongParameter-

ListClass, LowCohesionOnly, ManyAttributes, MessageChainsClass, MethodNoParame-

ter, MultipleInterface, NoInheritance, NoPolymorphism, NotAbstract, NotComplex, One-

ChildClass, ParentClassProvidesProtected, RareOverriding, TwoInheritance.

However, threshold-based detection techniques such as DECOR do not handle the

uncertainty of the detection results [Dhambri et al., 2008 ; Oliveto et al., 2010] and, there-

fore, miss borderline classes, i.e., classes with characteristics of antipatterns “surfacing”

slightly above or “sinking” slightly below the thresholds because of minor variations in

the characteristics of these classes. In a previous work [Khomh et al., 2009b], we proposed

BDTEX, an antipattern identification approach using BBNs to address this issue. BD-

TEX is a GQM-based approach to build Bayesian Beliefs Networks from the definitions of

antipatterns. The symptoms specifying antipatterns are selected by a quality analyst, thus

ensuring that the BBN is qualitatively sound. The output of the BBN is the probability

that a class exhibiting the symptoms of an antipattern is really such an antipattern. These

BBNs work with missing data and can be tuned using quality analysts’ knowledge. In ad-

dition, with BDTEX, candidate classes, i.e., potential antipatterns, are associated with

probabilities, which indicate the degree of uncertainty that a class is indeed an occurrence

of some antipattern. These probabilities can help focus manual inspection by ranking

candidate classes. BDTEX is able to detect the same antipatterns and code smells as

DECOR with results globally superior in terms of precision, recall, and quality analysts’

utility (eg., on the Blob, BDTEX achieves 57.1% average precision on GanttProject, while

DECOR reports 26.73%).

The definition of code smells and the antipatterns studied in this dissertation and

discussed in this section are presented in Appendix B.
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4.3 Metrics Computation

This section presents POM, the tool we used to compute metrics. POM is a framework that

offers more than 60 different metrics from the literature, including class-method import and

export coupling [Briand et al., 1997]; Coupling Between Objects (CBO), and Weighted

Method Count (WMC) [Chidamber and Kemerer, 1993]; Lack of Cohesion in Methods

(LCOM5) [Henderson-Sellers, 1995]; ‘C’ connectivity of a class [Hitz and Montazeri, 1995];

numbers of new, inherited, and overridden methods and total number of methods [Lorenz

and Kidd, 1994]; Cyclomatic Complexity Metric (CC) [McCabe and Butler, 1989]; numbers

of hierarchical levels below a class and class-to-leaf depth [Tegarden et al., 1995]. The

definitions of all the metrics implemented in POM is presented in in Appendix A.

In addition to metrics, the POM framework offers statistical features for computing

and accessing metrics box-plots. POM is based on the meta-model PADL, which provides

parsers to describe object-oriented systems written in C♯, C++, and Java [Guéhéneuc and

Antoniol, 2008]. With this meta-model, models of systems are built and the metric values

are computed by applying each metric on each class of the models.

4.4 Change- and Fault-proneness Computation

Change- and fault-proneness in this dissertation are computed using our Ibdoos framework.

Ibdoos extracts commit information from any CVS, GIT, or SVN repository and stores

this in a database. We query the database to compute change and fault proneness as

follows:

Change-proneness: Change-proneness refers to whether a class underwent at least a

change between release k (in which it was participating for example in some antipatterns)

and the subsequent release k + 1. Changes are identified, for each class in a system,

by looking at commits in the control-version system (CVS or SVN); for each class, we

counted, the number of commits related to that class.

A class is change prone if, at a given time, it has been changed more than other classes.

Fault-proneness: Fault-proneness refers to whether a class underwent at least a fault-

fixing between releases k and k + 1.

To compute the fault-proneness of classes, as discussed in Chapter 3, we consider a

set of manually-validated and publicly-available faults for Mylyn and Rhino [Eaddy et
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al., 2008]. For ArgoUML, issues dealing with fixing faults are marked as “DEFECT” in

the issue tracking system1. For Eclipse, however, we cannot distinguish issues related to

faults from other issues because Bugzilla is used as a general issue-tracking system and does

not provide tagged fault-related issues. Given the high number of issues, 34,634 between

releases 1.0 and 3.4, a manual classification is not practical. Consequently, while we analyse

fault-proneness for ArgoUML, Mylyn, and Rhino, we analyse only issue-proneness for

Eclipse, by considering issues marked as “FIXED” or “CLOSED”, because they required

some changes. We trace faults/issues to changes by matching their IDs in the commits

[Fischer et al., 2003].

We are aware that changes and faults are related. Indeed, the more a piece of code

changes, the more likely it might have a fault. Therefore, it would be interesting to control

for faults when looking at changes and control for changes when looking at faults. We

plan to investigate that in future work.

Kinds of changes: Kinds of changes are counted as the number of each kind of change

occurring to a class in release k. We determine different kinds of changes performed on

a class ci, by comparing the class revision in releases k and k + 1. The comparison is

made using an existing source code analyser and differencing tool, and aims at identifying

(i) structural changes, i.e., addition/removal/change of/to attributes, addition/removal

of methods, or changes to the method signatures, and (ii) non-structural changes, i.e.,

changes in method implementation.

4.5 Objects in the Experiments

We perform our experiments in this dissertation using the following well-known, industrial-

strength, open-source systems2

ArgoUML is a full-fledged UML modelling tool with code generation and reverse-

engineering capabilities. It provides the user with a set of views and tools to model systems

1http://argouml.tigris.org/issues
2http://argouml.tigris.org/,
http://azureus.sourceforge.net/,
http://www.eclipse.org/,
http://www.jhotdraw.org/,
http://xml.apache.org/xalan-j/,
http://xerces.apache.org/xerces-j/,
http://www.eclipse.org/mylyn/,
http://www.eclipse.org/jdt/, and
http://www.mozilla.org/rhino/.
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using UML diagrams, to generate the corresponding code skeletons and to reverse-engineer

diagrams from existing code.

Azureus (now called Vuze) is a bit-torrent client. Bit torrent is a protocol to ex-

change data among peers across a network. Azureus provides advanced user-interface and

implementation of the protocol.

Eclipse is an open-source integrated development environment. It is a platform used

both in open-source communities and in industry.

JHotDraw is a graphic framework for drawing 2D graphics. It was created in October

2000 by Beck and Gamma with the purpose of illustrating the use of design patterns.

Xalan is an XSLT processor for transforming XML documents into other document

types (HTML, text, and so on). It implements the XSLT and XPath standards.

Xerces is a Java XML parser which supports XML, DOM, and SAX.

Mylyn is a plug-in for Eclipse, which aims at reducing information overload and making

developers’ multi-tasking easier.

JDT Core is an Eclipse plug-in that implements the infrastructure for the Java IDE of

the Eclipse platform. It provides a Java model and capabilities to parse, manipulate, and

rewrite Java systems.

Rhino is an open-source implementation of a JavaScript interpreter.

Having presented the tools and objects used in this dissertation, we now provide back-

ground information about the statistical methods used in our experiments.

4.6 Background on Statistical Techniques

The analysis of the results of our experiments in this dissertation involve classifiers, pop-

ulation tests, and correlational analyses. In the following, we discuss these statistical

techniques.

4.6.1 Fisher’s Exact Test

The Fisher’s exact test [Sheskin, 2007] is a statistical test designed to determine if there

are non-random associations between two categorical variables. This test checks whether

a proportion varies between two samples by testing the independence of rows and columns

in a 2 × 2 contingency table based on the exact sampling distribution of the observed

frequencies. Hence it is an “exact” test.
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In our experiments, we also compute odds ratio (OR) [Sheskin, 2007] to complement

the information of the Fisher’s exact test. OR indicates the likelihood of an event to

occur. It is defined as the ratio of the odds p of an event occurring in one sample, eg.,

the set of classes participating in some antipatterns (experimental group), to the odds q

of it occurring in the other sample, i.e., the set of classes participating in no antipattern

(control group): OR = p/(1−p)
q/(1−q) . An odds ratio of 1 indicates that the event is equally

likely in both samples. OR > 1 indicates that the event is more likely in the first sample

(antipatterns) while an OR < 1 indicates the opposite (control group).

4.6.2 Wilcoxon Rank-sum Test

The Wilcoxon rank-sum test, also called Mann-Whitney test, is a non-parametric statis-

tical hypothesis test that assesses whether two samples come from a same distribution.

It allows us to attempt rejecting null hypotheses while making no assumptions on the

normality of the samples. In practice, the t-test is used to complement it.

4.6.3 t-Test

In addition to performing non-parametric tests, we also test our hypotheses with the

(parametric) t-test. Performing the t-test is of practical interest to estimate the magnitude

of a phenomenon under study (eg., the difference of the number of antipatterns in classes

with and without changes). This magnitude, called effect size complements p-values and

measures the strength of the relationship between two variables (eg., antipatterns and

changes). In our experiments, we use the Cohen d effect size.

4.6.4 Cohen d effect size

For independent samples and unpaired analyses, the Cohen d effect size [Sheskin, 2007] is

the difference between the means M1 and M2 divided by the pooled standard deviation

σ =
√

(σ2
1 + σ2

2)/2 of both groups: d = (M1 −M2)/σ. The effect size is small for 0.2 ≤

d < 0.5, medium for 0.5 ≤ d < 0.8, and large for d ≥ 0.8 [Cohen, 1988].

4.6.5 Machine Learning Techniques

A classifier is a function f : Rd 7→ C that assign a label from a finite set of classes C =

{c1, . . . , cq} to observations x =(a1, . . . , ad) ∈ Rd. In this dissertation, we are interested

only in the family of binary classifiers where there are two classes and thus C contains
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only two symbols, eg., C = {0, 1} or C = {non fault, fault}. We chose these classifiers

because they are more easily interpretable.

Three families of machine learning techniques are available to build a classifier: unsu-

pervised learning, supervised learning, and reinforcement learning [Mitchell, 1997 ; Aplay-

din, 2004]. Unsupervised learning, for example clustering algorithms, classifies available

data based on some fitness or cost function: often a distance or similarity. Supervised

learning, eg., ClAssification and Regression Trees (CART), assumes that a training set of

labeled data is available. A classifier is then built by maximizing some gain or minimizing

a cost function, representative of the accuracy of the classifier with respect to the a-priori

classification. In reinforcement learning, a user is required to decide if the classification for

the current piece of data is correct; the classifier then incrementally learns a classification

function.

Unsupervised learning techniques are appealing because no pre-labeled corpus is needed;

however, it is difficult to interpret the resulting classification and hard to derive guidelines

linking the classification with characteristics of the data or of the development process.

Supervised learning techniques, in particular algorithms such as CART, Bayesian clas-

sifiers, or logistic regression, produce classifiers more easily interpretable than those from

unsupervised learning techniques but require a labeled corpus. A labeled corpus is a set of

pairs (observation, label) assumed to be random variables (X, Y ) drawn from a fixed but

unknown probability distribution µ. The objective of the learning techniques is to find a

classifier f with a low error probability Prµ[f(X) 6= Y ].

Both the selection and the evaluation of f must be based on some data set Dn con-

taining n labeled pieces of data because the data distribution µ is unknown. Therefore,

Dn is usually split into two parts, the training sample Dm and the test sample Dn−m.

A learning algorithm is a method that takes the training sample Dm as input and

outputs a classifier f(x;Dm) = fm(x). A common learning method chooses a function fm

from a function class that minimizes the training error

L(f,Dm) =
1

m

m
∑

i=1

I{f(ai)6=yi} (4.1)

where IA is the indicator function of event A. Examples of learning algorithms using this

method include the back propagation algorithm for feed-forward neural nets [Rumelhart et

al., 1986] or the C4.5 algorithm for decision trees [Quinlan, 1993]. To evaluate the chosen

function, the error probability Prµ[f(X) 6= Y ] is estimated by the test error L(f,Dn−m).
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In the following, we provide a short description of the algorithms used to build classi-

fiers in this dissertation: decision trees, naive Bayes classifiers, and logistic regression.

4.6.5.1 Decision Tree

A decision tree is a complete binary tree where each inner node represents a “Yes” or

“No” question, each edge is labeled by one of the answers and terminal nodes contain one

of the classification labels from the set C.

The decision making process starts at the root of the tree. Given an input vector

x =(a1, . . . , ad), the questions in the internal nodes are answered and the corresponding

edges are followed. The label c of x is determined when a leaf is reached.

In the case of issue classification for example, the leaf node are labeled with either 0 or 1

to indicate whether an issue is a fault or not. The internal node contains question regarding

the values of various fields from the issue, for example whether the word “critical” appears

in the text describing the issue or if the issue was tagged as “Enhancement”.

4.6.5.2 Logistic regression

In a logistic regression model, the dependent variable is commonly a dichotomous variable

and, thus, assumes only two values {0, 1}, eg., changed or not. The multivariate logistic

regression model is based on the formula:

π(X1,X2, . . . ,Xn) =
eβ0+β1·X1+···+βn·Xn

1 + eβ0+β1·X1+···+βn·Xn
(4.2)

where (1) Xj are characteristics describing the modelled phenomenon, for example the

number of antipatterns of kind j in a class, i.e., si,j,k when the model is applied to the

class i of release rk; (2) βj are the model coefficients; and (3) 0 ≤ π ≤ 1 is a value on the

logistic regression curve. The closer the value is to 1, the higher is the likelihood that the

modeled phenomenon occurs.

To use the model as a classifier, a threshold is chosen. For example, in the case of

fault classification discussed in Chapters 3 and 8, if the threshold is equal to 0.5, an issue

is considered to be a corrective maintenance if π > 0.5.



4.6. Background on Statistical Techniques 54

4.6.5.3 Naive Bayes Classifier

A Bayesian classifier is a simple classification technique that classifies x =(a1, . . . , ad) ∈ Rd

by determining its most probable class c computed as:

c = argmaxckp(ck|a1, . . . , ad), (4.3)

where ck ranges over the set of classes in C (C = {c1, . . . , cq}) and the observation ai

is written as a generic attribute vector. By using the rule of Bayes, the probability

p(ck|a1, . . . , ad) called probability a posteriori, is rewritten as:

p(a1, . . . , ad|ck)
∑q

h=1 p(a1, . . . , ad|ch)p(ch)
p(ck). (4.4)

The classifier structure is drastically simplified under the assumption that, given a

class ck, all attributes are conditionally independent. Under this assumption the following

common form of a posteriori probability is obtained:

p(ck|a1, . . . , ad) =

∏d
j=1 p(aj |ck)

∑q
h=1

∏d
j=1 p(aj |ch)p(ch)

p(ck). (4.5)

When the independence assumption is made, the classifier is called naive Bayes clas-

sifier. The p(ck) marginal probability [Fenton and Neil, 1999] is the probability that a

member of a class ck will be observed. The p(aj|ck) prior conditional probability is the

probability that the jth attribute assumes a particular value aj given the class ck. These

two prior probabilities determine the structure of the naive Bayes classifier. They are

learned, i.e., estimated, on a training set when building the classifier.

A naive Bayes classifier is a simple structure that has (1) the classification node as

the root node, to which is associated a distribution of marginal probabilities and (2) the

attribute nodes as leaves, to each of them are associated q distribution of prior conditional

probabilities, where q is the number of possible classes [Duda and Hart, 1973]. The

prior probability is often assumed Gaussian and represented via its mean and standard

deviation. In this classifier, discrete and continuous attributes are treated differently [John

and Langley, 1995]. In this dissertation, our attributes are discrete. For each discrete

attribute, p(aj |ck) is a single real that represents the probability that the jth attribute

will assume a particular value aj when the class is ck.
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Continuous attributes however are modeled by some continuous distribution over the

range of the attribute. Commonly, it is assumed that within each class, the values of a

continuous attribute are distributed as a normal (i.e., Gaussian) distribution represented

by its mean and standard deviation. The domain of an attribute j is divided into equally

spaced non-overlapping intervals Itj and an attribute value aj is interpreted as laying

within some interval. Hence, p(Itj |ck) represent the prior conditional probability of a

value aj of the jth attribute to be in the interval Itj when the class is ck; tj ∈ N is the

rank of the interval in the attribute domain. This probability is assumed constant on

each interval Ijtj and computed based on mean and standard deviation of the Gaussian

distribution.

To classify a new observation a1, . . . , ad, a naive Bayes classifier with continuous at-

tributes apply Bayes theorem to determine the a posteriori probability as follows:

p(ck|It1 , . . . , Itd) =

∏d
j=1 p(Itj |ck)

∑q
h=1

∏d
j=1 p(Itj |ch)p(ch)

p(ck). (4.6)

with aj ∈ Itj .

4.7 Summary

In this chapter, after a brief background on design motifs and antipatterns identification

techniques, we presented DECOR and DeMIMA; two tools used in this dissertation to

identify respectively occurrences of antipatterns and design motifs in systems. We also

introduced then POM and Ibdoos frameworks, used respectively to compute metrics and

extract commit information from CVS, GIT, or SVN repositories. Finally, we described the

9 open-source object-oriented systems used in our experiments, defined and explained our

computation of change and fault-proneness, and discussed the basic concepts underlying

the statistical methods used in this dissertation.



Chapter 5

Design Patterns and Quality of

Systems

Design patterns are proven solutions to recurrent design problems in object-oriented soft-

ware design. Their design motifs [Guéhéneuc and Antoniol, 2008] describe ideal solutions

that will be either used to generate an architecture [Beck and Johnson, 1994] or super-

imposed [Hannemann and Kiczales, 2002] on designed (or already existing) classes of a

system. Consequently, classes in a system may play n roles in m motifs, with n > 0,

m > 0.

Many studies in the literature have for premise that design motifs [Gamma et al., 1994]

improve the quality of object-oriented software systems. In addition, it is claimed that

every well-structured object oriented design contains patterns, for example [Gamma et al.,

1994, page xiii] or [Venners, 2005]. In practice, it is generally observed that although some

design patterns ease future enhancements of systems, this ease happens at the expense of

simplicity [Venners, 2005]. Evidence of quality improvements through the use of design

patterns consists primarily of intuitive statements and examples. Moreover, some studies,

eg., by Wendorff [2001], have suggested that the use of design patterns, i.e., composition of

motifs, does not always result in “good” designs. McNatt and Bieman [2001], hinted that

tangled implementation of patterns may rather in fact decrease the quality of systems.

Hannemann and Kigzales [2002] pointed out the difficulty to reason about classes involved

in several design motifs. They claimed that from the 23 design motifs presented in the

catalog [Gamma et al., 1994], 17 of them lack modularity and are invasive in systems.

In the first pilot study, presented in Chapter 3, we reported that design patterns are

sometimes perceived as negatively impacting the quality of systems.
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All these studies suggest that design motifs impact the quality of systems; different

motifs impacting the quality differently. Therefore to effectively assess the quality of a

system, we should not only consider the classes of the system independently but also their

organisation in micro-architectures similar to motifs. Following our method DEQUALITE

presented in Chapter 1, we must quantify the impact of design motifs on the quality of

systems. We present in the following the results of an empirical study aimed at assessing

the impact of design patterns on the change- and fault-proneness of classes in a system.

The quantitative information obtain from this study will be used in the quality models

presented in Chapter 8.

5.1 Context

Previous work considered that classes either play no role or some role(s) in some motif(s),

without distinguishing classes playing one or more roles in one or more motifs. For exam-

ple, Bieman et al. [2001b] and Di Penta et al. [2008] suggested that classes playing one

specific role in one design motif may be more complex and more change-prone than classes

playing no roles because of their role but without considering the possibility that a class

could play two or more roles. These previous work neglected that classes may play many

different roles and took the perspective that role playing is an all-or-nothing characteristic

of classes.

This coarse-grained perspective prevents studying finely the impact of role playing on

classes. A reason for the current coarse-grained perspective is the lack of a method and

manually-validated data to identify and evaluate the characteristics of classes playing one,

two, or more roles with respect to classes playing no role. Yet, studying finely number of

roles could provide supporting evidence to previous work concerned by the use and abuse

of design patterns and would allow improving quality models with this new information.

Therefore, in this chapter, we describe a method and present an empirical descriptive

and analytic study of the impact on classes of playing one role in a motif or two roles

in a motif composition. The method is essential to obtain statistically significant results.

The descriptive study shows that, indeed, a non-negligible proportions of classes play one

or two roles in systems and that some roles are more often played in pairs than others.

The analytic study shows that some internal and external characteristics of classes are

impacted by playing one or two roles and that playing two roles impact more classes than

playing one role. Thus, we bring quantitative evidence on the impact of design motifs in

systems, which has only been hinted at until now. This evidence allows us to make some
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observations on motif composition and to draw some practical conclusions on the use and

abuse of design patterns. We also revisit previous work on design patterns with this novel

fine-grain perspective.

5.2 Study Definition and Design

Following GQM [Basili and Weiss, 1984], the goal of this chapter is to present a study of

classes playing zero, one, or two roles in some design motifs. Our purpose is to bring gen-

eralisable, quantitative evidence on the impact of playing roles on classes and build quality

models. The quality focus is that playing zero, one, or two roles impact differently classes.

The perspective is that both researchers and practitioners should be aware of the impact

of playing roles on classes to make informed design and implementation choices. The per-

spective is also to build quality models, and to understand and forecast the characteristics

of classes. The context of our study is both development and maintenance.

5.2.1 Research Questions and Hypotheses

Descriptive Questions. The two first research questions are descriptive and aim at

understanding the extent to which classes play zero, one, or two roles in a general pop-

ulation of classes. If the proportions are not negligible, then the two following analytic

questions will be meaningful. These research questions are particularly important because

large proportions of one and two roles would mean an extensive use of design patterns in

systems and therefore a potential high impact on the quality of the system.

• RQ1: Given a population of classes, what is the proportion of classes playing zero,

one, or two roles in some motif(s)?

• RQ2: What are the roles that are more often played solitary or in pairs than others?

Analytic Questions. The two following questions are analytic and divide in two sets

of null hypotheses.

• RQ3: What are the internal characteristics of a class that are the most impacted by

playing one or two roles w.r.t. playing less roles?

• RQ4: What are the external characteristics of a class that are the most impacted by

playing one or two roles w.r.t. playing less roles?
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For any metric m measuring some internal or external characteristics of a class, we

test the set of null hypotheses: H0mi/j : the distribution of the values of metric m for the

classes playing i ∈ [1, 2] role(s) is similar to that of classes playing j ∈ [0, 1] ∧ i 6= j role.

We relate the following independent and dependent variables to assess the proportions of

classes playing different roles and to test the previous null hypotheses.

5.2.2 Independent Variables

In an ideal situation, we would know the general population of all possible classes and

know the number of roles played by any class. Then, we would use the sub-populations

of classes playing zero, one, or more roles to answer the research questions. However,

this situation is impossible because the population of all possible classes is infinite and, in

general, a class does not know if it plays any role.

Therefore, the independent variables are three samples of classes playing zero, one, and

two roles in design motifs. We limit our study to two roles to ease the manual validation.

We name these samples the 0-, 1-, and 2-role samples. The samples must be large enough

to be statistically representative but small enough to be manually inspected. The method

to build these samples along with its implementation are presented in Section 5.3.

5.2.3 Dependent Variables

The dependent variables are the metrics measuring classes internal and external charac-

teristics. We chose to study a large number of metrics, as previous work [Spinellis, 2008],

to assess all the possible impacts of role playing. Internal Characteristics are related

to class themselves and are measured using the 56 metrics presented in Section 4.3. Ex-

ternal Characteristics are limited in this study to the change- and fault- proneness of

classes defined in Section 4.4.

5.2.4 Descriptive and Analytic Analyses

We use the following analysis to answer the research question with independent and de-

pendent variables.

RQ1 and RQ2. Given a population of classes from 6 systems, we computed the classes

playing zero, one, and two roles with our identification approach DeMIMA presented in

Chapter 4. Then, we computed the accuracy of our approach for one and two roles by
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manually validating classes playing roles in the identified occurrences. This precision is

important to estimate the proportions of true positives one and two roles classes. With

this precision, we extrapolate the proportions of classes playing zero, one, and two roles

in the general population.

RQ3 and RQ4. We use the Wilcoxon rank-sum test to compute for each metric and

each pair of samples (0-role, 1-role), (0-role, 2-roles), and (1-role, 2-role), the p-values for

the corresponding null hypotheses. As discussed in Chapter 4, this test allows us to reject

the null hypotheses while making no assumptions on the normality of the samples.

5.3 Study Implementation

The following subsections detail the building of the samples.

5.3.1 Definitions

We define a:

• General population as the set of all classes and interfaces belonging to some given

systems;

• n-role population as the population of classes playing n roles in some design motifs.

Thus, the 0-role population contains all the classes in the general population playing

no role. The 1-role population contains classes playing one and only one role. The

2-role population includes only classes playing two roles in two different motifs, i.e.,

playing roles in pairs of motifs;

• n-role class subset as a subset of the classes in the general population that has

been manually studied to identify n-role classes;

• n-role sample as the intersection of the n-role class subset and the n-role popula-

tion: a manually validated sample of n-role classes.

Figure 5.1 illustrates the partition of a general population of classes. We define three

sub-populations, which form a partition of the general population. The 0-role population

contains all classes playing no role. The 1-role population contains classes playing one

and only one role. The 2-role population includes only classes playing two roles in two
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Figure 5.1 – Subsets of the general population, details are given for 0-role
classes.

different motifs, i.e., playing roles in pairs of motifs. We extracted from the 0-, 1-, and 2-

role populations three subsets of classes, CS0, CS1, and CS2, that we manually validated

to build, after validation, the 0-, 1-, and 2-role samples with which we will answer the

research questions. We use different n-role class subsets when identifying classes playing

n role(s) to avoid any bias.

5.3.2 Sizes of the Samples

The size of the samples must be large enough to allow the generalisation of the results to

the overall population yet small enough to be validated manually.

We compute the sample size in two steps as proposed by Hollander and Wolfe [1999]:

1. We first compute the sample size needed for a two-sample t-test; and next,

2. We adjust this size based on the Asymptotic Relative Efficiency (ARE) [Hollander

and Wolfe, 1999] of the two-sample Wilcoxon test.

We choose a typical power of 0.8, i.e., we seek 80% chance of finding statistical sig-

nificance if the specified effect exists. The statistical power tells us, in probability terms,
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the capability of our test to detect a significant effect. It tells us how often we can reach a

correct interpretation about the effect, if we would be able to repeat the test many times.

We also choose a typical significance level of 0.05 because we seek to reduce the possi-

bility that the probability is due to chance alone.

With this power and significance level, we study the relation between effect size and

sample size to choose the adequate sample size for a two-sample t-test, assuming the

normality of the distribution.

The effect size refers to the magnitude of the effect under the alternate hypothesis. The

choice of an effect size reflects the need for balance between the size of the effect that we

can detect and the resources available for the study. We plotted the values of the samples

sizes corresponding to the effect size varying from 0.5 to 1.5. Figure 5.2 presents the

obtained curve. We can observe that small effects require a larger investment in resources

(larger sample sizes) than large effects.

Figure 5.2 – Possible sample sizes w.r.t. effect size for the t-test.

To decide on effect size, we followed Cohen’s recommendations [Cohen, 1988] and chose

a medium effect size of 0.58 that corresponds to a sample size of 50 classes.
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The ARE represents the asymptotic limit of the ratio of the samples sizes needed to

achieve equal power for two statistical tests: given a sample size for a statistical test

A achieving a power p, the sample size needed for a test B to achieve the same power

p is obtained from the ARE of A w.r.t. B. We compute the sample size for the two-

sample Wilcoxon test that ensures the same power as the t-test, with no assumption of

the distribution. The ARE for the two-sample Wilcoxon test is never less than 0.864

[Hollander and Wolfe, 1999], we choose to be conservative and therefore divide the sample

size for a t-test by 0.864. We obtain a sample size of 58 classes.

Consequently, the parameters of our study are:

• Power: 0.8 (typical);

• Significance level: 0.05 (typical);

• Effect size: 0.58 (medium);

• Sizes of the samples: 58 classes.

5.3.3 Selection of the General Population

We choose six systems to form the general population of classes from which to build the

n-role samples: ArgoUML v0.18.1, Azureus v2.1.0.0, Eclipse JDT Core plug-in v2.1.2

(JDT Core v2.1.2), JHotDraw v5.4b2, Xalan v2.7.0, and Xerces v1.4.4. These systems

are written in Java and open source. They are of different domains, sizes, complexity,

maturity and have been used in previous studies [Aversano et al., 2007 ; Di Penta et

al., 2008 ; Olbrich et al., 2009]. Section 4.5 presents their descriptions and Table 5.1(a)

summarises facts on these systems.

5.3.4 Selection of the Motifs and their Roles

We selected six design motifs used in previous work by Tsantalis et al. [2006] and Di

Penta et al. [2008]: Command, Composite, Decorator, Observer, Singleton, and State.

We follow Di Penta et al. [2008] in their choice of the motifs main roles. We only study

main roles because (1) they are the ones implementing the core functionalities of motifs

and, therefore, are most likely to impact classes, as confirmed by the following results and

(2) they allow us to concentrate on a fewer number of roles during the manual validation.

In the following, roles are named using the notation <Pattern Name> . <Role Name>.
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Table 5.1 – Data on the Studied systems.

(a) Statistics for the six systems. (Future refers to the time between the release
dates and 31/01/09.)

systems Classes LOC R
e
le
a
se

D
a
te

s

P
a
st

C
h
a
n
g
e
s

F
u
tu

r
e
C
h
a
n
g
e
s

Is
su

e
s

ArgoUML v0.18.1 1,267 202,520 30/04/05 20,290 12,617 41,565

Azureus v2.1.0.0 591 83,534 1/06/04 18,304 483 33,753

JDT Core v2.1.2 669 184,690 3/11/03 23,243 26,923 62,728

JHotDraw v5.4b2 413 44,898 1/02/04 5,793 51 1,286

Xalan v2.7.0 734 259,286 8/08/05 12,298 1,714 58,448

Xerces v1.4.4 306 86,814 13/10/03 5,213 1,209 16,143

Total 3,980 861,742 6 releases 85,141 42,997 213,923

(b) Distribution of the sample size
among the systems of our strata.

systems E
x
p
e
c
te

d

Z
e
r
o
R
o
le

O
n
e
R
o
le

T
w
o
R
o
le
s

ArgoUML v0.18.1 17 17 10 10

Azureus v2.1.0.0 9 9 9 9

JDT Core v2.1.2 10 10 17 17

JHotDraw v5.4b2 6 6 6 6

Xalan v2.7.0 11 11 11 11

Xerces v1.4.4 5 5 5 5

Total 58 58 58 58
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Table 5.2 – Chosen design patterns and the main roles of their motifs.

Patterns Descriptions Main Roles

Command Encapsulates a request as an object, thereby letting you
parameterize clients with different requests, queue or log
requests, and support undoable operations

Command, Invoker

Composite Composes objects into tree structures to represent part-
whole hierarchies. Composite lets clients treat individual
objects and compositions of objects uniformly

Component, Composite

Decorator Attaches additional responsibilities to an object dynam-
ically. Decorators provide a flexible alternative to sub-
classing for extending functionality

Component, Decorator

Observer Defines a one-to-many dependency between objects so
that when one object changes state, all its dependents
are notified and updated automatically

Observer, Subject

Singleton Defines a mechanism that ensure that the same instance
of a class is used throughout a system execution

Singleton

State Allows an object to alter its behavior when its internal
state changes

Context, State

In addition to choosing the roles of interest, we must also select pairs of roles for classes

playing two roles. We excluded pairs with the same role because identical roles in different

motifs must have similar characteristics as they implement the same functions, eg., among

the six motifs, Component is the only role that appears twice with similar structure albeit

slightly different semantics. We excluded pairs involving roles from the same motif because

a class playing both the roles of Composite.Component and Composite.Composite must

be a degenerated case. Consequently, we retain 45 possible pairs.

5.3.5 Building of the Samples

Building the n-role sample, with n ∈ [0, 2], consists of searching in the general population

for three sets of 58 classes playing 0, 1, or 2 roles. We reduce the search space using

DeMIMA approach because it ensures 100% recall by automatically relaxing appropriate

constraints. DeMIMA provides a complete mapping between roles in a motif and classes

in an occurrence. Thus, we can find all the roles that each class plays for a set of motifs

in a system.

We applied DeMIMA on the classes in the general population and obtain candidate

classes playing (at least) one role in the selected motifs. We automatically divided this

set in two 1- and 2-role subsets.

Then, for each subset, we studied each class (its code source, comments, hierarchy,

relations) to decide whether it plays one role (respectively two roles) using a voting process:
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four developers marked independently each class as true when a class played one role

(respectively, two roles) or false else. Each class was marked by only three developers to

avoid ties. Then, a class was assigned to the 1-role sample (respectively, 2-role sample) if

the majority marked it as true, else it was excluded. We stopped the voting process as

soon as the samples were completed.

In total, 238 classes were manually validated: 81 classes where false positives, i.e.,

classes playing no role but belonging to occurrences identified by DeMIMA; 88 classes

played 1 role; and, 69 classes played 2 roles. Finally, from the classes not included in any

of the occurrences identified by DeMIMA, we selected randomly and validated manually

58 classes playing 0 role.

The distribution in the samples of the classes from the general population must be

representative of the population. We distributed the 58 classes per sample along the strata

formed by the six systems. We computed stratified sample sizes so that each stratum

reflected the proportional size of one system with respect to the others. For example,

JHotDraw v5.4b2 makes up 10.38% of the general population. So, it must provide 10.38%

of the 58 classes in each sample. Thus, we ensured that the results equally reflect the six

systems. The second column in Table 5.1(b) shows the expected size of each stratum, i.e.,

the expected numbers of classes of each system in each sample.

We could not find enough 1- and 2-role classes in ArgoUML. Therefore, we made up

for the reduced number of occurrences of motifs in ArgoUML by using more classes from

JDT Core. The fourth and fifth columns in Table 5.1(b) show the actual repartitions of

classes in the 1- and 2-role samples. We replicated our study on the general population

without JDT Core and on JDT Core exclusively and noticed the same trends.

5.4 Study Results

We analyse the metrics values computed on the classes in the samples to answer the

research questions.

5.4.1 RQ1: Given a population of classes, what is the proportion of

classes playing zero, one, or two roles in some motif(s)?

To answer our first research question “What is the proportion of classes playing zero, one,

or two roles in some motifs in a system?”, we extrapolate, for each system and each motif,

the number of classes playing zero, one role, and two roles in the motifs.
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Table 5.3 – Validated precisions of DeMIMA.

systems C
a
n
d
id
a
te

s

O
n
e
R
o
le

T
w
o
R
o
le
s

ArgoUML v0.18.1 21
3 10

14.28% 47.61%

Azureus v2.1.0.0 64
22 19

34.37% 29.68%

JDT Core v2.1.2 67
30 22

44.77% 32.83%

JHotDraw v5.4b2 30
11 13

36.66% 43.33%

Xalan v2.7.0 55
23 11

41.81% 20.00%

Xerces v1.4.4 29
10 11

34.48% 37.93%

Total 266
99 86

37.21% 32.33%

Table 5.4 – Extrapolated numbers and percentages of classes playing no,
one, or two roles.

systems T
o
ta

l

O
n
e
R
o
le

T
w
o
R
o
le
s

ArgoUML v0.18.1
1,267 51 316
100% 4.02% 24.94%

Azureus v2.1.0.0
591 67 75

100% 11.33% 12.69%

JDT Core v2.1.2
669 46 178

100% 6.88% 26.60%

JHotDraw v5.4b2
413 24 101

100% 5.81% 24.45%

Xalan v2.7.0
734 36 104

100% 4.90% 14.16%

Xerces v1.4.4
306 94 56

100% 30.72% 18.30%

Total
3,980 318 830
100% 7.99% 20.85%
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First, from the class subsets, we computed the accuracy of DeMIMA as the number

of classes in a subset indeed playing zero, one, or two roles with respect to the total

numbers of classes in the subsets. This accuracy is important to estimate the proportion

of classes playing one and two roles respectively. Table 5.3 summarises this accuracy

using all manually-validated classes (reported in the Candidates column) and shows that

accuracy varies across motifs and systems.

Second, we extrapolate in Table 5.4 the numbers of classes playing one and two roles

from the previous accuracy and the numbers of candidate classes in each system. Table

5.4 shows that the percentage of classes playing one or two roles in any of the six selected

design motif varies from 4.02% to 30.72%.

The answer to RQ1 is that classes playing one or two roles do exist in systems and are

not negligible, which confirms the need to understand the characteristics of classes playing

different numbers of roles as they may significantly impact the quality of systems.

5.4.2 RQ2: What are the roles that are more often played solitary or in

pairs than others?

An answer to the research question “What are the roles that are more often played solitary

or in pairs than others?” is obtained by studying the proportions of the numbers of classes

playing one or two roles with respect to the number of classes playing a particular role.

Table 5.5 shows the numbers and proportions for each role and each pair for which the

proportions of classes playing this role or pair of roles was not negligible. It shows that,

for example, five classes play the role of Command.Command alone while four play the

roles of both Command.Command and State.State, which make up for 44.44% of classes

playing both roles with respect to the 5+ 4 classes playing the Command.Command role.

This information about roles often played solitary or in pairs is interesting because it can

help guide and improve developers comprehension of systems as pointed by Lange and

Nakamura [1995]. Moreover, this information can help improve the precision and recall

of design motifs identification tools: A tool that detected a motif A, which frequently

appeared with motif B, will be able to improve his detection of Motif B by considering

the frequency of the pair (A, B).

We notice three facts:

1. There are three pairs and two solitary roles for which the percentage is above our de-

cision threshold: (Command.Invoker, State.State), (Decorator.Component, State.-

State), (Decorator.Decorator, State.State), Composite.Composite, State.Context.
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Table 5.5 – Counts and percentages of roles played alone or paired with
another role.

Roles Pairs Counts Percentages

Command.Command 5 55.56%
(Command.Command , State.State) 4 44.44%

Command.Invoker 0 0%
(Command.Invoker , State.State) 13 100%

Composite.Component 4 22.22%
(Composite.Component, Observer.Observer) 9 50%
(Composite.Component, State.State) 5 27.78%

Composite.Composite 8 80%

(Composite.Composite , State.Context) 2 20%

Decorator.Component 1 11.11%
(Decorator.Component , State.State) 8 88.89%

(Decorator.Component , State.Context) 0 0%

Decorator.Decorator 1 8.33%
(Decorator.Decorator , State.State) 11 91.67%

Observer.Observer 36 66.67%
(Composite.Component, Observer.Observer) 9 16.67%
(Observer.Observer , State.State) 9 16.67%

State.Context 33 94.29%

(Composite.Composite , State.Context) 2 5.71%
(Decorator.Component , State.Context) 0 0%

State.State 50 50%

(Command.Command , State.State) 4 4%
(Command.Invoker , State.State) 13 13%
(Composite.Component, State.State) 5 5%
(Decorator.Decorator , State.State) 11 11%
(Decorator.Component , State.State) 8 8%
(Observer.Observer , State.State) 9 9%



5.4. Study Results 70

Table 5.6 – Selected pairs of roles.

Pairs

(Command.Command , State.State)

(Command.Invoker , State.State)

(Command.Invoker , Singleton.Singleton)

(Composite.Component, Observer.Observer)

(Composite.Component, State.State)

(Composite.Component, Singleton.Singleton)

(Composite.Composite , State.Context)

(Composite.Composite , Singleton.Singleton)

(Decorator.Component , State.Context)

(Decorator.Component , State.State)

(Decorator.Component , Singleton.Singleton)

(Decorator.Decorator , State.State)

(Observer.Observer , State.State)

(Singleton.Singleton , State.State)

We could conclude that these pairs are prevalent. Yet, these roles and pairs are

only played by a few classes.

2. Among the roles/pairs with a significant number of classes (more than 50) playing

these roles, the percentages are smaller than our decision threshold and prevents us

to generalise our results.

3. The preponderance of pairs involving roles in the State motif possibly indicates a

bias during the manual validation of the classes. We further discuss the threat to

the validity of our study in Section 5.6.

We therefore answer that, in the six studied systems, pairs (Command.Invoker, State.-

State), (Decorator.Component, State.State), (Decorator.Decorator, State.State) and roles

Composite.Composite and State.Context have greater prevalence than others, which con-

firms that some roles are more often played together than others.

5.4.3 RQ3: What are the internal characteristics of a class that are the

most impacted by playing one or two roles w.r.t. playing less

roles?

We now limit our selection of roles to the 14 pairs shown in Table 5.6 by keeping only

pairs for which we had enough classes, determined in RQ1.
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To answer RQ3, “What are the internal characteristics of a class that are the most

impacted by playing one or two roles?”, we test the null hypotheses H0mi/j , i ∈ [1, 2], j ∈

[0, 1] ∧ j 6= i for the 56 metrics.

Table 5.7 summarises the results. It shows for each metric in each metric group the

p-value when testing the associated null hypothesis. It reports in bold the p-values that

show a statistically significant difference between the distribution of the metric values

between two samples. It also shows using arrows the trend in the change between samples.

Although we performed a Holm-Bonferroni correction on the p-values and obtained little

variations on the results, we choose to report the original results in Table 5.7 because the

Holm-Bonferroni correction increases the risk of Type II errors.

We analyse the results in Table 5.7 in three steps: metrics whose distributions do not

change between samples and then those that change between each pairs of samples:

5.4.3.1 Metrics Not Affected by The Number of Roles

There are 8 metrics whose distributions did not change significantly between the three

samples: connectivity, CP, PP, RPII, DSC, ANA, NOH, and MFA. These metrics are

therefore unlikely to be of interest when assessing the impact of role playing and could be

excluded from future studies on design motifs.

This finding was predictable for CP, PP, RPII because these metrics measure the

structure of the packages of a system rather than the structure of its classes. The same

explanation applies to DSC and NOH, which count respectively the total number of classes

and the number of class hierarchies in a system.

The finding for ANA, connectivity, and MFA is surprising because we expected that

classes playing roles in design motifs would inherit more from and would be more “con-

nected” to other classes. We explain this finding by the specific definitions of these three

metrics because the values of other metrics related to inheritance and coupling significantly

change between the samples.

5.4.3.2 Metrics Affected by One Role vs. Zero Role

There is a statistically significant difference between classes playing zero and one role for

29 metrics. These metrics characterise coupling, cohesion, inheritance, polymorphism and

size, and complexity.
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Table 5.7 – p-values and Metrics Trends. (A ր or ց represents an
increase (respectively, decrease) of, for example in the third column, the
metrics values of 1-role classes compared to these of 0-role classes).

Metric Groups Metric Names
1 role vs. 0 role 2 role vs. 0 role 2 role vs. 1 role

p-values Trends p-values Trends p-values Trends

Changeability

Frequencies of Past Changes 8.26E-07 ր 1.24E-09 ր 0.08794
Frequencies of Future Changes 0.0001564 ր 7.44E-06 ր 0.5983
Numbers of Past Changes 3.54E-07 ր 5.50E-10 ր 0.06668
Numbers of Future Changes 0.001552 ր 9.72E-05 ր 0.7018

Cohesion

CAM 0.854 0.0001996 ր 0.0003884 ր
cohesionAttributes 0.6881 0.04051 ր 0.0009488 ր
LCOM1 0.01313 ց 6.22E-09 ր 0.0009946 ր
LCOM2 0.01087 ց 1.41E-07 ր 0.0017 ր
LCOM5 0.03454 ր 3.95E-06 ր 0.001383 ր

Complexity

McCabe 0.2274 7.85E-07 ր 0.00063 ր
SIX 0.004657 ր 1.41E-08 ր 0.0008183 ր
WMC1 2.09E-05 ր 4.00E-08 ր 0.0467 ր
WMC 0.01453 ց 5.40E-07 ր 0.001297 ր

Coupling

ACAIC 0.1733 0.03935 ր 0.5029
ACMIC 0.284 0.002702 ր 0.04961 ր
CBO 0.5706 0.0001434 ր 0.001948 ր
CBOin 0.191 7.89E-06 ր 0.0005939 ր
CBOout 0.1055 5.96E-07 ր 0.0001025 ր
connectivity 0.5005 0.07963 0.2603
CP 0.9802 0.2272 0.1428
DCAEC 9.37E-06 ր 0.003612 ր 0.06724
DCC 0.4149 2.98E-05 ր 0.002347 ր
DCMEC 0.0001468 ր 0.001024 ր 0.595
PP 0.829 0.1382 0.1468
RFP 0.04845 ր 0.01477 ր 0.6074
RRFP 0.0968 0.02306 ց 0.5106
RRTP 0.02637 ց 0.03722 ց 0.6952
RTP 0.2005 0.01295 ր 0.3693

Inheritence

AID 0.126 0.0001542 ր 0.1391
ANA 0.3958 0.8077 0.3918
CLD < 2.2e-16 ր 7.94E-11 ր 0.003298 ց
DIT 0.08713 8.59E-05 ր 0.2632
NCM 0.00087 ր 4.84E-09 ր 0.07486
NOC 2.22E-16 ր 3.55E-11 ր 0.245
NOD 2.22E-16 ր 5.29E-11 ր 0.07351
NOH 0.5644 0.601 0.9663
NOP 0.2248 6.10E-06 ր 0.007146 ր
ICHClass 0.03035 ր 2.03E-07 ր 0.001095 ր

Issues Numbers of Issues 0.0003619 ր 0.0003612 ր 0.6645

Polymorphism

CIS 9.22E-07 ր 1.50E-08 ր 0.1605

and Size

DAM 0.1285 1.94E-05 ր 0.003362 ր
DSC 0.1461 0.2098 0.8725
EIC 0.0002848 ր 9.03E-06 ր 0.5616
EIP 7.26E-13 ր 1.43E-09 ր 0.1039
MFA 0.1138 0.7105 0.243
MOA 0.0001883 ր 6.44E-10 ր 0.01493 ր
NAD 0.1349 5.03E-06 ր 0.003884 ր
NADExtended 0.1514 1.14E-05 ր 0.005466 ր
NCP 5.39E-06 ր 0.01465 ր 0.1198
NMA 9.34E-06 ր 2.30E-06 ր 0.3157
NMD 2.09E-05 ր 4.00E-08 ր 0.0467 ր
NMDExtended 3.37E-05 ր 1.07E-07 ր 0.05112
NMI 0.1029 0.0001075 ր 0.2016
NMO 0.00163 ր 3.57E-10 ր 0.0005408 ր
NOA 0.1868 7.35E-08 ր 0.01153 ր
NOM 2.09E-05 ր 4.00E-08 ր 0.0467 ր
NOParam 7.81E-06 ր 2.38E-08 ր 0.1551
NOPM 2.89E-14 ր 1.93E-10 ր 0.2793
PIIR 7.00E-05 ր 0.01216 ր 0.2846
REIP 5.94E-10 ր 7.54E-08 ր 0.3336
RPII 0.1486 0.08605 0.8614

Ranking Class Rank 7.33E-09 ր 4.08E-06 ր 0.212
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The trends are a decrease in metric values for only four metrics: LCOM1, LCOM2,

WMC1, and RRTP. This finding is explained again by the implementations of the metrics:

LCOM1 and 2 have been superseded by LCOM5, which changes significantly, while WMC1

weighs each method by 1 and RRTP is related to packages.

The others metrics see a statistically significant increase in their values. Among these,

we can quote: CBO, DCAEC, LCOM5, McCabe, SIX, WMC. We explain this finding by

the fact that playing roles implies responsibilities, thus classes playing one role have more

responsibilities than classes playing zero role, which results in classes being more complex

(McCabe, SIX, WMC), more coupled (CBO, DCAEC), and less cohesive (LCOM5), for

example. We conclude that playing one role impact classes w.r.t. playing zero role.

5.4.3.3 Metrics Affected by Two Roles vs. Zero Role

There is a statistically significant difference between classes playing zero and two roles for

48 metrics, with, for each metric, an increase of its values for classes playing two roles,

except for RRFP and RRTP. This finding was expected because RRFP and RRTP concern

packages. For the 46 other metrics, the added responsibilities with each role could explain

the impact of 2-role classes on metric values in comparison to the impact of classes playing

zero role. Having more responsibilities, classes become more complex (McCabe, WMC,

WMC1, SIX), more coupled (CBO, DCAEC, DCC, DCMEC), inherit more from their

superclasses (CLD, DIT, NOC, NOD), and use more polymorphism (MOA, NMA, NMD).

Therefore, we conclude that playing two roles has a major impact on classes, in particular

in comparison to the impact of playing zero role. Playing two roles should be carefully

considered during design and implementation.

5.4.3.4 Metrics Affected by Two Roles vs. One Role

The change in the distributions of the metrics values between classes in the 2- and 1-

role samples is significant for 26 metrics, among which: CAM, CLD, DCC, LCOM5,

McCabe, SIX, WMC. We observe that the more they play roles, the more classes are

complex (McCabe, SIX, WMC, WMC1), are coupled (CBO, DCC), inherit (NOP), and

use polymorphism (MOA, NAD, NMO).

The values of CLD decrease significantly, possibly hinting at more shallow inheritance

tree thanks to the solutions provided by the motifs. We conclude that, indeed, playing

two roles has a significant impact on classes that cannot be accounted for by the fact that

they play two different one roles.
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Consequently, the answer to RQ3 is that, w.r.t. the studied metrics, playing two roles

has a major impact on classes when compared to playing zero or one role.

5.4.4 RQ4: What are the external characteristics of a class that are

the most impacted by playing one or two roles w.r.t. playing less

roles?

We answer the last research question, “What are the external characteristics of a class

that are the most impacted by playing one or two roles?”, by carrying null hypothesis tests

on the numbers and frequencies of past and future changes, extracted from the version

repositories of the systems, and on the numbers of issues related to classes in the different

samples. Table 5.7 shows the results of testing out the null hypotheses.

We can reject the null hypotheses related to the external metrics (Changeability and

Issues) for 1-role and 2-role classes w.r.t. 0-role classes with statistical significance. We

cannot reject the null hypotheses for 2-role classes when compared to 1-role classes.

These results confirm previous work on the change- and issue-proneness of classes

playing roles in some design motifs, for example [Bieman et al., 2001b ; Di Penta et al.,

2008]. We perform in Section 6.4 a deeper analysis that shows that 2-role classes are the

cause of the greater parts of the changes (56%) and issues (57%) with 1-role classes causing

only 33% of changes and 30% of issues.

The answer to RQ4 is that playing roles do impact the number of changes and issues

as well as the frequencies of the changes. It confirms that playing roles has a major impact

on change- and issue-proneness and therefore on the quality of systems. In Chapter 8, we

include this information in our quality models.

5.5 Discussions

With the results of our study, we revisit previous work from the literature presented in

Chapter 2; first, to validate our results and, second, to show how these previous work

could benefit from our fine-grained analysis.

5.5.1 Proportions of 0-, 1-, or 2-role Classes

Table 5.4 shows the percentages of classes playing no, one, or two roles in the six systems.

In addition to the overall percentages, some systems have higher percentages than others:
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JHoDraw contains only 5.81% of classes playing one role and 24.45% two roles in contrast

to the 30.72% of classes playing one role in Xerces and the 26.60% of classes playing two

roles in JDT Core. Given that JHotDraw has been developed to show the “good” use of

design patterns, the higher percentages of classes playing one or two roles in Xerces and

JDT Core could be due to an overuse of design patterns. These higher percentages could

be used with other quality measures to confirm or refute the impact of overusing design

patterns as put forward by Wendorff [2001] and others. In Chapter 8, we show that this

information on design patterns improves the accuracy of quality models.

5.5.2 Trends in Playing Roles and Quality

Table 5.7 shows that in the 2-role sample, classes are more complex, more coupled, less

cohesive than classes in the 0- and 1-role samples. This trend suggests that motif compo-

sition (playing more than one role in some motifs) degrades more the quality of the classes

than playing a single role. We explain this degradation by the addition to the classes of

non-feature methods and fields to allow the classes to fulfill their roles. These methods

and fields increase the complexity, the number of dependencies, and reduce the cohesion

of classes.

5.5.3 Revisit of and Comparison with Previous Work

5.5.3.1 Bieman and McNatt’s Work

We observe that playing one or more roles in a design motif decreases the cohesion of

classes (increases of the LCOM⋆ metrics) while increasing their coupling (increase of the

coupling metrics). This result confirm Bieman and McNatt’s [2001] claim that design

motifs impact the cohesion and coupling of systems.

5.5.3.2 Hannemann and Kicazles’ Work

We explain the decrease in cohesion and increase in coupling by suggesting that design

motif-related methods may be orthogonal to the responsibilities of the classes and thus

reduce their cohesion. Therefore, our study confirms that design motifs are often “cross-

cutting concern” that could benefit from being “separated” from the system using, for

example, aspect-oriented programming. We thus bring quantitative support to previous

work on rewriting design motifs as aspects [Hannemann and Kiczales, 2002].
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5.5.3.3 Di Penta et al.’s Work

We revisit Di Penta et al.’s study of the numbers and frequencies of changes of classes

playing roles. We compare the set of classes playing some roles, as identified by DeMIMA,

which is the union of the samples of 1- and 2-role classes with the sample of false positive

classes, noted 0FP , with the set of classes playing really zero role: 0-role sample vs. (0FP -

role ∪ 1-role ∪ 2-role) sample. This comparison yields a p-value of 1.973e-14 < 0.05,

thus confirming the previous work as well as the statistical validity of our three samples.

It appears from our study that, in average, the numbers of changes prior to the releases

of the studied system for classes playing two roles accounts for 56% of the total number of

past changes. Also, classes playing two roles change 1.52 times more than classes playing

one role. Classes playing zero and one role account respectively for 33% and 11% of past

changes. Classes playing one role change more than two role classes after the studied

release of the systems. They change 1.46 times more than the 2-role classes and they

account for 61.53% of the total number of future changes. We explain this result by the

fewer numbers of future changes, shown in Table 5.1(a): in total, there are twice as much

past changes than future changes. Therefore, we bring evidence that the results found by

Di Penta et al. was largely due to classes playing two roles.

5.5.3.4 Automatic Detection with DeMIMA

Table 5.8 shows the fine-grained study of the impact for a class to be a false positive w.r.t.

playing zero, one, or two roles. It shows that false positive classes do have a significantly

different number of changes than classes playing 0 role. This results was expected because

false positive classes must have some particular feature: DeMIMA included them in its

results. A typical case is the Composite: A motif with a structure close to the Composite

motif but with an inheritance instead of a composition may be detected by DeMIMA.

In this case, we expect that playing a role in this false Composite would affect a class.

Results in Table 5.8 show that classes playing two roles change significantly differently from

false positives classes, thus confirming their importance. Therefore, although these classes

play no role in a design motif, their structure is somehow similar to some design motifs,

which impacts their internal and external characteristics. Thus, the presence of false

positives classes in systems impacts the system overall quality. This result is particularly

interesting because it shows that automatic detection tools like DeMIMA can help provide

useful information which we will use in Chapter 8 to include in a novel quality model.
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Table 5.8 – p-values and Metrics Trends, with 0FP . (A ր or ց rep-
resents an increase (respectively, decrease) of, for example in the third
column, the metrics values of 1-role classes w.r.t. to these of 0-role
classes).

Metric Groups Metric Names
1 role vs. 0 role 2 role vs. 0 role 2 role vs. 1 role

p-values Trends p-values Trends p-values Trends

Changeability

Frequencies of Changes in Past 0.9956 0.08194 0.08794
Frequencies of Changes in Future 0.9733 0.5469 0.5983
Numbers of Changes Past 0.212 0.03508 ր 0.06668
Numbers of Changes Future 0.8688 0.8537 0.7018

Cohesion

CAM 0.8532 0.0007399 ր 0.0003884 ր
CohesionAttributes 0.5716 0.01112 ր 0.0009488 ր
LCOM1 0.6737 0.0004046 ր 0.0009946 ր
LCOM2 0.9168 0.001582 ր 0.0017 ր
LCOM5 0.6976 0.0083 ր 0.001383 ր

Complexity

McCabe 0.8881 0.001085 ր 0.00063 ր
SIX 0.6163 0.002085 ր 0.0008183 ր
WMC1 0.4008 0.01341 ր 0.0467 ր
WMC 0.9252 0.0003315 ր 0.001297 ր

Coupling

ACMIC 0.896 0.066 0.04961 ր
ACAIC 0.6251 0.8771 0.5029
CBO 0.513 0.000176 ր 0.001948 ր
CBOin 0.8466 0.0001986 ր 0.0005939 ր
CBOout 0.6496 9.21E-06 ր 0.0001025 ր
connectivity 0.1912 0.8574 0.2603
CP 0.4471 0.03687 ր 0.1428
DCAEC 0.002435 ր 0.2118 0.06724
DCC 0.3617 2.05E-05 ր 0.002347 ր
DCMEC 0.06408 0.2239 0.595
RFP 0.9383 0.6465 0.6074
RRFP 0.6811 0.993 0.5106
RRTP 0.8693 0.6973 0.6952
RTP 0.8923 0.4358 0.3693

Inheritence

AID 0.6621 0.03946 ր 0.1391
ANA 0.1938 0.5803 0.3918
CLD 0.002887 ր 0.9954 0.003298 ց
DIT 0.3 0.02209 ր 0.2632
NCM 0.6426 0.008635 ր 0.07486
NOA 0.9256 0.01207 ր 0.01153 ր
NOC 0.003547 ր 0.1792 0.245
NOD 0.0002031 ր 0.166 0.07
NOH 0.7356 0.7807 0.9663
NOP 0.4834 0.0008245 ր 0.007146 ր
ICHClass 0.8911 0.000905 ր 0.001095 ր

Issues Numbers of Issues 0.0728 0.1603 0.6645

Size and

CIS 0.4914 0.05132 0.1605

Polymorphism

DAM 0.6724 0.03264 ր 0.003362 ր
DSC 0.5031 0.4196 0.8725
EIC 0.6013 0.4277 0.5616
EIP 0.1874 0.5998 0.1039
MFA 0.9776 0.2374 0.243
MOA 0.9682 0.01269 ր 0.01493 ր
NAD 0.921 0.00277 ր 0.003884 ր
NADExtended 0.8652 0.008383 ր 0.005466 ր
NMD 0.4008 0.01341 ր 0.0467 ր
NCP 0.7092 0.4407 0.1198
NMA 0.3501 0.1012 0.3157
NMDExtended 0.5107 0.02384 ր 0.05112
NMI 0.4371 0.02397 ր 0.2016
NMO 0.8188 0.0006559 ր 0.0005408 ր
NOM 0.4008 0.01341 ր 0.0467 ր
NOParam 0.8372 0.1123 0.1551
NOPM 0.2496 0.9574 0.2793
PIIR 0.588 0.7276 0.2846
PP 0.8226 0.1112 0.1468
REIP 0.87 0.4993 0.3336
RPII 0.4809 0.652 0.8614

Ranking Class Rank 0.2598 0.9978 0.212
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5.6 Threats to Validity

We now discuss the threats to validity of our study following the guidelines provided for

case study research [Yin, 2002].

Construct validity threats in this study concern our definition of motif composition;

there is actually no agreed-upon definition of motif composition. We defined a motif

composition as the implementation of two different roles in two different motifs by a same

class. We only considered pairs of roles and ignored the effect of the particular roles on a

class. We also explicitly excluded auto-composition, i.e., a class playing two different roles

in a same motif. Future work should distinguish compositions based on their roles and

further study auto-compositions. Also, we purposefully studied only main roles of design

motifs. Future work includes extending our study to all roles.

Internal validity threats in this study concern our inference. Our approach relies

on the precision of the automatic detection approach DeMIMA. The results include false

positives. We try to limit the number of false positives through a manual validation. How-

ever, the manual validation is a tedious task that leads to resilience and the experimenter

bias: some false positives class may pass the validation because it “looks like” a motif. An

approach that would provide a better precision is to use a manually-validated repository

of motifs such as PMARt [Guéhéneuc et al., 2004]. However, PMARt does not contain

enough data as of now to perform such a study. We used as a baseline for our study of

classes playing 1-role and 2-role, the 0-role population of classes playing none of the 11

roles considered in our study. However, among these classes, some may be playing one or

two roles in other design motifs. Future work should extend this study to cover the 23

patterns from Gamma et al. [1994]

Threats to external validity concern the possibility to generalise our results. We

studied six systems of different sizes, domains, maturity, and complexity. However, these

systems are all open-source systems written in Java. We choose six design patterns among

the many available. The results could be different with industrial systems, other object-

oriented programming languages, and different design motifs.

Reliability validity threats concern the possibility of replicating this study. We

attempted to provide all the necessary details to replicate our study. Moreover, both

Eclipse source code repository and issue-tracking system are available to obtain the same

data. Finally, the data from which our statistics have been computed is available on-line1.

1http://khomh.net/experiments/thesis/
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Conclusion validity threats concern the relation between the treatment and the

outcome. There is no threat to the validity of the conclusion of this study as there is a

direct relation between the chosen metrics and the overall internal quality of a class.

5.7 Summary

In this chapter, we presented a study of the impact of playing one or two roles in some

motif(s) for a class. We answered the following research questions:

RQ1. In average, 8.24% (respectively 17.81%) of the classes of the six studied systems

played one role (respectively two roles) in some motifs. These percentages are not negligible

and therefore justify a posteriori the interest in design motif identification and a priori

future studies on the impact of motifs on the quality of systems.

RQ2. Despite the few numbers of classes displaying a relationship between roles, we

can conclude that some roles are more often played in pairs than others, for example

(Decorator.Decorator, State.State). Further studies must focus on this research question

to bring further generalisable evidence.

RQ3. There is a significant increase in many metric values, in particular for classes

playing two roles. This increase confirms a posteriori the warning addressed to the com-

munity by Bieman, Beck, and others on the use of design patterns.

RQ4. There is a significant increase in the frequencies and numbers of changes of

classes playing two roles. We thus confirmed on new samples the previous results by Di

Penta et al.

We show that developers should be wary of classes playing two roles because they have

significantly higher complexity metric values and represent 56% of changes while 1-role

classes only 33%.

Globally, a particular attention should be paid to classes playing roles, in particular

2-role classes, because they have internal and external metric values that are significantly

higher than these of other classes: they are more change-prone, less cohesive, more coupled,

more complex, and more issue-prone.



Chapter 6

Antipatterns and Quality of

Systems

Antipatterns—such as those presented in [Brown et al., 1998]—have been proposed to

embody poor design choices; Brown’s 40 antipatterns describe the most common pitfalls

in the software industry. These antipatterns stem from experienced developers’ expertise

and are conjectured in the literature to negatively impact systems quality [Brown et al.,

1998]. They are opposite to design patterns [Gamma et al., 1994] and are generally

introduced by developers not having sufficient knowledge and–or experience in solving a

particular problem or having misapplied some design patterns. Despite the many studies

on antipatterns summarised in Section 2.3 of Chapter 2, only a few studies empirically

analysed the impact of antipatterns on source code-related phenomena [Bois et al., 2006 ;

Wei and Raed, 2007], in particular classes change and fault-proneness, which are the

quality attributes of interest in this dissertation.

In practice, antipatterns are in-between design and implementation: they concern the

design of one or more classes, but they concretely manifest themselves in the source code

as classes with specific code smells [Fowler, 1999]. Often, antipatterns are defined in terms

of thresholds imposed on metric values [Moha et al., 2008a ; Moha et al., 2008b]. In the

preliminary studies presented in Chapter 3, we found that code smells significantly impact

the change proneness of classes, therefore we expect antipatterns to have a similar impact.

One example of an antipattern is the LazyClass, shown in Listing 6.1. It occurs when

a class does too little, i.e., has few responsibilities in a system. A LazyClass is revealed

by a class with few methods and fields; its methods have little complexity. A LazyClass

often stems from speculative generality during a system design and–or implementation.
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1 RULE CARD : LazyClass {
2 RULE : LazyClass { INTER NotComplexClass FewMethods } ;
3 RULE : NotComplexClass { (METRIC: WMC, VERY LOW, 20) } ;
4 RULE : FewMethods { (METRIC: NMD + NAD, VERYLOW ,5) } ;
5 } ;

Listing 6.1 – Specification of the LazyClass Antipattern.

A more complex example of antipattern is the Blob, shown in Listing 6.2. A Blob,

also called God Class, is a large and complex class that centralises the behaviour of a

portion of a system and only uses other classes as data holders, i.e., data classes. A Blob

prevents the use of polymorphism through inheritance, making changes more complex and

risk-prone. A class is a Blob if it has a low cohesion, it is large, some of its method names

recall procedural programming, and, it is associated to data classes. Data classes only

provide fields and–or accessors to their fields.

1 RULE CARD : Blob {
2 RULE : Blob { ASSOC: a s s o c i a t ed FROM: mainClass ONE TO: DataClass MANY } ;
3 RULE : mainClass { UNION LargeClassLowCohesion Cont ro l l e rC l a s s } ;
4 RULE : LargeClassLowCohesion { UNION LargeClass LowCohesion } ;
5 RULE : LargeClass { (METRIC: NMD + NAD, VERY HIGH, 0) } ;
6 RULE : LowCohesion { (METRIC: LCOM5, VERY HIGH, 20) } ;
7 RULE : Cont ro l l e rC l a s s { UNION
8 (SEMANTIC: METHODNAME, {Process , Control , Ctrl , Command , Cmd,
9 Proc , UI , Manage , Drive })

10 (SEMANTIC: CLASSNAME, {Process , Control , Ctrl , Command , Cmd,
11 Proc , UI , Manage , Drive , System , Subsystem}) } ;
12 RULE : DataClass { (STRUCT: METHOD ACCESSOR, 90) } ;
13 } ;

Listing 6.2 – Specification of the Blob Antipattern.

Following our method DEQUALITE presented in Chapter 1, we quantify the impact of

antipatterns on the change- and fault-proneness of classes using data mined from version

control systems and issues reporting systems. More specifically, we study whether classes

participating in an antipattern have an increased likelihood to change or to be involved

in issues documenting faults than other classes. These results are important to build our

quality models presented in Chapter 8.

6.1 Context

The context of this study consists in the change history and issues reporting systems

of four Java systems: ArgoUML, Eclipse, Mylyn, and Rhino. The four systems have

different sizes and belong to different domains. Eclipse is a large system (release 3.3.1 is

larger than 3.5 MLOCs) and, therefore, close to the size of many real industrial systems.

ArgoUML, Mylyn, and Rhino have wide ranges of sizes, are open-source, and have been the
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Table 6.1 – Summary of the characteristics of the analysed systems. (The
column Fault-fixing Changes report the number of issue-fixing changes
in the case of Eclipse).

Systems Releases (#) Classes LOCs Changes
Fault-fixing
Changes

ArgoUML 0.10.1–0.26.2 (10) 792–1,841 128,585–316,971 40,409 2,064
Eclipse 1.0–3.3.1 (13) 4,647–17,167 781,480–3,756,164 196,193 34,634
Mylyn 1.0.1–3.1.1 (18) 1,625–2,762 207,436–276,401 36,328 118
Rhino 1.4R3–1.6R6 (13) 89–270 30,748–79,406 6,925 1,068
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Figure 6.1 – Percentages of classes participating in antipatterns in the
releases of the four systems.

subjects of previous studies. In particular, Eaddy et al. [2008] manually validated faults

in Mylyn and Rhino. Section 4.5 presents their description and Table 6.1 summarises the

main characteristics of the systems (detailed figures are available in Appendix C; fault

classification for Mylyn is only available for the first three releases [Eaddy et al., 2008]).

For the four systems, it is relevant to study the relation between antipatterns, change

and fault-proneness, and class size, because the percentages of classes participating in

antipatterns are not negligible. Figure 6.1 shows that the percentages of classes partici-

pating in antipatterns varies across releases of the four systems. The percentages of classes

participating in antipatterns are higher for Eclipse (∼ 80%) and ArgoUML (∼ 60%) than

for Mylyn and Rhino (∼ 50%). With some variations, the percentages tend to remain

stable for Eclipse and Rhino, to slightly decrease (from 67% to 60%) for ArgoUML, and

to increase (from 45% to 57%) for Mylyn. Table 6.2 shows the distribution of the antipat-
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Table 6.2 – Distribution of antipatterns in the analysed releases.

Antipatterns

Number of Antipatterns in First and Last Releases
(in parentheses, the percentages of participating classes)

A
rg
oU

M
L

E
cl
ip
se

M
y
ly
n

R
h
in
o

AntiSingleton 352 (44.44)–3 (0.16) 330 (7.10)–1784 (10.39) 4 (0.25)–127 (4.60) 16 (17.98)–1 (0.37)

Blob 26 (3.28)–116 (6.30) 600 (12.91)–2,194 (12.78) 40 (2.46)–93 (3.37) 0 (0)–0 (0)

CDSBP 136 (17.17)–51 (2.77) 382 (8.22)–2,285 (13.31) 61 (3.75)–183 (6.63) 4 (4.49)–17 (6.30)

ComplexClass 42 (5.30)–103 (5.59) 511 (11.00)–2,125 (12.38) 29 (1.78)–72 (2.61) 6 (6.74)–14 (5.56)

LargeClass 56 (7.07)–166 (9.02) 1 (0.02)–8 (0.05) 43 (2.65)–99 (3.58) 9 (10.11)–19 (7.04)

LazyClass 16 (2.02)–44 (2.39) 2,403 (51.71)–8,561 (49.87) 2 (0.12)–18 (0.65) 4 (4.49)–9 (3.33)

LongMethod 172 (21.72)–348 (18.90) 2,372 (51.04)–7,956 (46.34) 134 (8.25)–349 (12.64) 14 (15.73)–35 (12.96)

LPL 195 (24.62)–300 (16.30) 1,087 (23.39)–3,233 (18.83) 43 (2.65)–95 (3.44) 9 (10.11)–8 (2.96)

MessageChain 79 (9.97)–166 (9.02) 1,043 (22.44)–3,041 (17.71) 70 (4.31)–181 (6.55) 20 (22.47)–66 (24.44)

RPB 105 (13.26)–574 (31.18) 397 (8.54)–2,582 (15.04) 45 (2.77)–290 (10.50) 5 (5.62)–11 (4.07)

SpaghettiCode 9 (1.14)–22 (1.20) 2 (0.04)–1 (0.01) 12 (0.74)–39 (1.41) 0 (0.00)–2 (0.74)

SG 0 (0.00)–0 (0.00) 54 (1.16)–228 (1.33) 0 (0.00)–0 (0.00) 0 (0.00)–0 (0.00)

SwissArmyKnife 0 (0.00)–0 (0.00) 67 (1.44)–96 (0.56) 1 (0.06)–0 (0.00) 0 (0.00)–0 (0.00)

terns of interest, detailed in Appendix C. It also shows, in parentheses, the percentages

of classes participating in each of the studied antipatterns in the first and last release.

Percentages go as high as 51.71% of classes participating in LazyClass in the first version

of Eclipse.

6.2 Study Definition and Design

The goal of this chapter is to investigate the relation between classes participating in an-

tipatterns and their change- and fault-proneness as well as the kinds of changes impacting

antipatterns. Our purpose is to bring generalisable, quantitative evidence on the impact

of antipatterns on class change- and fault-proneness and build quality models. The qual-

ity focus is the quality of systems, specifically, source code change- and fault-proneness,

that, if high, can have a concrete effect on developers’ effort and on the overall project

development and maintenance cost and time.

The perspective is that of researchers and practitioners, interested in the relation be-

tween antipatterns and evolution phenomena in software systems to build quality models

and to understand and forecast the characteristics of classes. Developers who perform

development or maintenance activities will also benefit from this study; they will be able

to take into account and forecast their effort. Testers will increase their knowledge on

classes that are important to test. Finally, the results of this study will also be of interest

for managers and–or quality assurance personnel, who could use antipattern detection
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techniques to assess the future changes and faults of in-house or to-be-acquired source

code to better quantify its cost-of-ownership.

6.2.1 Research Questions

In this chapter, we address six null hypotheses, specifically concerning the relations be-

tween classes participating in antipatterns and their change-proneness (RQ1 and RQ2),

fault-proneness (RQ3 and RQ4), size (RQ5), and kinds of changes (RQ6).

• RQ1: What is the relation between antipatterns and change-proneness? We investi-

gate whether classes participating in at least one antipattern are more change-prone

than others, by testing the null hypothesis: H01: the proportion of classes under-

going at least one change between two releases is not different between classes in

antipatterns or not.

• RQ2: What is the relation between kinds of antipatterns and change-proneness?

We analyse whether certain antipatterns imply more changes than others, by testing

the null hypothesis: H02: classes participating in certain antipatterns are not more

change-prone than others.

• RQ3: What is the relation between antipatterns and fault-proneness? This research

question focuses on the relation between antipatterns and fault-fixing issues. The

null hypothesis is: H03: the proportion of classes undergoing at least one fault-fixing

between two releases does not differ between classes participating or not in at least

one antipattern.

• RQ4: What is the relation between particular kinds of antipatterns and fault-proneness?

We also analyse the influence of kinds of antipatterns on fault-proneness, by testing

the null hypothesis: H04: classes participating in certain kinds of antipatterns are

not more prone to fault-fixing than other classes.

• RQ5: Do the presence of antipatterns in classes relate to the sizes of these classes?

This research question stems from El Emam et al. [2001] findings showing that

many metrics correlate to size. Specifically, we study whether the higher change-

and–or fault-proneness of classes participating in antipatterns is due to the sizes (in

terms of LOC) of these classes or to the presence of the antipatterns, by testing

the hypothesis: H05: classes participating in antipatterns are not larger than other

classes.
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• RQ6: What kind of changes are performed on classes participating or not in an-

tipatterns? We study whether classes participating in antipatterns undergo more

(or less) structural changes (addition/removal/change of/to attributes, addition/re-

moval of methods, or changes to the method signatures) than other kinds of changes

by testing the hypothesis: H06: classes participating in antipatterns do not undergo

a number of structural changes different than other kinds of changes.

Hypotheses H01 to H05 are one-tailed, because we are interested in investigating only

whether antipatterns relate to an increase of change-proneness, fault-proneness, and size.

Hypothesis H06 is two-tailed because we investigate whether the presence of antipatterns

is related to a higher or a lower number of structural changes.

6.2.2 Independent Variables

We use the approach, DECOR (Defect dEtection for CORrection) presented in the Sec-

tion 4.2, to specify and detect the following antipatterns: AntiSingleton, Blob, Class-

DataShouldBePrivate (CDSBP), ComplexClass, LargeClass, LazyClass, LongMethod, Long-

ParameterList (LPL), MessageChains, RefusedParentBequest (RPB), SpaghettiCode, Spec-

ulativeGenerality (SG), SwissArmyKnife.

We choose these antipatterns only because (1) they are well-described by Brown [1998],

(2) we could find enough of their occurrences in several releases of several of the studied

systems, and (3) they are representative of design and implementation problems with data,

complexity, size, and the features provided by classes.

Our independent variables are the number of classes participating in the 13 antipat-

terns. Variables api,j,k, indicate the numbers of times that a class i participates in an

antipattern j in a release k. For RQ1 and RQ3, we aggregate these variables into a

Boolean variable APi,k indicating if a class i participates or not in any antipattern.

6.2.3 Dependent Variables

Dependent variables measure the phenomena related to classes participating in antipat-

terns.

RQ1 and RQ2. For each class of our studied systems, we compute the change-proneness

as defined in Section 4.4.
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RQ3 and RQ4. We compute the fault-proneness of classes, as discussed in Section 4.4.

RQ5. The size of classes participating or not in antipatterns is measured using their

LOCs, excluding comments and blank lines. Each classes is associated with its size,

the total number of antipatterns and the kind of antipatterns in which it participates.

(Abstract and native methods and methods declared in interfaces count for zero LOC.)

RQ6. Kinds of changes are computed for classes participating in antipatterns following

the definition presented in Section 4.4; we determine different kinds of changes performed

on a class ci participating in an antipattern, by comparing the class revision in releases k

and k + 1. At least one difference between ci,k and ci,k+1 indicates that ci, and thus the

antipattern in which it participates, has been changed w.r.t. release k.

6.2.4 Analysis Method

RQ1 and RQ3. We study whether changes to and faults/issues in a class are related to

the class participating in antipatterns, regardless of the kinds of antipatterns. Therefore,

we test whether the proportions of classes exhibiting (or not) at least one change/fault/is-

sue significantly vary between classes participating in antipatterns and other classes. We

use Fisher’s exact test (presented in Section 4.6.1) for H01 and H03. (We did not consider

releases with a number of changes/fault/issues lower than 10 because Fisher’s test would

not be applicable). We also compute the odds ratio (OR) (see Section 4.6.1).

RQ2 and RQ4. We want to understand the relation of specific kinds of antipatterns

with changes and faults/issues. Let us focus on RQ2 and changes. We use a logistic regres-

sion model [Hosmer and Lemeshow, 2000] to test H02 and H04 by correlating the presence

of antipatterns with changes. Details on the logistic regression model are presented in

Section 4.6.5.

We count, for each antipattern, the number of times that, across the analysed releases,

the p-values obtained by the logistic regression are significant. We use the current state of

the art threshold t = 75% [Conte and Campbell, 1989 ; Vicinanza et al., 1991] to assess

whether classes participating to a specific kind of antipattern have significantly greater

odds to change than others: If these classes are more likely to change in more than t

releases, then this antipattern has a significant negative impact on change-proneness.

RQ5. We perform the analysis related to RQ5 in three steps.
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First, we compare, for each release, the average size of (1) classes participating in at

least one antipattern and (2) classes participating in no antipattern. We use the Wilcoxon

test and compute Cohen d effect size (see Section 4.6). We expect the test results to

be statistically significant and the odds ratios to be greater or equal to 1 because many

antipatterns are, according to their definitions, related to size, eg., Blob, ComplexClass,

and LargeClass.

Second, we perform the same test and compute the same odds ratios between the set

of classes participating in each antipattern and those not participating in any antipattern.

We expect that, for some antipatterns, the test would not be significant and–or the odds

ratios would be lower than 1. Indeed, while the definitions of some antipatterns directly

relate to their size, others specifically target small classes, eg., LazyClass, or are orthogonal

to size, eg., ClassDataShouldBePrivate.

Third, we again perform Fisher’s exact test and compute the odds ratios between

large classes participating or not to size-related antipatterns, i.e., Blob, ComplexClass,

and LargeClass. We single out classes whose sizes are greater than the 75% percentile and

divide them in two sets: those participating in the considered antipatterns and those that

do not participate in these antipatterns. We expect that classes participating in Blob,

ComplexClass, and LargeClass antipatterns are not significantly larger than the largest

classes.

RQ6. We again use Fisher’s exact test to compare the proportions of structural changes

in classes participating in antipatterns with those of other kinds of changes, also in classes

not participating in any antipattern.

6.3 Study Results

This section reports the results of our empirical study, which are further discussed in

Section 6.4. Detailed results are presented in Appendix C while raw data is available

on-line1.

1http://khomh.net/experiments/thesis/
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Table 6.3 – Summary of the odds ratios for classes that participate in
at least one antipattern to underwent at least one change.

Change Proneness
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0.10.1 4.17 1.0 1.13 1.0.1 10.51 1.4R3 10.41
0.12 7.16 2.0 0.75 2.0M1 10.37 1.5R1 17.98
0.14 6.22 2.1.1 2.59 2.0M2 7.38 1.5R2 17.37
0.16 15.84 2.1.2 1.42 2.0M3 206.60 1.5R3 15.71
0.18.1 10.00 2.1.3 1.15 2.0 14.17 1.5R4 16.19
0.20 26.54 3.0 0.88 2.1 10.89 1.5R41 30.71
0.22 8.83 3.0.1 0.86 2.2.0 11.10 1.5R5 15.51
0.24 15.40 3.0.2 0.89 2.3.0 9.83 1.6R1 24.73
0.26 3.98 3.2 2.19 2.3.1 7.66 1.6R2 12.69
0.26.2 6.75 3.2.1 1.94 2.3.2 24.38 1.6R3 19.95

3.2.2 1.47 3.0.0 9.45 1.6R4 33.05
3.3 2.43 3.0.1 9.85 1.6R5 19.97
3.3.1 1.42 3.0.2 5.31 1.6R6 20.56

3.0.3 8.18
3.0.4 3.77
3.0.5 4.96
3.1.0 10.53
3.1.1 5.59

6.3.1 RQ1: What is the relation between antipatterns and change-

proneness?

Table 6.3 summarises the odds ratios when testing H01. In all releases, except Eclipse

1.0, Fisher’s exact test indicated a significant difference (p-values < 0.05) of proportions

between change-prone classes among those participating and not in antipatterns.

Odds ratios vary across systems and, within each system, across releases. While in few

cases, ORs are close to 1, i.e., the odds is even that a class participating in an antipattern

changes or not, in some pairs of systems/releases, such as ArgoUML 0.20, Mylyn 2.0M3,

or Rhino 1.5R41, ORs are greater than 25. Overall, ORs for Eclipse are lower than those

of other systems, by one or two orders of magnitude. The odds of a class participating in

some antipatterns to change are, in general, higher than that of other classes.

We therefore conclude that, in general, there is a relation between antipatterns and

change-proneness: a greater proportion of classes participating in antipatterns change
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Table 6.4 – Summary of odds ratios for classes that participate in at
least one antipattern to underwent at least one fault/issue fixing.
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0.10.1 4.43 1.0 1.32 1.0.1 10.45 1.4R3 6.44
0.12 4.87 2.0 1.57 2.0M1 17.70 1.5R1 31.29
0.14 17.53 2.1.1 1.70 2.0M2 >>300 1.5R2 –
0.16 6.58 2.1.2 2.00 2.0M3 – 1.5R3 13.93
0.18.1 5.33 2.1.3 2.03 2.0 – 1.5R4 9.06
0.20 4.95 3.0 2.52 2.1 – 1.5R41 30.05
0.22 9.42 3.0.1 1.95 2.2.0 – 1.5R5 10.57
0.24 2.25 3.0.2 1.86 2.3.0 – 1.6R1 29.26
0.26 8.08 3.2 2.72 2.3.1 – 1.6R2 –
0.26.2 9.73 3.2.1 2.19 2.3.2 – 1.6R3 –

3.2.2 2.05 3.0.0 – 1.6R4 23.00
3.3 3.18 3.0.1 – 1.6R5 13.29
3.3.1 1.23 3.0.2 – 1.6R6 –

3.0.3 –
3.0.4 –
3.0.5 –
3.1.0 –
3.1.1 –

with respect to other classes. The rejection of H01 and the ORs provide a posteriori

concrete evidence of the negative impact of antipatterns on change-proneness.

6.3.2 RQ2: What is the relation between kinds of antipatterns and

change-proneness?

Table 6.5 summarises the results of the logistic regression for the relations between change-

proneness and the different kinds of antipatterns. A cell in the table reports the number

of releases of a given system (per column) in which classes being a given antipattern (per

row) correlate to change-proneness with statistical significance. For example, the cell at

the intersection of the column for ArgoUML and the row for AntiSingleton reports that,

in 8 releases of ArgoUML out of 10 (80%), classes participating in the AntiSingleton were

more change-prone than other classes significantly.

From Table 6.5, we can reject H02 for some antipatterns, i.e., for antipatterns which are

significantly correlated to change-proneness in at least t = 75% of the releases, highlighted
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Table 6.5 – Summary of the number and percentages of significant p-
values across the analysed releases obtained by logistic regression for the
correlations between change-proneness and kinds of antipatterns.

Antipatterns

Change Proneness
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AntiSingleton 8 (80%) 5 (38%) 7 (39%) –
Blob 2 (20%) 8 (62%) 9 (50%) –
CDSBP 3 (30%) 7 (54%) 9 (50%) 6 (46%)
ComplexClass 2 (20%) 12 (92%) 2 (11%) –
LargeClass 2 (20%) – 4 (22%) 4 (31%)
LazyClass 5 (50%) 12 (92%) 3 (17%) 1 (8%)
LongMethod 10 (100%) 12 (92%) 17 (94%) 5 (38%)
LPL 9 (90%) 10 (77%) 7 (39%) 3 (23%)
MessageChain 10 (100%) 12 (92%) 18 (100%) 13 (100%)
RPB 9 (90%) 6 (46%) 10 (56%) 5 (38%)
SpaghettiCode – – – –
SG – 3 (23%) 6 (33%) 1 (8%)
SwissArmyKnife – 6 (46%) – –

in gray. Following our analysis method, only MessageChain has a significant negative

impact on change-proneness in all systems: classes participating in this antipattern are

more likely to change than classes participating in other or no antipattern in more than

t = 75% of the releases. Other antipatterns have significant impact on a subset of the

systems: LongMethod in ArgoUML, Eclipse, and Mylyn; LongParameterList in ArgoUML

and Eclipse; AntiSingleton and RefusedParentBequest in ArgoUML; Complexclass and

LazyClass in Eclipse.

We conclude that there is a relation between kinds of antipatterns and change-proneness

but not for all antipatterns and not consistently across systems and releases.

6.3.3 RQ3: What is the relation between antipatterns and fault-proneness?

Table 6.4 summarises Fisher’s exact test results and ORs for H03. The differences in

proportions are significant and thus we can reject H03 in all cases. The proportion of

classes participating in antipatterns and reported in faults is between 1.32 and 31.29

times larger than that of other classes.

Odds ratios for faults are not always higher than those for changes: although classes

participating in antipatterns are more likely to exhibit fault fixing changes than other

classes, they seem to be even much more likely to undergo restructuring changes in addition

to fault-fixing changes than other classes with better design.
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Table 6.6 – Summary of the number and percentages of significant p-
values across the analysed releases obtained by logistic regression for the
correlations between fault-proneness and kinds of antipatterns.

Antipatterns

Fault/Issue Proneness
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AntiSingleton 5 (50%) 13 (100%) – –
Blob 1 (10%) 7 (54%) – –
CDSBP 2 (20%) 7 (54%) 2 (66%) 3 (33%)
ComplexClass – 13 (100%) 1 (33%) –
LargeClass 3 (30%) – – 3 (33%)
LazyClass – 12 (92%) – 2 (22%)
LongMethod 1 (10%) 13 (100%) – 3 (33%)
LPL 5 (50%) 9 (60%) 2 (66%) 3 (33%)
MessageChain 7 (70%) 10 (77%) 1 (33%) 7 (78%)
RPB 4 (40%) 4 (31%) 1 (33%) –
SpaghettiCode – – – –
SG – 4 (31%) – 1 (11%)
SwissArmyKnife – 1 (8%) – –

Therefore, we conclude that there is a relation between antipatterns and fault-proneness;

although this relation is not as strong as the relation with change-proneness.

6.3.4 RQ4: What is the relation between particular kinds of antipat-

terns and fault-proneness?

Table 6.6 reports the results of the logistic regression for the relations between fault/issue-

proneness and kinds of antipatterns. For Mylyn, we could analyse only 3 releases for

fault-proneness and for Rhino, only 9 releases, because of the limited number of faults

occurring in other releases (< 10). We can reject H04 for MessageChain in Eclipse and

Rhino; AntiSingleton, ComplexClass, LazyClass, and LongMethod in Eclipse.

We conclude that there is a relation between kinds of antipatterns and fault/issue-

proneness but not for all antipatterns and not consistently across systems and releases.

6.3.5 RQ5: Do the presence of antipatterns in classes relate to the sizes

of these classes?

We found that, as expected, classes participating in some specific kinds of antipatterns

are significantly larger (with a medium to large effect size) than classes not participating

in antipatterns, with the following exceptions:
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• Classes participating in AntiSingleton are not significantly larger than classes not

participating in any antipattern in 10 out of 18 Mylyn releases;

• Classes participating in LazyClass are significantly smaller than other classes in

all the analysed releases of ArgoUML, Mylyn, and Rhino. This observation was

expected because, by definition, LazyClasses are small;

• Classes participating in RefusedParentBequest are not significantly larger than classes

not participating in any antipattern in 1 out of 10 ArgoUML releases, 15 out of 18

Mylyn releases, and 9 out of 13 Rhino releases;

• Classes participating in SpeculativeGenerality are not significantly larger than classes

not participating in any antipattern in 5 out of 10 ArgoUML releases, all 18 Mylyn

releases, and all 13 Rhino releases.

In Eclipse, all kinds of antipatterns classes have a significantly larger size than classes

not participating in any antipattern, although for the above-mentioned antipatterns the

effect size was generally small while for the others it was medium to small.

Table 6.7 – ORs of change- and fault-proneness for large classes partici-
pating in the Blob, LargeClass, ComplexClass antipatterns w.r.t. large
classes not participating in any antipattern (bold face indicates statisti-
cal significance of the Fisher’s exact test).

ArgoUML Eclipse Mylyn Rhino

Rel.
ORs ORs

Rel.
ORs ORs

Rel.
ORs ORs

Rel.
ORs ORs

(Changes) (Faults) (Changes) (Faults) (Changes) (Faults) (Changes) (Faults)

0.10.1 – – 1.0 0.98 2.12 1.0.1 0.92 1.09 1.4R3 – –
0.12 – 0.79 2.0 0.73 1.03 2.0M1 5.60 – 1.5R1 – –
0.14 7.81 – 2.1.1 1.79 1.14 2.0M2 1.46 – 1.5R2 5.76 –
0.16 – 3.41 2.1.2 1.78 2.56 2.0M3 – 1.5R3 5.51 17.72
0.18.1 2.32 3.05 2.1.3 1.58 1.02 2.0.0 2.56 1.5R4 – –
0.20 – 0.45 3.0 1.22 0.81 2.1 1.17 1.5R41 – –
0.22 2.64 0.57 3.0.1 0.96 1.55 2.2.0 2.85 1.5R5 3.10 13.52

0.24 5.26 – 3.0.2 0.93 0.99 2.3.0 0.77 1.6R1 1.67 13.52

0.26.2 3.46 1.85 3.2 2.18 5.81 2.3.1 3.89 1.6R2 8.53 –
0.26 3.10 1.32 3.2.1 2.56 2.84 2.3.2 3.95 1.6R3 2.30 –

3.2.2 1.52 1.99 3.0.0 5.39 1.6R4 – –
3.3 8.08 13.66 3.0.1 1.16 1.6R5 3.63 4.19
3.3.1 2.48 1.57 3.0.2 2.89 1.6R6 – –

3.0.3 1.04
3.0.4 1.66
3.0.5 2.38
3.1.0 –
3.1.1 3.27

Finally, Table 6.7 reports results (ORs, highlighted in bold face when the test reported

statistical significance) of the Fisher’s exact test, comparing change and fault-proneness



6.3. Study Results 93

of classes having a size greater than the 75% percentile of the overall size distribution and

participating or not in the Blob, ComplexClass, and LargeClass antipatterns. Although

the test only reports statistical significance in a small number of cases—due to the limited

number of classes having a size above the 75% percentile of the distribution—ORs are

greater to 1 in:

1. ArgoUML: 6 out of 10 releases for change-proneness and 4 out of 7 releases for

fault-proneness;

2. Eclipse: 9 out of 13 releases for change-proneness and 9 out of 13 releases for fault-

proneness (plus 2 other cases where the ORs are just above one);

3. Mylyn: 13 out of 15 releases for change-proneness (plus another case where the ORs

is just above one), while it was not possible to get statistically-significant results for

fault-proneness, due to the limited number of detected occurrences;

4. Rhino: 7 out of 8 releases for change-proneness and 4 out of 5 releases for fault-

proneness.

ORs are always above one, and in most cases above two and up to 13.66 every time the

Fisher’s exact test found a statistically-significant difference in the proportions of change-

and fault-prone between (large) classes participating or not to size-related antipatterns.

Therefore, large classes participating in antipatterns change more and are more fault-prone

than large classes not participating to any antipatterns.

We conclude that classes participating in antipatterns are generally larger than other

classes. This conclusion was expected because, many antipatterns, such as Blob, Com-

plexClass, LargeClass, or LongMethod, result from an excessively large size and of other

negative characteristics of the classes. We also conclude that, except for some releases

of the analysed systems, some kinds of antipatterns (AntiSingleton, LazyClass, Refused-

ParentBequest, and SpeculativeGenerality) describe symptoms of poor design that are

unrelated to size.

We thus generally conclude that some kinds of antipatterns are related to size as ex-

pected by their definitions but size only does not explain the classes greater change- and

fault-proneness.
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Table 6.8 – Fisher’s exact test results and odds ratios of the proportions
of all kinds of changes to classes participating in antipatterns w.r.t. those
of other classes.

Systems p-values ORs
ArgoUML < 0.01 1.22
Eclipse < 0.01 1.03
Mylyn < 0.01 1.19
Rhino 0.08 1.04

6.3.6 RQ6: What kind of changes are performed on classes participating

or not in antipatterns?

While studying the relation between kinds of antipatterns and change- and fault-proneness,

we also studied the kinds of changes impacting classes participating in antipatterns.

Results are reported in Table 6.8. For simplicity’s sake, and because we did not notice

substantial changes across releases, we report results obtained by aggregating data from

the whole observed history of each system, rather than for each release separately.

Table 6.8 shows that classes participating in antipatterns in Rhino do not undergo more

structural changes than other changes: it is a small system and, therefore, the different

kinds of changes may occur to any class. Although we can reject H06 for Eclipse, the OR

≈ 1 downplays this result, which we explain by the use of inheritance in Eclipse [Aversano

et al., 2007], leading to few structural changes to classes.

Detailed results for different kinds of antipatterns reveal that, for all antipatterns ex-

cept LazyClass in ArgoUML, Mylyn, and Rhino, and RefusedParentBequest in Eclipse,

classes participating in antipatterns undergo more structural changes than others changes

(eg., changes in the method implementations). The methods implementations of Lazy-

Classes, as reported in Section 6.3.2, change to increase their behaviour. Changes in

the methods organisations and implementations of RefusedParentBequest are generally

performed to correct them.

We conclude that structural changes occur more often on classes belonging to antipat-

terns than other changes.

6.4 Discussions

We now discuss the results using the releases’ histories. Roman superscript numerals are

reported in Table 6.9. We also discuss the impact of the class sizes on our results. Finally,
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we discuss our results in relation to previous results from Chapters 3 and 5 relating change-

and fault-proneness with code smells and design patterns.

6.4.1 Correlations among Antipatterns

We analysed whether there exists a correlation between the presence of different antipat-

terns and, hence, between their definitions. We used the non-parametric Spearman cor-

relation, which results indicate that Blob, ComplexClass, and LargeClass are lowly corre-

lated (0.5 < ρ < 0.7 [Cohen, 1988]) in all releases of ArgoUML, Mylyn, and Rhino, but

in none of Eclipse. For all other antipatterns and releases, we obtained no correlation

among antipatterns (ρ ≪ 0.5). We expected that we would not find correlations among

antipatterns, because their definitions are different as they capture different types of de-

sign pitfalls. We also analysed whether we could find a correlation between the presence

of different antipatterns and traditional object-oriented metrics, such as Chidamber and

Kemerer’s metric suite. As we expected since antipatterns are higher level than metrics,

we could not find a correlation that was consistent across systems and their releases, thus

showing that antipatterns, albeit detected using metrics, bring different information to

developers than metrics.

6.4.2 Statistical Significance/Unexpected Ratios

Tables 6.3 and 6.4 show that, in general, classes belonging to antipatterns are more change-

and fault-prone than others. However, there is a case were H01 could not be rejected for

lack of statistical significance and four cases with unexpected ORs, which indicate that

classes participating in antipatterns changed less than others (shown in grey in the table).

We explain the lack of statistical significance for Eclipse 1.0 by the major changes

between releases 1.0 and 2.0i, which imply that many classes were added/changed (Eclipse

size increased from 781 to 1,250 KLOCs and 4,647 to 6,742 classes), irrespective of their

participation in antipatterns.

The first case with an unexpected OR concerns classes having changed between Eclipse

2.0 and 2.1.1, with OR = 0.75. Eclipse 2.1iii introduced several new features w.r.t. 2.0,

including navigation history, sticky hovers, prominent status indication, and so on. More-

over, 283 issuesiv were fixed between 2.0 and 2.1 and 126 morev between 2.1 and 2.1.1,

including issues related to the new features, for example issue ID 1694 “FEATURE: Con-

tributed inspection formatter” or 17872 “Hover help for static final fields is inconsistent”.

Finally, 8, 730− 6, 742 = 1, 988 classes were added for an increase of 1, 797− 1, 2490 = 548
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Table 6.9 – URLs of the discussed release notes and issues listings .

IDs Systems URLs

i Eclipse http://archive.eclipse.org/eclipse/downloads/drops/R-2.0-200206271835/

buildNotes.php

ii Mylyn http://eclipse.org/mylyn/new/new-3.0.html

iii Eclipse http://archive.eclipse.org/eclipse/downloads/drops/R-2.1-200303272130/

whats-new-all.html

iv Eclipse https://bugs.eclipse.org/bugs/buglist.cgi?product=JDT&product=PDE&product=

Platform&target_milestone=2.1&resolution=FIXED&order=bugs.bug_id

v Eclipse https://bugs.eclipse.org/bugs/buglist.cgi?product=JDT&product=PDE&product=

Platform&target_milestone=2.1.1&resolution=FIXED&order=bugs.bug_id

vi Eclipse http://www.eclipse.org/osgi/

vii Eclipse For example, a search for “Eclipse 3.0 crash” returns 224 messages on http://www.

eclipsezone.com/

viii Eclipse https://bugs.eclipse.org/bugs/buglist.cgi?product=JDT&product=PDE&product=

Platform&target_milestone=3.0.1&resolution=FIXED&order=bugs.bug_id

ix Eclipse https://bugs.eclipse.org/bugs/buglist.cgi?product=JDT&product=PDE&product=

Platform&target_milestone=3.0.2&resolution=FIXED&order=bugs.bug_id

x Eclipse https://bugs.eclipse.org/bugs/buglist.cgi?product=JDT&product=PDE&product=

Platform&target_milestone=3.2&resolution=FIXED&order=bugs.bug_id

xi ArgoUML http://argouml.tigris.org/servlets/NewsItemView?newsItemID=1675

xii ArgoUML http://argouml.tigris.org/servlets/NewsItemView?newsItemID=830

xiii Mylyn http://eclipse.org/mylyn/new/new-2.0.html

xiv Rhino http://www.mozilla.org/rhino/rhino15R1.html

xv Rhino https://bugzilla.mozilla.org/buglist.cgi?query_format=

specific&order=relevance+desc&bug_status=__all__&product=

Rhino&content={1.6R3|1.6R4|1.6R5}

KLOCs. Such dramatic changes explain the odds ratio, as many classes not belonging to

antipatterns were added/changed.

The second, third, and fourth cases concern classes having changed between releases

3.0 and 3.2. Eclipse 3.0 was a major improvement over the 2.x series, with a new runtime

platform implementing the OSGi R3.0 specificationsvi to become a Rich Client Platform

to develop any tools (not necessarily an IDE). It had many problems at firstvii, corrected in

the subsequent 3.0.1, 3.0.2, and 3.2 releases, with respectively 266viii, 70ix, and 285 issuesx

fixed. No less than 15, 153 − 11, 166 = 3, 987 classes were added between 3.0 and 3.2,

which did not only belong to antipatterns. Eclipse size increased by 3, 271−2, 260 = 1, 011

KLOCs.

6.4.3 Changes/Faults Odds Ratios

For ArgoUML, change-proneness ORs are never smaller than 3.98. The highest OR occurs

between releases 0.20 and 0.22, period during which a major restructuringxi took place

with many faults fixed and 293 issues resolved. ORs for fault-fixing are high but often lower



6.4. Discussions 97

than those for change-proneness, which suggests that antipatterns are potential symptoms

of change-proneness, but not necessarily of fault-proneness: they make a system harder

to maintain because future changes will likely impact several classes, but only indirectly

impact fault-proneness. The highest fault-related OR occurs between releases 0.14 and

0.16, period during which many fault-fixing activities took placexii. Release 0.16 is the

release with the highest number of fault-fixing changes: 851, the second-highest is release

0.26 with 591 (see Appendix C).

For Eclipse, we found lower ORs than those of other systems for both class change- and

fault-proneness. We explain such a difference by the fact that ∼ 80% of Eclipse classes

participate in at least one antipattern, with a higher proportion of these classes to be

LazyClasses (eg., 51.71% in the first release). Therefore, we expected to find lower ORs

because Eclipse includes many more classes participating in antipatterns than not. The

high proportion of LazyClasses is conform to the results of previous studies [Aversano et

al., 2007], which observed that Eclipse is designed to evolve through sub-classing, which,

in turn, leads to a lower class change-proneness.

Eclipse is the only system with greater ORs for fault/issue- than change-proneness. We

recall that we considered issues, as discussed in Section 6.2.3, and that as discussed in our

previous study [Antoniol et al., 2008], a majority of Eclipse issues are likely not related to

faults but to other maintenance activities, such as restructuring and enhancement. Thus,

it is consistent to find more classes impacted by issues w.r.t. faults only.

Verifying H01 for Mylyn between releases 2.0M3 and 2.0 results in an extreme OR

= 206.60, which we explain by the amount of issues fixed between the releases: 304xiii.

Table 6.4 shows that antipatterns are correlated with fault-fixing changes. The OR reflects

this relation plus that with other changes unrelated to faults, such as restructuring, which

impacted classes in antipatterns.

For Rhino, ORs for change-proneness range between 10.41 in release 1.4R3 and 33.05

in 1.6R4, two numbers which we explain by (1) the number of new features added in

release 1.5R1xiv: many classes not participating in antipatterns were added/changed and

(2) the number of issues between releases 1.6R3, 1.6R4, and 1.6R5: respectively 4, 7, and

24xv. More faults have been filled against 1.6R4 than other releases, thus explaining the

change of ORs.
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6.4.4 Kinds of Antipatterns and Changes/Faults

Tables 6.5 and 6.6 show that antipatterns impact change- and fault-proneness but that

we could not reject H02 or H04 for all of them, in particular LargeClass, Blob, Class-

DataShouldBePrivate, SpaghettiCode, SpeculativeGenerality, and SwissArmyKnife. We

explain this fact by the low number of classes participating in these antipatterns: on av-

erage, in Eclipse, there are 479 LargeClasses for 11,618 classes per release; in ArgoUML,

80 for 960 classes per release; and so on (see Appendix C). The number of SpaghettiCode

is even lower, with, on average, 2 per Eclipse release. No SpaghettiCode was found in

ArgoUML, Mylyn, and Rhino.

Eclipse, ArgoUML, Mylyn and Rhino use extensively object orientation. They “divide

to conquer”, which helps to avoid: Blob, which is a class that knows/does too much; Large-

Class and SwissArmyKnife, which are complex classes that provides too many services;

and SpeculativeGenerality, which is an abstract class with very few children. The use of

polymorphism and encapsulation explains the few number of ClassDataShouldBePrivate,

which occurs when the data encapsulated by a class is public, as well as the SpaghettiCode,

which is a class with too many long methods with too many branches.

Moreover, classes with these antipatterns appear to remain unchanged or to be removed

from the systems as they evolve. For example, in Eclipse 2.0, the only LargeClass was

org.eclipse.core.internal.indexing.IndexedStoreException, which changed only

once between 2.0 and 2.1.1 and never changed again. Only one SwissArmyKnife was

present in Mylyn 1.0.1, which was removed in 2.0.0, no SwissArmyKnife was found in the

other studied versions.

Among the remaining antipatterns, MessageChain enables the rejection of H02 for all

systems and H04 for Eclipse and Rhino. This antipattern characterises classes that use

long chains of calls to perform their functionality, which makes them dependent on classes

far from each other. Finding many MessageChain is not surprising in Eclipse and Rhino.

Eclipse has thousands of classes; developers fixing issues are likely to touch many classes

because of their relations with one another and the risk of faults caused by these relations

is high. Rhino is small but the classes forming its parse tree and interpreter are tightly

coupled.

The other antipatterns satisfy the conditions to reject H02 or H04 for at least one

system. By following their presence through releases, we found that antipatterns are

generally removed from the system while some new ones are introduced. Thus, some
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antipatterns are in small number or are absent in some releases, and the logistic regression

analysis indicated that some antipatterns are statistically significant only in some releases.

Classes participating in the antipatterns ComplexClass and LazyClass are more change-

and fault-prone than others in Eclipse. ComplexClass characterises classes with a higher

number of methods than the average, thus developers adding new features or fixing issues

are more likely to touch these classes, which consequently increases their risks to have

faults. This observation confirms Fowler and Brown’s warnings about complex classes.

Lazy classes tend to be removed, or changed to increase their behaviour, while others

are introduced: there were 2,765 lazy classes in Eclipse 1.0 (59% of the system), 8,967

in 3.3.1 (52%). Class org.eclipse.search.internal.core.SearchScope, for example,

was a lazy class in 1.0 but, in 3.0, 2 methods and 2 constructors were added and the inner

class WorkbenchScope was removed. New lazy classes, eg., org.eclipse.team.inter-

nal.ccvs.ui.actions.ShowEditorsAction, were introduced.

Classes participating in AntiSingleton are more fault/issue-prone in Eclipse and more

change-prone in ArgoUML than other classes. They are generally removed from the system

or changed. In Eclipse 16% of the AntiSingleton classes were removed between releases 1.0

and 3.0 and only 53% of the classes were still AntiSingleton in that release; the other classes

were changed. For example, all methods of org.eclipse.compare.internal.Compare-

WithEditionAction, an AntiSingleton, were removed between releases 1.0 and 3.0 and

the class became a LazyClass with no behaviour.

We can reject H02 for LongMethod for ArgoUML, Eclipse, and Mylyn, and H04 for

Eclipse. LongMethod classes are more change-prone than any other class, and more fault-

prone than other Eclipse classes, possibly because such classes are complex and thus more

likely to change to fix issues. Faults are also more likely to be introduced when changing

these classes due to their complexity. Moreover, we observe that LongMethod classes keep

on participating in this antipattern during their evolution and are, in general, central to

the system core features. Previous studies, eg., [Aversano et al., 2007], confirm that central

classes are more change-prone.

Classes participating in RefusedParentBequest are more change-prone than others in

ArgoUML, possibly due to the need for re-organising badly organised hierarchies: this an-

tipattern occurs when a subclass does not use attributes and–or public/protected methods

inherited from its parent. We expected this results because ArgoUML implements deep

hierarchies of models, diagram elements, and tools.
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6.4.5 Development Practice and Antipatterns

The results of this chapter show that antipatterns do impact the change- and fault-

proneness of classes negatively and that certain kinds of antipatterns have a greater impact

than others. However, we do not claim that antipatterns cause changes and faults. In-

deed, our study cannot say anything about the reasons for classes to have antipatterns

and, consequently, the reasons for changes and faults to appear in these classes. We only

empirically verified that classes with antipatterns are more change- and fault-prone than

others, thus confirming the conjecture in the literature.

In addition, in some situations, an antipattern may actually be the best and possibly

only way to implement some requirements and–or functionalities of the systems. For

example, one of the LargeClass in Eclipse is class org.eclipse.swt.internal.win32.

OS, which is the unique access point for the Standard Widget Toolkit to the underlying

Windows platform. Although the class is large, it is sensible to provide a unique access

point to non-object-oriented, platform-dependent resources, thus increasing portability

and possibly efficiency.

Another important issue about the potential usefulness of antipatterns is whether they

provide more information than size. El Emam et al. [2001] found that many metrics are

correlated to size, thus antipatterns could also be correlated to size because they use

metrics. However, as discussed in RQ5 (see Section 6.3.5), we found that this is not the

case for many antipatterns, i.e., classes participating to some kinds of antipatterns are not

significantly larger than other classes. Moreover, large classes participating in antipatterns

are generally more change- and fault-prone than other large classes.

In Section 3.2, we showed that classes having code smells—the symptoms of antipatterns—

are more change-prone than classes having no code smells. These results are confirmed

and reinforced the results reported in this chapter. Indeed, considering that code smells

make classes more change-prone, it is natural that classes having antipatterns are also

more change-prone than classes without antipatterns. However, this study was necessary

to confirm this relation because we did not test in our preliminary study the different

impact on a class to have one, two, or more particular code smells. It could have been

possible that having some combinations of code smells could have rendered classes more

difficult to change and, consequently, less change-prone than others.

We can also relate the impact of having two or more antipatterns on change- and

fault-proneness with the impact of playing two or more roles in design motifs studied in

Chapter 5. We used several metrics, including the number of past and future changes
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and the number of faults, to study the impact of playing roles. We showed, using a

representative population of classes, that classes playing one, two, or more roles are more

change prone than classes playing zero roles. We could not find any statistically significant

impact of playing one role vs. two roles on change- and fault-proneness but classes playing

two roles changed 1.52 times more than classes playing one role. Classes participating

in one or more antipatterns are somehow similar to those playing two or more roles in

some design motifs because, in both cases, they are bigger than others and play either a

central role in the functioning of the system (design motifs) or in the maintenance of the

system (antipatterns). In Chapter 8, we combine our findings on these design motifs and

antipatterns to build quality models to help characterize change and fault prone classes.

6.5 Threats to Validity

We now discuss the threats to validity of our study.

Construct validity threats in this study are mainly due to measurement errors. The

identification of changes is reliable because based on the CVS/SVN change logs. It may

not reflect exactly the commits related to a change/fault-fixing and developers’ efforts

accurately because developers follow different patterns for committing their changes, eg.,

from committing changes as faults are fixed to committing all changes once a week. How-

ever, this does not affect our measure of change-proneness as we are interested whether a

class underwent at least one change during a given period of time.

We were able to identify fault-fixing changes for ArgoUML, Mylyn, and Rhino using an

existing classification [Eaddy et al., 2008]. For Eclipse, we related antipatterns with issue-

proneness; we are aware that issue-fixing does not equal fault-fixing. We focus on issues

marked as “FIXED” or “CLOSED” because they required changes. It is unlikely that

hard-to-fix issues would stay longer “OPENED” than others in Eclipse, because Eclipse

is being backed up by IBM, which strives to offer a stable product.

Finally, we observe that DECOR includes its authors’ subjective understanding of the

antipatterns and that the accuracy of its detection algorithms is not perfect [Moha et al.,

2009]. DECOR accuracy impacts our results because we may have classified a class not

participating in an antipattern as participating in it and vice-versa. Other techniques and

tools should be used to confirm our findings. However, we found that classes with these

antipatterns as detected by DECOR are more change- and fault-prone than other classes,

therefore detecting antipatterns with DECOR can possibly help developers to focus their

effort.
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Threats to internal validity do not affect this study, being an exploratory study [Yin,

2002]. Thus, we cannot claim causation, but relate the presence of antipatterns with the

occurrences of changes, faults, and issues. Nevertheless, we tried to explain—by looking at

specific changes, commit notes, and change histories—why some antipatterns could have

been the cause of changes/issues/faults. We are aware that antipatterns can be dependent

to each other and relied on the logistic regression model-building procedure to select the

subset of non-correlated antipatterns. When studying antipatterns, we do not exclude

that, in a particular context, an antipattern can be the best way to implement or design

a (part of a) system.

Threats to external validity concern the possibility to generalise our results. First, we

studied four systems having different size and belonging to different domains. Nevertheless,

further validation on a larger set of systems is desirable. Second, we used a particular yet

representative subset of antipatterns. Different antipatterns could have led to different

results and should be studied in future work. Within its limits, our results confirm the

conjectures reported in the literature.

Reliability validity threats concern the possibility of replicating this study. We

attempted to provide all the necessary details to replicate our study. Moreover, the source

code repositories and issue-tracking systems of the studied systems are available to obtain

the same data. The raw data used to compute the statistics is available on-line1.

Conclusion validity threats concern the relation between the treatment and the

outcome. We paid attention not to violate assumptions of the performed statistical tests.

Also, we mainly used non-parametric tests that do not require to make assumption about

normality of the data set distribution. For Mylyn, we are aware that fault-proneness is

analysed on only 3 releases for which the manual fault classification is available [Eaddy et

al., 2008], thus it would be difficult to make strong conclusions, for this system, about the

relation between antipatterns and fault-proneness.

6.6 Summary

In this chapter, we provided empirical evidence of the negative impact of antipatterns

on classes change- and fault-proneness in four systems: ArgoUML, Eclipse, Mylyn, and

Rhino. We studied the odds ratios of changes, faults, and issues on classes participating

(or not) in 13 antipatterns in (overall) 54 releases of the four systems. We showed (see

RQ1–5) that classes participating in antipatterns are significantly more likely to be sub-

ject to changes and to be involved in fault-fixing changes (issue-fixing changes for Eclipse)
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than other classes. We also showed that size alone cannot explain the participation of

classes to antipatterns (RQ6) and, thus, that antipatterns bring additional, complemen-

tary information to developers to analyse their systems.

We also studied the kinds of changes that impacted classes participating in antipatterns

and other classes. We found that, in ArgoUML, and Mylyn, structural changes are more

likely to occur in classes participating in antipatterns, although odds ratios are not high

(≈ 1.2), than in other classes, while it is not the case for Eclipse and Rhino. Furthermore,

we studied the correlations among antipatterns and found that the Blob, ComplexClass,

and LargeClass are correlated with one another in all releases of ArgoUML, Mylyn, and

Rhino, but in none of Eclipse. As expected, other antipatterns are unrelated.

This study provides evidence to practitioners that they should pay attention to systems

with a high number of classes participating to antipatterns, because these classes are more

likely to contain faults and to be the subject of their change efforts. More specifically,

managers and developers can use these results to monitor the quality of systems and

guide maintenance activities: for example, they can recommend their developers to avoid

MessageChain as this antipattern is consistently related with high fault and change rates.



Chapter 7

Relation between Antipatterns

and Design Patterns

Design patterns are good solutions to recurring design problems while antipatterns are poor

solutions. In Chapters 6 and 5, we investigated independently the impact of antipatterns

and of design patterns on quality.

In a previous study [Vaucher et al., 2009], we analysed the lifecycle of God Classes in

Xerces and Eclipse JDT and found that some God Classes interact with Abstract Factory,

Adapter, Observer, and Prototype. This result drew our attention on the possible co-

occurrence of antipatterns and design motifs in object oriented systems.

Theoretically, antipatterns and design patterns could be argued to be unrelated by

definition. However, our results in Chapter 5 showed that design patterns do not always

impact positively the quality characteristics of systems and of their classes, eg., we found

that tangled design pattern implementations make classes more complex and less cohesive.

Other studies [Aversano et al., 2007 ; Di Penta et al., 2008] reported that some design

patterns and their roles are more resilient to changes than others and thus contribute to in-

crease a class change-proneness. In our first preliminary study, presented in Chapter 3, we

also found that developers think that some design patterns decrease system extensibility.

On the contrary, antipatterns, could be the best way to design and implement part of

a system in some specific cases, as we remarked in Chapter 6 (p. 100). For example, one

of the LargeClass in Eclipse is class org.eclipse.swt.internal.win32.OS, which con-

stitutes the unique access point for the Standard Widget Toolkit to the underlying Win-

dows platform and which provides a unique access point to non-object-oriented, platform-

dependent resources, contributes in increasing portability and possibly efficiency.
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Table 7.1 – Characteristics of the systems.

Systems Releases (#) Classes LOCs Changes

ArgoUML 0.10.1–0.22 (9) 792–1,619 128,585–279,864 29,906
Eclipse-JDT 1.0–3.0 (5) 1,382–2,518 257,605–528,522 67,165
Mylyn 2.0.0–3.1.1 (13) 1,759–2,647 185,169–276,401 22,804
Rhino 1.4R3–1.6R7 (14) 89–270 30,748–79,406 6,925

In this chapter, we perform a systematic study of the co-occurrence of several design

patterns and antipatterns in multiple software systems and analyzed the effects of such a

co-occurrence. For consistency and to emphasise the parallel between design patterns and

antipatterns, we use the term antipatterns (AP) to refer to antipatterns and code smell,

and design pattern (DP) to refer to design motifs [Guéhéneuc and Antoniol, 2008]: ideal

solutions that describe the roles played by classes to implement the motifs. Thus, we say

that a class participate in some APs (respectively, DPs) when having some code smells

(respectively, playing some roles).

Understanding the interactions between APs and DPs is important for the accuracy of

quality models build from them. Indeed, the majority of statistical techniques generally

used to build models assumes an independence of observations i.e., knowledge of the value

of one observation should not provide information about the value of any other. A violation

of this assumption generally results in poor accuracy, incorrectly narrow confidence limits

and incorrectly small p values. Consequently, possible confounding effects of APs and DPs

interactions should be control.

7.1 Context

The context of this study consists of the following four open-source systems: ArgoUML,

Eclipse-JDT, Mylyn, and Rhino. The systems have different sizes and belong to different

domains. Section 4.5 presents their description and Table 7.1 reports some descriptive

statistics of the four systems. Since changes (as detailed in Chapter 4) are computed

between a release and the subsequent one, the last release for which we relate the presence

of AP and DP with change-proneness is—for the four systems—the release preceeding

the one reported as last release in Table 7.1, namely release 0.20 for ArgoUML, 2.1.3 for

Eclipse-JDT, 3.1.0 for Mylyn, and 1.6R6 for Rhino. Table 7.2 briefly describes the studied

APs and DPs and reports the minimum and maximum numbers of their occurrences in

each system.
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Table 7.2 – Design patterns/antipatterns considered in the study and
the minimum and maximum numbers of their occurrences in releases of
the four systems.

Names When a class participates in the antipattern/design pattern explanation
Numbers of Occurrences

(Min–Max)
ArgoUML Eclipse-JDT Mylyn Rhino

Antipatterns

AntiSingleton Provides mutable class variables, which could
be used as global variables

242–420 99–254 9–127 1–16

Blob Too large, not enough cohesive, monopolises
most of the system processings

12–84 131–362 48–93 –––

ClassDataShouldBePrivate (CDSBP) Exposes its fields, thus violating the principle
of encapsulation

43–158 174–214 55–183 4–33

ComplexClass Has (at least) one large and complex method 0–94 167–333 34–72 6–14

LargeClass Has (at least) one large method, in term of
lines of code

0–144 ––– 52–99 9–19

LazyClass Has few methods and fields; its methods have
little complexity

16–1202 719–1323 4–71 4–11

LongMethod Has a method that is overly long 172–259 864–1581 153–349 14–35

LongParameterList (LPL) Has (at least) one method with an overly-long
list of parameters

0–252 426–1300 39–95 8–28

MessageChain Uses a long chain of method calls to realise
(at least) one of its functionality

0–260 332–669 75–181 20–66

RefusedParentBequest (RPB) Redefines inherited method using empty bod-
ies, breaking polymorphism

0–403 116–301 65–290 5–16

SpeculativeGenerality (SG) Defined as abstract; has a very few children,
which do not use its methods

0–15 9–12 14–39 0–6

SwissArmyKnife Its methods provide many different unrelated
functionalities

––– 23–25 ––– –––

Design Patterns

Adapter (A) Allows classes with different interfaces to in-
teract

492–1183 1023–1789 474–1014 61–138

Command (Cmd) Encapsulates a request as an object 271–601 779–1331 129–368 36–89

Composite (C) Lets clients treat individual objects and com-
positions of objects uniformly

220–664 122–344 82–218 35–65

Decorator (D) Dynamically attaches additional responsibil-
ities to an object

108–203 355–542 25–120 31–64

Factory Method (FM) Defines an API for object creation; subclasses
choose the class to instantiate

142–450 713–997 91–342 27–68

Observer (O) Dynamically defines a one-to-many depen-
dency between objects

128–384 207–278 40–60 30–61

Prototype (P) Specifies the kind of objects to create using
a prototypical instance

0–46 52–107 0–145 –––

State (S) Allows an object to alter its behaviour when
its internal state changes

0–873 741–1302 197–589 50–97

Template Method (TM) Allows subclasses to define a varying be-
haviour

0–1074 913–1581 422–926 49–116

Visitor (V) Separates an algorithms from the structure
on which it operates

0–23 256–439 0–214 0–32

7.2 Study Definition and Design

Our goal in this chapter is to study classes participating in APs and DPs with the purpose

of investigating whether classes participating in APs also participate in DPs and the

change-proneness of such co-occurrences. We do not study the fault-proneness because

the available data set does not allow to analyse combinations of APs and DPs without

risk of Type II error (i.e., error of failing to observe a difference when in truth there is

one). Indeed, data on faults are available only for few releases of some of the systems. The

quality focus is related to the quality of systems and to the change proneness of classes

participating in APs and DPs. The perspective is that of researchers and practitioners
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who would benefit of knowledge on the impact of co-occurrences of APs and DPs on class

change-proneness in software systems to build quality models.

7.2.1 Research Questions

In this chapter, we aim at answering the following research questions:

• RQ1: What is the number of classes participating in antipatterns and design pat-

terns?

• RQ2: What is the impact on change-proneness for a class to participate both in

some antipatterns and design patterns?

• RQ3: What is the impact of playing roles in particular kinds of antipatterns and

design patterns w.r.t. change-proneness?

7.2.2 Independent Variables

We again use DECOR and DeMIMA presented in Chapter 4 to specify and detect APs

and DPs presented in Table 7.2. Our independent variables are the number of classes

participating in these APs and DPs.

7.2.3 Dependent Variables

The dependent variable of this study is class change-proneness, computed as discussed in

Section 4.4.

7.2.4 Analysis Method

We now present methods used to answer our research questions.

RQ1: What is the number of classes participating in antipatterns and design

patterns? This question is preliminary to the following ones. It provides quantitative

data on the percentages with which APs and DPs occur and co-occur in the releases of

the studied systems.

We address this question by analysing whether some classes, in all studied releases,

participate to APs and DPs. Specifically, we show for each releases (1) the overall num-
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ber of classes, (2) the number of classes participating in APs (3) the number of classes

participating in DPs, (4) the number of classes participating both in APs and DPs.

Then, we perform a deeper analysis about the co-occurrences of APs and DPs, re-

porting the number and percentages of pairs of AP code smells and DP roles that have

the highest percentages of co-occurrence in the four systems. We limit our analysis to

percentages above 10% of the overall number of classes (5% for Mylyn and Rhino, due to

their smaller numbers of classes participating in APs).

RQ2: What is the impact on change-proneness for a class to participate both

in some antipatterns and design patterns? We investigate if the co-occurrence of

APs and DPs has a positive or negative effect, i.e., if it is related to higher or lower

change-proneness w.r.t. APs and DPs alone.

We first analyse to what extent changes to a class are related to its participation in

at least one AP and one DP, regardless of the kind of AP and DP. Therefore, we test

the null hypothesis1 H02: the proportion of classes undergoing at least one change between

two subsequent releases does not change between all classes participating in some APs and

classes participating in both some APs and DPs.

We use Fisher’s exact test (presented in Section 4.6.1) and also compute the odds ratio

(OR) (see Section 4.6.1). Specifically, we compute OR considering (1) as experimental

group the classes participating in APs and as control group classes not participating in

any AP and (2) as experimental group classes participating in both some APs and DPs

and as control group again classes not participating in any AP. OR = 1 indicates that

the event is equally likely in both samples; OR > 1 that the event is more likely in the

experimental group while OR < 1 indicates that it is more likely in the control group.

RQ3: What is the impact of playing roles in particular kinds of antipatterns

and design patterns w.r.t. change-proneness? We explore whether some kinds of

DPs impact more some kinds of APs w.r.t. class change-proneness. If the co-occurrence

of a DP decreases the odds to change of a class participating in an AP, then we say that

the DP “loves” this AP, else that it “hates” it.

We investigate whether specific APs and–or DPs influence class change-proneness and

whether the interaction between APs and DPs is significantly correlated to a higher class

change-proneness. For each pair of AP–DP, we test the null hypothesis H03: the partici-

1There is no H01 because RQ1 is exploratory.
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Table 7.3 – Number and percentage of classes (across all releases) par-
ticipating at least once in antipatterns and–or design patterns.

Systems Classes
Classes Classes Classes
APs DPs APs+DPs

ArgoUML 2,834 1,791 (63%) 1,998 (71%) 1,650 (58%)
Eclipse-JDT 3,144 2,709 (86%) 2,495 (79%) 2,141 (68%)
Mylyn 3,437 1,229 (36%) 2,346 (68%) 1,102 (32%)
Rhino 560 160 (29%) 397 (71%) 154 (28%)

pation of a class in DP does not interact with its participation in an AP w.r.t. increasing

or decreasing its change-proneness.

We use a logistic regression model (see Section 4.6.5) to correlate the participation of

classes in some APs and DPs with changes. Like in Chapter 6, we use it as an alternative

to the Analysis Of Variance (ANOVA) to test the influence of the participation of a class

in APs and DPs, and the interaction of the participation to both APs and DPs, to the

class change-proneness.

Ideally, to test interactions between APs and DPs, we should include as independent

variables of the logistic regression model all APs code smells and DPs roles and their

pair-wise interactions. However, due to the high number of possible combination and the

relatively small data set, such inclusion would not produce any statistically significant

result. Therefore, we follow three steps: (1) we build a logistic regression model without

considering interactions between APs and DPs. We identify with this model those APs

and DPs having a significant effect on change-proneness; (2) we build a model with the

independent effect and the interaction of all APs and DPs identified in Step (1); and, (3)

for all significant interactions, we compute the change-proneness OR (w.r.t. other classes)

for classes participating in the APs, DPs, and both, to identify the “love” and “hate”

relationships.

7.3 Study Results

This section reports the study results. Raw data for replication are available on-line2.

2http://khomh.net/experiments/thesis/
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7.3.1 RQ1: What is the number of classes participating in antipatterns

and design patterns?

Table 7.3 shows the overall number of classes participating (at least once in the observed

time frame) in APs and–or DPs across all releases of the four systems and their percentages.

It shows that (1) percentages of classes participating in APs vary between system: from

86% in Eclipse-JDT to 29% in Rhino; (2) all four systems contain a high percentage of

classes participating in DPs: from 68% in Mylyn to 79% in Eclipse-JDT; (3) percentages

of classes participating in both APs and DPs are, again, higher for Eclipse-JDT (68%)

and ArgoUML (58%), and lower for Mylyn (32%) and Rhino (28%). In summary, these

figures indicate that the percentages of classes participating in APs and DPs is worth

further investigation.

Figure 7.1 shows the evolution of the number of classes and of the numbers of classes

participating in APs and–or DPs: (1) for ArgoUML (in Figure 7.0(a)), the number of

classes slightly increases between releases 0.12 and 0.14 and then remains stable. A similar

phenomenon occur for classes in DPs. The number of classes participating in APs (and

similarly, that of classes in APs and DPs) exhibits a periodic behaviour between releases

0.14 and 0.20; (2) for Eclipse-JDT (in Figure 7.0(b)), the number of classes and of classes

participating in APs, DPs, and in both, exhibit similar behaviours, i.e., they increase until

release 2.1.1 and then tend to remain stable. Differently to the three other systems, the

number of classes participating in APs is always higher than that of classes in DPs; (3)

for Mylyn (in Figure 7.0(c)), again, the series evolve consistently, with a small increase

in correspondence of release 3.0.0 and 3.1.0; and, (4) for Rhino (in Figure 7.0(d)), the

number of classes participating in APs as well as those in both APs and DPs—is low and

stable, similarly to that of classes in DPs.

Table 7.4 shows the top 10 pairs of APs and DPs with the highest percentages of

co-occurrences, limited to the pairs in which the number of overlapping classes is > 10%

(respectively, > 5%) of the total number of classes of ArgoUML and Eclipse-JDT (re-

spectively, of Mylyn and Rhino). It shows that: (1) for ArgoUML, 10 DP roles largely

co-occur with LazyClass ( ≤77% of the occurrences); (2) for Eclipse-JDT, we observe fre-

quent occurrences of DPs with LongMethod; (3) for Mylyn, percentages of co-occurrence

are lower, i.e., 36% and below. DPs highly co-occur with LongMethod (as in Eclipse-JDT),

RefusedParentBequest, and MessageChain; and, (4) for Rhino, DPs largely co-occur with

MessageChains.
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(d) Rhino
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Figure 7.1 – Evolution of the numbers of classes participating in APs,
DPs, and APs+DPs.
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Table 7.4 – Highest percentages of co-occurrences between APs and DPs.

Design Patterns Antipatterns # of # of
Perc.

Roles Code Smells DPs APs

ArgoUML

C.Leaf LazyClass 702 661 94%
O.ConcreteObserver LazyClass 404 379 94%
TM.Client LazyClass 1347 1141 85%
A.Client LazyClass 1284 1085 85%
A.Adapter LazyClass 882 733 83%
S.Concretestate LazyClass 1103 913 83%
A.Adaptee LazyClass 1189 961 81%
TM.Concreteclass LazyClass 1016 802 79%
FM.ConcreteProduct LazyClass 443 337 76%
Cmd.Concretecommand LazyClass 434 327 75%

Eclipse-JDT

Visitor.ObjectStructure LongMethod 367 343 93%
Cmd.invoker LongMethod 620 568 92%
Visitor.Client LongMethod 421 385 91%
S.Context LongMethod 678 618 91%
FM.ConcreteCreator LongMethod 532 473 89%
Cmd.Client LongMethod 643 571 89%
D.Concretecomponent LongMethod 455 391 86%
A.Adapter LongMethod 1035 845 82%
FM.ConcreteProduct LongMethod 764 623 82%
Cmd.Concretecommand LongMethod 910 702 77%

Mylyn

TM.Concreteclass RPB 617 221 36%
A.Adapter RPB 548 196 36%
A.Client LongMethod 1024 334 33%
TM.Client LongMethod 1071 343 32%
A.Adaptee LongMethod 851 229 27%
A.Adaptee RPB 851 221 26%
TM.Client RPB 1071 266 25%
A.Client MessageChain 1024 252 25%
A.Client RPB 1024 249 24%
TM.Client MessageChain 1071 254 24%

Rhino

Visitor.Client MessageChain 45 39 87%
Cmd.Client MessageChain 38 31 82%
FM.ConcreteCreator MessageChain 53 43 81%
O.ConcreteSubject MessageChain 53 41 77%
O.ConcreteObserver MessageChain 57 43 75%
FM.ConcreteProduct MessageChain 52 37 71%
Cmd.invoker MessageChain 63 44 70%
Cmd.Concretecommand MessageChain 43 30 70%
C.Leaf MessageChain 72 50 69%
D.Concretecomponent MessageChain 72 50 69%
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Table 7.5 – Change-proneness ORs for classes participating in APs and
in both APs and DPs.

ArgoUML Eclipse-JDT Mylyn Rhino

Rel.
ORs ORs

Rel.
ORs ORs

Rel.
ORs ORs

Rel.
ORs ORs

APs APs+DPs APs APs+DPs APs APs+DPs APs APs+DPs

0.10.1 14.17 2.08 1.0 1.42 1.50 2.0.0 14.17 9.16 1.4R3 10.41 7.12
0.12 7.16 1.91 2.0 0.72 0.62 2.1 10.89 5.82 1.5R1 17.98 11.37
0.14 5.36 2.33 2.1.1 2.46 2.81 2.2.0 11.10 6.68 1.5R2 17.37 15.00
0.15.6 97.44 22.78 2.1.2 0.89 0.98 2.3.0 9.83 5.52 1.5R3 15.71 8.63
0.16 15.91 4.47 2.1.3 1.88 1.91 2.3.1 7.66 4.61 1.5R4 27.04 16.07
0.17.5 19.81 5.09 2.3.2 24.38 14.95 1.5R5 15.51 8.55
0.18.1 8.60 4.01 3.0.0 9.45 5.94 1.6R1 24.73 13.87
0.19.8 11.45 3.72 3.0.1 9.85 5.63 1.6R2 12.69 9.53
0.20 26.54 12.27 3.0.2 5.31 3.41 1.6R3 19.95 15.85

3.0.3 8.18 5.31 1.6R4 33.05 17.49
3.0.4 3.77 2.27 1.6R5 19.97 13.98
3.0.5 4.96 3.06 1.6R6 20.56 11.78
3.1.0 10.53 8.39

7.3.2 RQ2: What is the impact on change-proneness for a class to par-

ticipate both in some antipatterns and design patterns?

Table 7.5 shows the ORs of classes participating in APs to change w.r.t. other classes

(columns 2, 5, 8, 11) and the change-proneness ORs of classes participating in AP and

DPs (columns 3, 6, 9, 12). We performed a Fisher’s exact test, which indicates that the

proportion of change-prone classes participating in both APs and DPs is significantly higher

than the proportion of change-prone classes participating to APs only (p-value < 0.05),

with the exception of classes in Eclipse-JDT releases 2.0 and 2.1.2. Thus, we reject in

general H02.

Classes participating in APs are more change-prone than other classes with ORs (much)

higher than one. Whenever an AP occurs in a class that also participates in a DP, the

change-proneness OR always decreases. The only exceptions to this phenomenon are in

Eclipse-JDT, where the ORs for classes participating in APs are not very high and their

ORs do not decrease (in some cases even slightly increase) when classes also participate

in DPs.
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Table 7.6 – Love–hate relationships: significant interactions among spe-
cific APs and DPs that decrease/increase the class change-proneness
ORs.

Rel. Design Patterns Antipatterns
DPs APs Int.
OR OR OR

Design Patterns “Love” Antipatterns

ArgoUML

0.14 S.Concretestate Blob 7.32 55.01 0.09
0.14 A.Adapter MessageChain 3.61 9.32 0.12
0.18.1 D.Concretecomponent Antisingleton 1.29 8.68 0.09
0.18.1 A.Adaptee LargeClass 6.54 25.15 0.23
0.18.1 FM.ConcreteCreator MessageChain 9.91 11.12 0.14

Eclipse-JDT

2.1.1 D.Concretecomponent LongMethod 1.89 3.14 0.54
2.1.1 FM.ConcreteProduct MessageChain 1.65 3.41 0.52
2.1.2 C.Leaf LPL 1.02 1.07 0.38
2.1.3 FM.product AntiSingleton 0.63 2.20 0.20
2.1.3 Cmd.Concretecommand LPL 1.01 2.05 0.47
2.1.3 S.Concretestate MessageChain 0.58 1.81 1.56

Mylyn

2.3.0 FM.ConcreteCreator LongMethod 4.21 17.58 0.07
2.3.1 Visitor.Client LPL 16.84 24.49 0.04
3.0.3 S.Concretestate CDSBP 3.22 5.63 0.18
3.0.3 S.Context LongMethod 3.85 10.91 0.19

Design Patterns “Hate” Antipatterns

ArgoUML

0.14 Cmd.Concretecommand RPB 3.74 1.60 11.02

Eclipse-JDT

1.0 S.Context LazyClass 2.70 1.17 5.54
1.0 FM.ConcreteProduct LPL 1.95 1.18 4.53
2.0 Visitor.Client MessageChain 1.04 0.59 19.02
2.1.1 S.Concretestate ComplexClass 2.29 3.86 4.58
2.1.2 C.Leaf ComplexClass 0.66 2.19 4.41
2.1.2 FM.ConcreteProduct LazyClass 1.78 0.43 3.29
2.1.2 O.subject LazyClass 3.32 0.66 5.43
2.1.2 S.Concretestate LazyClass 1.48 0.39 2.38
2.1.2 Cmd.Concretecommand LazyClass 1.60 0.47 1.74
2.1.2 Visitor.Client LongMethod 0.84 2.01 6.97
2.1.2 O.subject LPL 2.69 0.93 3.93
2.1.2 Visitor.Client MessageChain 2.25 1.56 3.00
2.1.2 C.Leaf MessageChain 0.39 2.30 4.31
2.1.3 S.Concretestate AntiSingleton 0.78 1.66 1.93
2.1.3 FM.ConcreteCreator CDSBP 1.97 0.53 2.46
2.1.3 C.Leaf MessageChain 0.35 1.66 6.39
2.1.3 P.Concreteprototype RPB 5.92 0.42 13.03
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7.3.3 RQ3: What is the impact of playing roles in particular kinds of

antipatterns and design patterns w.r.t. change-proneness?

We analyse the interactions between specific APs and DPs. The upper part of Table 7.6

shows the “love” relationships, i.e., co-occurrences found in releases of the four systems for

which the occurrence of a DP in a class participating in an AP causes a decrease of the class

change-proneness OR. It shows the change-proneness ORs of classes participating (1) in

the DP w.r.t. classes not participating in it, (2) in the AP w.r.t. classes not participating

in it, and (3) in both the AP and the DP w.r.t. classes not participating in them. The

table excludes Rhino because we could not obtain significant results due to the limited

size of the data set.

Similarly, the bottom part of Table 7.6 shows the few “hate” relationships, i.e., classes

in which the co-occurrence of a specific DP with an AP causes an increase of the classes

change-proneness ORs. Consistently with results of RQ2, “hate” relationships only occur

in Eclipse-JDT and for one co-occurrence in ArgoUML.

7.4 Discussions

We now discuss the results to the research questions.

7.4.1 RQ1: What is the number of classes participating in antipatterns

and design patterns?

Table 7.3 shows that large numbers of classes are found to participate in APs and DPs by

the detection approaches. We discuss the results reported in Table 7.4 as follows:

• In ArgoUML, 58% of classes participate in some APs, DPs, and both (2nd highest

number of co-occurrences to Eclipse-JDT). A review of a sample of these classes

suggest that DP-related methods are often long methods, with many parameters;

for example the Adapter class org.argouml.uml.cognitive.critics.ClClassName, which

method panicking() is also an occurrence of LongMethod and LongParameterList.

• In Eclipse-JDT, the co-occurrences with highest percentages are those with Long-

Method. We expected such co-occurrences given the number of LongMethod in

Eclipse reported in Table 7.2. Eclipse-JDT includes many LongMethods because of

the intrinsic complexity of parsing/debugging/analysing Java source code. Also, a
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large number of classes playing concrete-class or leaf roles in DPs are often Lazy-

Classes, eg., org.eclipse.jdt.internal.corext.refactoring.changes.DeleteFolderChange

and org.eclipse.jdt.internal.core.search.matching.MultipleSearchPattern that are De-

corator.ConcreteComponent, org.eclipse.jdt.internal.debug.eval.ast.instructions.

RemainderAssignmentOperator that is a Composite.Leaf, and org.eclipse.jdt.inter-

nal.core.builder.ClasspathLocation that is a Visitor.ConcreteElement. We explain

these results by the architecture of Eclipse-JDT, which is based on plug-ins, offering

many extension points, and designed to evolve through sub-classing [Aversano et al.,

2007]: many classes are LazyClasses playing roles in DPs.

• In Mylyn, DPs highly co-occur with LongMethod, for reasons similar to those ex-

plained for Eclipse-JDT, with RefusedParentBequest because it subclasses many

classes from the Eclipse platform and Eclipse-JDT plug-in. An example of Refused-

ParentBequest class is org.eclipse.mylyn.internal.tasks.ui.TaskWorkingSetFilter that

is also a Composite.Leaf.

• In Rhino, MessageChain co-occurs with all DPs with the highest percentages. We

explain the occurrence of MessageChain by the intrinsic construction of Rhino, which

is a ECMA/JavaScript parser in which classes offer lots of proxy methods. These

MessageChains are often Visitor and Command clients. In Rhino 1.6R6 for ex-

ample, the class org.mozilla.javascript.ImporterTopLevel is a Visitor.Client, while

org.mozilla.javascript.JavaAdapter is a Command.client.

Figure 7.1 shows the evolution of the numbers of classes participating in APs and–or

DPs:

• In ArgoUML, the trend of the number of occurrences of APs follows a periodic

behaviour. We explain such trend using the release notes. For example, between

releases 0.19.8 and 0.20, the release notes3 report that “Over 400 bugs have been

fixed for this release.” and “[a] lot of hard work has also happened under the

covers”. Similarly, between releases 0.14 and 0.15.6, a new version of GEF4 has

been integrated, which could explain the higher number of APs.

• Differently from the other three systems, in Eclipse-JDT, the number of classes par-

ticipating in APs is always higher than the number of classes in DPs. We explain this

observation by the high number of LongMethods, resulting from the implementation

3http://argouml.tigris.org/servlets/NewsItemView?newsItemID=1451
4http://argouml.tigris.org/servlets/NewsItemView?newsItemID=732
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of Eclipse-JDT. These LongMethods are in the org.eclipse.jdt.internal packages, thus

reflecting the complexity of implementing a Java IDE.

• In Mylyn and Rhino, the trends are as could be expected: the number of classes

participating in APs and DPs slowly increase, consistently with the overall number

of classes.

7.4.2 RQ2: What is the impact on change-proneness for a class to par-

ticipate both in some antipatterns and design patterns?

The high ORs in columns labelled “APs” in Table 7.5 indicate that, in all releases of all

systems but releases 2.0 and 2.1.2 of Eclipse-JDT, classes participating in APs are more

change-prone than others. Eclipse-JDT 2.1 introduced several new features, including

supports for building projects with circular dependencies, multi-JAR system libraries,

source and output folders that are outside of the workspace. Some 2514−2181 = 333 new

classes were added, an increase of 528, 314 − 438, 070 = 90, 244 LOCs; 125 faults 5 were

fixed between 2.0 and 2.1. and 53 between 2.1.2 and 2.1.3. Such dramatic changes explain

the ORs: many classes not belonging to APs were added/changed.

Moreover, Table 7.5 also shows that, whenever APs and DPs co-occurs in a class, the

change-proneness ORs always decreases except for the same two releases 2.0 and 2.1.2 of

Eclipse-JDT. This decrease hints at the potential capability of design patterns to mitigates

the negative impact of APs on classes where these APs occur.

7.4.3 RQ3: What is the impact of playing roles in particular kinds of

antipatterns and design patterns w.r.t. change-proneness?

Table 7.6 summarises the “Love–Hate” relationships between specific APs and DPs. The

“love” relationships shows that not all co-occurrences of some DPs in classes participating

in APs have a negative impact on class change-proneness. Indeed, many of these co-

occurrences significantly decrease the change-proneness ORs of the classes. This decrease

suggests that, when (sub-)systems are properly designed and–or implemented using good

solutions to recurring design problems, i.e., DPs, then these DPs help mitigate and even

revert the (sub-)systems decay into poor solutions, i.e., APs.

The “hate” relationships only happens in Eclipse-JDT and for one co-occurrence in

ArgoUML. A review of the classes involved in these “hate” relationships suggest that

5http://archive.eclipse.org/eclipse/downloads/drops/R-2.1.3-200403101828/readme_

eclipse_2_1_3.html\#KnownIssues
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they are in general the results of the decay of a DP, eg., the unique “hate” relationship

in ArgoUML, represented by class org.argouml.uml.ui.foundation.core.UML Structural-

FeatureMultiplicityCombo- BoxModel, was a Cmd.Concretecommand in ArgoUML 0.14

and decayed into a RefusedParentBequest in ArgoUML 15.6 while still playing the role

of Cmd.Concretecommand in subsequent releases. This decay caused an increase of the

change-proneness OR of that class.

7.5 Threats to Validity

The results of any empirical studies are subject to the following threats to their validity.

Construct validity threats concern the relation between theory and observation:

they are mainly due to measurement errors possibly introduced by the adopted APs and

DPs detection approaches.

Precision and recall figures for DeMIMA and DECOR are consistent with the precision

and recall of other approaches considering that all code smells/roles are identified. We

encountered no scalability issue. Yet, as said before, DeMIMA and DECOR, similarly to

other AP and DP detection approaches, include their authors’ subjective understanding of

the intent of the APs and DPs, and their translations into automated detection algorithms.

However, we make no claim about the actual developers’ intents or lack thereof in using

these APs and DPs. Thus, a subjective understanding does not affect our study because

we showed that occurrences and co-occurrences of APs and DPs—as defined in DeMIMA

and DECOR—relate with class change-proneness, notwithstanding whether developers

intently introduced them. Studying the developers’ intent would require qualitative data

that are currently unavailable and, thus, is part of future work.

Another threats to construct validity is our analysis of changes in classes that play

a role in a DP, although these changes might be related to pieces of functionality that

a class implements unrelated to the DP. The study reported in this paper is a coarse-

grained analysis, investigating the relation between the participation of classes in APs

and DPs, and changes occurring at class-level. Future work will aim at investigating

change-proneness at a finer-grained level.

Threats to internal validity do not affect this study, being an exploratory study

[Yin, 2002]. Thus, we cannot claim causation but report, in RQ2 and RQ3, the relation

between occurrences of APs and–or DPs and class change-proneness. Nevertheless, we

have provided some qualitative explanation of our results based on inspection of some

classes and of system release histories.
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Threats to external validity concern the possibility to generalise our results. First,

we studied four systems having different size and belonging to different domains. Yet,

further validation on a larger set of systems should be performed. Second, we used a

representative subset of APs and DPs. Different APs and DPs could have led to different

results and should be studied in future work.

Reliability validity threats concern the possibility of replicating this study. We

attempted to provide all the necessary details to replicate our study. Moreover, the source

code and CVS/SVN repositories of the studied systems are available to obtain the same

data. The raw data used to compute the statistics is available on-line2.

Conclusion validity threats concern the relation between the treatment and the

outcome. We paid attention to the assumptions of the statistical tests. Also, we used non-

parametric tests that do not require the normality of the distribution of the data. One

possible threat concerns RQ3, in which we only analysed interactions between APs and

DPs, for which APs alone had a significant effect on class change-proneness. We could

have miss some significant interactions. Indeed, there could be significant interactions

between some APs and DPs while the unique participation of a class in these APs and

the DPs does not have any statistically significant effect. However, the available data set

does not allow to analyse all possible combinations of APs and DPs without risk of Type

II error.

7.6 Summary

In this chapter, we investigated (1) the co-occurrence, in ArgoUML, Eclipse-JDT, Mylyn,

and Rhino, of antipatterns and design patterns and (2) the relations of co-occurrences

with class change-proneness.

Study results showed that the percentages of classes that participate in co-occurrences

of antipatterns and design patterns range between 28% and 68%. They also showed

that classes participating to antipatterns, design patterns, and both increase/decrease

consistently with the systems sizes. In some system, for example ArgoUML, the numbers

of occurrences of antipatterns tend to increase in some releases—indicating possible code

decay—while in other releases they decrease while that of design patterns increase, hint

of code improvements/re-structuring activities.

Study results also showed that, in all system but Eclipse-JDT, class change-proneness

odds ratios significantly decrease for classes participating in both antipatterns and design

patterns w.r.t. classes participating in antipatterns only. Thus, we empirically found a
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tangible, positive effect of design patterns: when a class is properly designed using some

design patterns, even if it participate in (or decays towards) antipatterns, the negative

effect of the antipatterns is mitigated by the robustness from the design patterns.

This effect of interactions between APs and DPs should be considered carefully when

building models combining design patterns and antipatterns because it can affect the

accuracy of their classification. In Chapter 8, we choose Bayesian Belief Networks because

they are robust and their classification is not affected by dependencies among variables

[Zhang, 2004].



Chapter 8

Design-based Quality Models

If you can not measure it, you can not improve it.

Lord Kelvin (1824-1907).

Quality models are increasingly important because of the growing complexity and

pervasiveness of software systems. Moreover, the current trend in outsourcing development

and maintenance requires means to measure quality with great details. Change- and fault-

prone classes in systems increase system costs by requiring more efforts and time from

developers and maintainers. Therefore, identifying and characterizing change- and fault-

prone classes can enable developers and maintainers to focus timely preventive actions,

such as peer-reviews, testing, inspections, and restructuring efforts on the classes with the

similar characteristics in the future [Koru and Liu, 2007].

Many quality models in the literature have been proposed to assess the change- and

fault-proneness of classes. Yet, as remarked by Briand and Wust [2002] in their survey of

quality models, none of them considered the organisation of classes. They are all limited

to internal attribute of classes among which size, cyclomatic complexity, and coupling.

In Chapter 5 and Chapter 6 we showed that design motifs and antipatterns impact sig-

nificantly the change- and fault-proneness of classes. Using these results, and following our

method DEQUALITE, we present in this chapter two quality models to predict change-

and fault-prone classes. Relating change- and fault-proneness to design motifs and antipat-

terns rather than to metrics has the major advantage that the resulting quality models

can tell the developers whether a design choice is “poor” or not.
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8.1 Goal

Our goal in this chapter is to build prediction models to help developers determine where

to focus their inspection efforts in systems. We are particularly interested in predicting

change- and fault-prone classes that can then be targeted by specific reviews, verification,

and maintenance activities. Though many studies have been reported on detecting change-

and fault-prone classes in object-oriented systems, eg., [Briand et al., 2002 ; Koru and

Liu, 2007], the specificity of our approach in this dissertation is our focus on the design

of systems. We believe that not only the internal structure of classes but also their

organisation is important to effectively assess their quality. Chapters 5 and 6 have showed

that playing roles in design motifs or being involved in antipatterns have a significant

impact on the change- and fault-proneness of classes.

We follow our method DEQUALITE and use these results to build Bayesian Belief

Networks (BBNs) for the prediction of change- and fault-prone classes in systems. We

aim at achieving high precision and recall. We chose BBNs because, contrary to other

machine learning techniques, they are robust in the sense that they can also work with

missing data and allow quality analysts to specify explicitly their decision process. When

data is unavailable or must be adapted to a different context, an analyst can encode her

judgement into a BBN. BBNs have been successfully used in fields as diverse as medicine

[Szolovitz, 1995], risk management [Cowell et al., 2007], and computer science [Fenton and

Neil, 2007].

8.2 Building BBNs Quality Models

Following our method DEQUALITE presented in Chapter 1, we have selected the change-

and fault-proneness quality attributes (Step 1). We have chosen the design specifications:

design patterns, and antipatterns; and have assessed their impact of systems’ quality in

Chapters 5 and 6 (Step 2).

In this section, we propose and build a BBN to relate the design of systems to quality

attributes, i.e., class designs (playing roles in design patterns or participating to antipat-

terns) to their change- (respectively fault-) proneness, as specify by Step 3.

The structure of this BBN is as follows: the input nodes correspond to the character-

izations of the design of a class and the output node is the probability that the class is

change- (respectively fault-) prone.
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A BBN is a directed, acyclic graph that represents a probability distribution [Pearl,

1988]. In this graph, each random variable Xi is denoted by a node. A directed edge

between two nodes indicates a probabilistic dependency from the variable denoted by

the parent node to that of the child. Therefore, the structure of the network denotes

the assumption that the values of each node Xi in the network are only conditionally

dependent on its parents. Each node Xi in the network is associated with a conditional-

probability table that specifies the probability distribution of all of its possible values, for

every possible combination of values of its parent nodes.

Formally, a BBN is a classification function (see Section 4.6) f : Rd 7→ C that assign a

label from a finite set of classes C = {c1, . . . , cq} to observations x =(a1, . . . , ad) ∈ Rd.

In the case of change- (respectively fault-) proneness, there are two possible outputs

for the classification of a given object-oriented class:

C = {change− prone, not change− prone} (respectively C = {fault− prone, not fault−

prone}), given an observation (a1, ..., ad) i.e., a vector of inputs describing the design

of the class in terms of metrics, or number of antipatterns and–or design motifs (eg., ai

can be AP , stating that the class participates in an antipattern; with AP taking the

values no role, one role, and more role, when a class participates to zero, one and many

antipatterns).

A quality analyst needs two pieces of information to build such a BBN: the structure

of the network, in the form of nodes and arcs (causal relations) and the conditional-

probability tables describing the decision processes between each node. By structuring the

network, the quality analyst ensures that the decision process is valid. The conditional

probabilities can be learned using historical data or entered directly by the quality analysts

when data is missing. The structure ensures the qualitative validity of the approach while

appropriate conditional tables ensure that the BBN is well-calibrated and is quantitatively

valid. BBNs are robust and their classification is not affected by dependencies among nodes

[Zhang, 2004]. Therefore, enabling us to handle co-occurrences of antipatterns and design

motifs. More details on Bayesian classifiers are presented in Section 4.6.

Figure 8.1 presents the structure of a BBN for change proneness. We use it as our

running example and explain the structure of our BBNs quality models.

Input Nodes. The input nodes of the BBN from Figure 8.1 are AP and DP . The node

AP captures the structure of a class in term of antipattern. We use DECOR presented in

Chapter 4 to specify and detect antipatterns in classes. A class can participates in zero,

one, or more antipatterns. We discretise this node into three different levels: no smell,
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Figure 8.1 – Bayesian Belief Network quality model for change-
proneness.

one smell, and more smell. The nodeDP captures the structure of a class in term of design

motifs. We use DeMIMA presented in Chapter 4 to specify and detect design motifs in

classes. Similarly to antipatterns, a class can play zero, one, or more roles in a design

motif. We discretise this node into the three levels: no role, one role, and more role.

For each node, we compute the probability distributions using historical data as follows:

• For AP , we use the frequencies of classes participating respectively in no smell,

one smell, and more smell to compute the probability that a given class ci participates

respectively in no smell, one smell, and more smell .

• Similarly, again using the frequencies of classes playing respectively no role, one role,

and more role in a design motif, we compute for DP the probability that a given

class ci plays respectively no role, one role, and more role in a design motif.

Output Nodes. The probability of the output node i.e., change-proneness is inferred

from the probabilities of input nodes (AP and DP ) using Bayes’ theorem. Every output

node has a conditional probability table to describe the decision given a set of inputs. For

our change-proneness BBN from Figure 8.1, the probability of a class to change depends

directly on the two symptoms: AP and DP .

We can use previously tagged data to fill the conditional probability table with:

P (CH|one smell;no role), P (CH|one smell; one role), P (CH|one smell;more role),
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P (CH|no smell;no role), P (CH|no smell; one role), P (CH|no smell;more role),

P (CH|more smell;no role), P (CH|more smell; one role), P (CH|more smell;more role).

8.3 Validation and Refinement

Following Step 4 of DEQUALITE, we now perform some experiments to validate and refine

the BBN built in Section 8.2. We aim at answering the two following research questions:

RQ1: To what extent a BBN quality model built using our method is able to predict

change/fault-prone classes in a system?

RQ2: Are the results of a BBN built using our method better than state-of-the-art predic-

tion models with metrics?

8.3.1 Experimental Design

The goal of these experiments is to improve the quality of systems by predicting change-

and fault-prone classes. Our purpose is to provide a quality model that takes into account

the design of systems. The quality focus is to provide a sorted set of change- or fault-prone

classes that prioritise the most probable change- or fault-prone classes. The perspective is

that of quality analysts, who perform evaluation activities and are interested in locating

parts of a system that need improvements with the least possible efforts. The context of

this experiment is both development and maintenance.

We use the following three open-source Java systems: Rhino, Mylyn, and EclipseJDT.

They have been used in previous Chapters 6 and 7 and are described in Section 4.5.

8.3.2 Analysis Method

To answer RQ1, we studied the accuracy of our BBNs in two scenarios. First, we assumed

that there is historical data available for a given system (i.e., data on changes or faults).

This data was used to calibrate a BBN, which was then applied on the same system and

the predicted classes compared with the expected classes. Second, we studied the accuracy

of our BBNs using heterogeneous data: we calibrated the BBNs using change-prone classes

from one system and applied them on another system.
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To answer RQ2, we replicated a study by Zimmermann et al. [2007] and showed that

models built from design data i.e., AP and DP , produce equivalent or better results than

models built from metrics only.

8.3.2.1 Scenario 1: Intra-system Validation

In this first scenario, we studied how the change history of a system can be used to predict

change-prone classes in future releases of the system. We train the model on the first

release of a system and use it to predict change-prone classes in future releases. We chose

to train on the first release because we wanted to capture the impact of the design of

newly introduced classes on their change-proneness. For each class of the system, the

BBN returned a probability that the class will change and also its probability to remain

stable, i.e., not changed. We ranked the classes according to these probabilities. Figure

8.2 presents the result achieved on Rhino where the model is trained on release 1.4R3 and

tested on release 1.5R1. Each sub-figure shows average precision/recall curves on future

releases.

Generally, we are able to achieve a precision above 80% in predicting stable, and

change-prone classes on all future releases of Rhino. Moreover, Figure 8.2 shows that

our model achieved in average 100 % precision on the 33 first ranked classes (top 28% of

candidates reported to be change-prone).

In addition to predicting change-prone classes, our BBN quality model from Figure 8.2

offer for each class, the list of antipatterns and design motifs on the class, obtained with

DECOR and DeMIMA. A quality analyst can therefore focus her effort on restructuring

the top change-prone classes to improve the overall quality of the system.

We replicate these results on Mylyn for the releases 2.0.0 and 2.1, and obtained 100%

precision on the top 95 first classes (top 29% of candidates reported to be change-prone).

Confirming the effectiveness of our BBN quality model in predicting change-prone classes.

Having obtained high precision for this intra-system scenario, we want to understand if

BBNs built from DEQUALITE to predict change-prone classes could be effective if applied

across systems.

8.3.2.2 Scenario 2: Inter-system Validation

In this second scenario, we assumed that a quality analyst has access to historical data

from another system. She would therefore calibrate the BBNs using this data and apply

the BBNs on her other system.
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Figure 8.2 – Intra-system calibration: precision and recall.

As shown in Figure 8.3, we can see that with the change history of Rhino, our BBN is

able to achieve a good precision on predicting change-prone classes in Mylyn (above 50%)

and an excellent precision in predicting stable classes (above 90%). Reciprocally, the BBN

trained on Mylyn achieved precisions above 90% in predicting change-prone classes in

Rhino and precision above 60% for stable classes.

These results suggest that even in the absence of historical data on a specific system,

a quality analyst can use a BBN calibrated on different systems and obtain acceptable

precision and recall. These results also show that a BBN could be built using data external

to a company and then be adapted and applied in this company successfully.

8.3.2.3 Comparison with State–of–the–art Metric Models

We now replicate a study by Zimmermann et al. [2007] and compare the predictive powers

of their structural metrics to those of our design data on antipatterns (AP ) and design

motifs (DP ).

Zimmermann et al. [2007] mapped faults from the issues reporting system of Eclipse to

source code locations for the releases, 2.0 and 2.1, and reported results of their experiment

on building prediction models. For each class of the systems, they proposed a list of metrics

values, the number of pre-release faults that were reported in the last six months before

release and the number of post-release faults that were reported in the first six months

after release. They computed Spearman’s correlation between the number of pre-release

and post-release faults and the complexity metrics in their data set. Between the measure
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(a) Change – Rhino (calibration: Mylyn)
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(b) Stable – Rhino (calibration: Mylyn)
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(c) Change – Mylyn (calibration: Rhino)
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(d) Stable – Mylyn (calibration: Rhino)
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Figure 8.3 – Inter-system validation.

of pre-release faults (pre) and post release faults (post), they obtained a high correlation

of 0.91, but for the complexity metrics, they found only the following to be significant

with correlation values above 0.40; accumulated McCabe complexity (V Gsum), the total

lines of code (TLOC), and the closely related sum of method lines of code (MLOCsum).

In this section, we reuse the data from their study, which they have made publicly

available and replicate their logistic regression models. Specifically, we build three groups

of logistic model:

Metrics: in this group, we replicate the logistic regression models built from the four

metrics: pre, V Gsum, TLOC, and MLOCsum [Zimmermann et al., 2007].

Design: this group concerns models built using only design data, i.e., number of roles

played in design motifs (DP ) and number of antipatterns in classes (AP ).
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Metrics+Design: models in this group are built on a combination of metrics and design

data from the two previous groups i.e., pre, V Gsum, TLOC, MLOCsum, DP , and

AP .

Table 8.1 presents the coefficients of the logistic regression with metrics and design

data, and Table 8.2 reports the results achieve by the models from the three groups.

Consistently, models from the group Metrics +Design (highlighted in bold face) always

outperform models built with metrics only and the contribution of design data in this

model is superior to the contribution of metrics.

Table 8.1 – Coefficients of the Logistic regression with metrics and design
data.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.4222 0.3160 -10.83 0.0000
pre 0.2021 0.0325 6.23 0.0000

MLOC sum 0.0087 0.0032 2.72 0.0065
TLOC -0.0042 0.0026 -1.59 0.1120

V G sum 0.0025 0.0053 0.47 0.6366
AP one smell 0.8158 0.3466 2.35 0.0186

AP more smell 1.5209 0.2872 5.29 0.0000
DP one role -0.3534 0.3331 -1.06 0.2887

DP more role 0.4966 0.1705 2.91 0.0036

This result confirms the intuition behind our work and our thesis that the design of

systems is important to effectively assess their quality.

A model taking into account the design of system have a better accuracy in predicting

fault-prone classes than a model based on metrics solely.

We performed a stepwise logistic regression to confirm this result. The stepwise logis-

tic regression screens an available list of independent variables to select only those that

it deems important in describing the dependent variable [Sheskin, 2007]. Among the six

variables: pre, V Gsum, TLOC, MLOCsum, DP , and AP , the stepwise logistic regression

retained pre, MLOCsum, TLOC, AP , and DP confirming the importance of design data

(AP , and DP ) to predict fault-prone classes. Consequently, we conclude that design data

are orthogonal to metrics. They provide a complementary information on the organisa-

tion of classes and appear to be important for a good prediction of fault-prone classes.

Moreover, as presented on Table 8.2, design data can be in some context more important
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Table 8.2 – Logistic regression: Precision and Recall.

Training Testing
Metrics Design Metrics+Design

Precision Recall Precision Recall Precision Recall

2.0
2.0 0.68 0.22 0.63 0.12 0.71 0.24
2.1 0.42 0.25 0.65 0.13 0.44 0.26

2.1
2.1 0.61 0.16 0.64 0.14 0.62 0.17
2.0 0.60 0.11 0.58 0.13 0.62 0.12

than metrics; on Eclipse JDT 2.1, models built with design data only outperform models

from the two other groups.

8.3.3 Refinement of our BBN Model

Following the results of our stepwise regression, we improve our design-based BBN model

with information from the metrics pre, MLOCsum, and TLOC. Figure 8.3(b) presents the

structure of the resulting model. We trained and apply this improved model on releases

2.0 and 2.1 of Eclipse JDT and achieved the performance summarizes in Table 8.3.

Table 8.3 – Bayesian Belief Networks: Precision and Recall.

Training Testing
Design Design + selected Metrics

Precision Recall Precision Recall

2.0
2.0 0.61 0.13 0.63 0.27
2.1 0.65 0.15 0.41 0.31

2.1
2.1 0.65 0.14 0.50 0.24
2.0 0.54 0.18 0.62 0.22

In general, the BBN improved with metrics outperforms the BBN built on design data

solely except for release 2.1 of Eclipse JDT. This result is consistent with those achieved

by the logistic regression in Table 8.2. We explain the exception of release 2.1 by the

fact that the stepwise logistic regression, being a data-driven method, does not necessarily

identify “best models” as they work by fitting an automated model to the current dataset,

hence raising the danger of overfitting to noise in the dataset at hand [Shtatland et al.,

2001]. For the release 2.1 of Eclipse JDT, the best model is the BBN built on design data

solely. In Chapter 7, we had already observed the peculiarity of this release.
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(a) Design

(b) Combination of Design and Metrics

Figure 8.4 – Bayesian Belief Networks for fault-proneness.

8.4 Discussions

We now discuss the experiments and the use of DEQUALITE by quality analysts based

on the results of the experiments.
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8.4.1 Using BBNs in an Industrial Context

We showed that our BBNs are able to efficiently prioritise candidate change/fault-prone

classes that should be inspected by a quality analyst. In Section 8.3.2.2, we showed that

BBNs built using DEQUALITE and calibrated using external data, can successfully iden-

tify change-prone classes. The systems were of different nature (a JavaScript interpreter

vs. an Eclipse plug-in) and developed by different development teams. Therefore, qual-

ity analysts in their industrial contexts could use public available data from open source

systems and calibrate BBNs to predict change-prone classes on their systems.

Although recall values of our BBNs models of fault-proneness are relatively low, the

precisions are generally above 60%, suggesting that classes classified as fault-prone by our

BBNs are most likely the case. We attribute the low recall values to the small number of

faulty classes in our training data sets; predicting a rare event is difficult in general.

As confirmed by experiments, BBNs models built with DEQUALITE on design data

are better tools than models based on metrics solely. Moreover, because they rely on design

information like antipatterns and design motifs which refer to specific programming styles,

they are able to tell a developer the exact design smell affecting a class, while models based

on metrics only provide a score and let the developer identify problems alone.

Moreover, as discussed in Section 8.3.3, a BBN model built with DEQUALITE can

be customized and improved with other data that a quality analyst may consider relevant

in her industrial context. Stepwise logistic regression provides an interesting tool for

model improvements. Indeed, beside the fact that it is a data-driven method, the stepwise

logistic regression is a very interesting tool for the exploration of models as it “allows for

the examination of a collection of models which might not otherwise have been examined”

[Shtatland et al., 2001].

8.4.2 Estimating the Number of Change/Fault-prone Classes in Systems

Estimating the number of occurrences of change/fault-prone classes in a system is impor-

tant to stop investigating spurious candidate classes. A well-calibrated BBN should be

able to estimate this number in a system.

In practice, when quality analysts are confronted with long ranked lists of candidates

classes, they employ ad-hoc methods to reduce their efforts while improving their utility:
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• They limit the manual validation to the top 20% of candidate classes because Pareto’s

law suggests that change/fault-prone classes (in general) are located in only 20% of

the code.

• They count the distance between every two true positive and stop inspecting can-

didate classes as soon as this distance is greater than the average distance of all

previous two candidates.

We contribute to these effort-reduction methods by proposing a variant of the Rank-

Biased Precision (RBP) [Moffat and Zobel, 2008] to compute a stop point at which the

utility of a quality analyst is maximal.

The RBP is a metric design to reflects the satisfaction of a quality analyst in absolute

terms. RBP assumes that a quality analyst always starts by examining the top-ranked

classes of a list of candidates classes, progressing from one class to the next with a prob-

ability p, and, conversely, end her examination of the ranking at a point with probability

1 − p. Each termination is decided independently of the current depth reached in the

ranking, of previous decisions, and of whether or not the class just examined was relevant

or not.

RBP also assumes that, as a quality analyst skims through candidate classes, they

are willing to pay $1 for each true positive found, but nothing for false positives. This

assumption leads to a notion of income for prediction models, based on the utility gained

by the quality analysts. As the quality analysts progress down the ranked lists of candidate

classes, they are thus running up an account with the prediction model, or, equivalently,

increasing their total utility every time they find a true positive. The total expected utility

derived by the quality analyst (RBP), and the income payable to the prediction model,

are given by:

RBP (p) = (1− p)
d

∑

i=1

rip
(i−1) (8.1)

where ri ∈ {0, 1} is the relevance judgement of the ith ranked class (which is 1 if the class

is a true positive and 0 otherwise), d is the length of the list, and the (1−p) factor is used

to scale the RBP within the range [0, 1].

We extend this metric and assign a cost θ for false positives and redefine RBP as

follows:

RBP (p) = (1− p)
d

∑

i=1

(riλi + (1− λi)(−θ))p(i−1) (8.2)
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where ri ∈ {0, 1} is the relevance judgement of the ith ranked class, λi the probability

provided by the BBN that the ith ranked class is a true positive, d the length of the list,

and the (1− p) factor is used to scale the RBP within the range [0, 1].

The optimum of this new definition of RBP is reached as soon as λi ≤
θ

θ+1 at a rank i.

Therefore, if a quality analyst values the cost of her reviewing a false candidate to -$1,

she should stop reviewing candidate classes as soon as the probability of the candidates is

under 0.5, because her maximal utility would then be reached.

The value of the RBP metric depends on the precision of the BBN. Therefore, we

suggest that quality analysts apply this effort-reduction method more than once. Af-

ter reaching the stop point, quality analysts should re-calibrate the BBN to improve its

precision as well as the estimation of the stop point.

8.4.3 DEQUALITE vs. QMOOD

The hierarchical model QMOOD, introduced by Bansiya and Davis [2002], is the latest

major quality model and also the most-used referenced model in recent studies. The

success of this model can be explain by the fact that it has been validated on many medium

and large industrial systems. The quality model QMOOD defines six equations to assess

the following quality attributes: reusability, flexibility, understandability, functionality,

extendibility, and effectiveness.

To further validate our approach, we want to check if a BBN produced by DEQUALITE

could be used to detect the same problematic classes as QMOOD, although the two models

measure different quality attributes. Therefore, we implemented the six equations of

QMOOD described in [Bansiya and Davis, 2002], and calibrated the BBN from Figure 8.1

on Rhinov.1.4R3 . We then applied the two quality models on Mylynv.2.0.0 and observed

the following:

Among the top 20% of classes considered less reusable, less flexible, and less extendible

by QMOOD:

• 71% of them were change-prone classes (measured as in Section 4.4);

• 98% of them were predicted as change-prone by the BBN with;

• 69% of these classes being among the top 20% results of the BBN.
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Consequently, even though the BBN was not designed to measure the exact same

attributes as QMOOD and was calibrated on a different system (Rhino), the results suggest

that it can be almost as effective as QMOOD in detecting problematic classes in systems.

Moreover, following our method DEQUALITE, a quality analyst could calibrate the

BBNs to predict the same attributes as QMOOD giving the availability of appropriate

training sets, eg., manually-validated instances of less flexible classes.

8.5 Summary

In this chapter, we have applied DEQUALITE, and built BBNs models that allows the

measurement of the quality of object-oriented systems by taking into account the internal

attributes of the system and also its design. Calibration of BBNs is done automatically

using Bayes’ theorem. Consequently, BBNs have two main benefits with respect to pre-

vious approaches: they work with missing data and can be tuned using quality analysts’

knowledge. In addition, candidate classes i.e., potential change/fault-prone classes, are as-

sociated with probabilities, which indicate the degree of uncertainty that a class is indeed

to be change/fault-prone in future. These probabilities can help focus manual inspection

by ranking the candidate classes.

To validate DEQUALITE, we first built BBNs for change-proneness; we calibrated, and

evaluated them on two systems, Rhino and Mylyn. The results showed high precision and

recall and the capability of the BBNs to assign high probabilities to candidate classes that

are indeed change-prone. Second, we showed that the results of the BBNs obtained from

DEQUALITE are in general equivalent or superior to these of a state-of-the-art model with

metrics and that when BBNs are improved with metrics, their accuracy increase. Third,

we showed that BBNs obtained from DEQUALITE could be as effective as QMOOD in

detecting problematic classes in systems.

We also discussed the applicability and utility of DEQUALITE in an industrial context

and proposed a method to estimates the number of problematic classes in a system and

thus, reduce quality analysts’ efforts. The BBNs presented in this Chapter are available

on-line in our portal SQUANER1

1http://www.squaner.khomh.net/



Chapter 9

Conclusions

In this chapter, we summarise the results and conclusions of our dissertation. We also

discuss opportunities for extending our work.

9.1 Dissertation Findings and Conclusions

Systems like people get old [Parnas, 1994] their complexity increases overtime and they

degrades in effectiveness unless work is done to maintain a good level of quality [Lehman,

1996]. With DEQUALITE, we presented a method to systematically build BBNs-based

quality models to predict classes with bad quality in systems. These BBNs-based quality

models take into account not just the internal structure of systems (i.e., the structure of

their classes), but also their design (i.e., the organisation of their classes). Taking into

account the design of systems in quality evaluations is important because this design is

the first thing developers should master when they perform changes on a system; a poor

design quality often results in Ignorant surgeries [Parnas, 1994] that cause systems aging

and increase their maintenance costs.

As shown by our experiments, quality models built with DEQUALITE achieve high

precision and recall in predicting change-prone classes and results in general equivalent

or superior to these of state-of-the-art models with metrics when predicting fault-prone

classes. The accuracy of fault-proneness models built with DEQUALITE increases when

they are improved with new information on systems, like class sizes.

Moreover, contrary to quality models from the literature, which provide only quality

scores, quality models from DEQUALITE, which are BBNs-based, provide in addition

to the probability that a class is of bad quality, the list of design smells affecting the
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class and also a ranking of all classes with bad quality. A quality analyst can use this

ranking to focus timely preventive actions, such as peer-reviews, testing, inspections, and

restructuring efforts on classes with high ranks because she knows that such classes have

more defects.

These results provide quantitative evidence that design patterns and antipatterns have

an impact on the quality of systems and that taking them into account does improve

prediction thus proving our thesis.

To apply DEQUALITE, we have performed a series of experiments aimed at under-

standing and assessing the impact of design patterns and antipatterns on classes change-

and fault-proneness. From these experiments, we are able to draw the following conclu-

sions:

1. Counterintuitively, design patterns do not always improve the quality of systems;

some design patterns are perceive by developers to decrease some aspects of the

quality of systems and to not necessarily promote reusability, expandability, and

understandability as claim by [Gamma et al., 1994].

2. Tangled implementations of design patterns exist and significantly affects the struc-

ture of classes as well as their change- and fault-proneness. A particular attention

should be paid to classes playing roles in design motifs; in particular classes playing

two roles, because they have internal and external metric values that are significantly

higher than these of other classes: they are more change-prone, less cohesive, more

coupled, more complex, and more issue-prone.

3. Classes participating in antipatterns are significantly more likely to be subject to

changes and to be involved in fault-fixing changes than other classes. Developers

should pay attention to systems with a high number of them, because these classes

are more likely to be the subject of their change efforts. For example, MessageChains

which are violations of the Law of Demeter are found consistently related with high

fault and change rates.

4. A non negligible percentage of classes participates in co-occurrences of antipatterns

and design patterns in systems. On these classes, design patterns have a positive

effect in mitigating antipatterns; hinting that when a class is properly designed using

some design patterns, even if it participates in (or decays towards) antipatterns, the

negative effect of the antipatterns is mitigated by the robustness from the design

patterns.
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5. IRSs, in open-source development, have a far more complex use than simple book-

keeping of corrective maintenance and studies based on data from these IRSs should

carefully consider which issues are used to build their predictive models.

9.2 Opportunities for Future Research

In this dissertation, we have verified our thesis and proved that by considering the presence

of design patterns and antipatterns, it is possible to build better quality models than simply

by considering internal attributes of classes. This result opens interesting new directions

of research including: the evaluation of the quality of multi-language systems considering

their design, the usability of quality models, and the extension of DEQUALITE to other

sources of information like identifiers and to other quality attributes like understandability.

9.2.1 Quality of Multi-language Systems

The maintenance and evolution of multi-language systems is a neglected topic in the re-

search domain of software evolution. Yet, in large industrial software systems, it is often

the case that multiple programming languages are used [Jones, 1998]. Today, more than

three programming languages is the rule rather than the exception. For example, J2EE

systems use an amalgam of several technologies (eg., Enterprise Java Beans - EJB and

Java Server Pages - JSP), each one of them in different languages, (i.e., Java, XML,

SQL). Consequently, applying existing reverse engineering and quality assurance tech-

niques developed for mono-language systems fails due to many reasons, including:

• The techniques developed for one language overlook the information written in other

languages and their possible mismatch, for example between Java code, XML con-

figuration files, JSP files, and database structure.

• These techniques fail to analyse dependencies existing across languages, such as the

request a JSP page may perform to obtain data from a certain database table.

• These techniques lack suitable data models and storage mechanisms to represent

and reason about their functioning, reflecting and abstracting their complexity.

The fast-growing number of multi-language systems emphasizes the necessity to overcome

the previous limitations and build techniques and tools to help assess their quality.

Therefore, it would be interesting to answer the following research questions:
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• How do we model multi-language systems to support analysis and cross-analysis of

the different languages?

• How do we define and retrieve design patterns, antipatterns, and code smells in

multi-language systems and what are their impacts on the quality of the systems?

• How do design patterns and antipatterns overlap different layers in different pro-

gramming languages of the multi-language systems?

• How do design patterns and antipatterns evolve in multi-language systems?

• How can we evaluate the quality of multi-language systems by taking into account

the impact of their design?

Being able to effectively assess the quality of multi-language systems is very important

as it will deepen the understanding of practitioners, developers, quality assurance person-

nel on their design choices and help them make well informed design and implementation

decisions and forecast the impact of these decisions. As a result, a developer may decide to

include in a new software system developed using an object-oriented language, an existing

predefined and pretested library implemented in a procedural language and thus save cost

and effort. Assessing effectively the quality of multi-language systems will improve the

reuse and the life of existing software systems, which is often an important reason behind

building multi-language software.

9.2.2 Usability of Quality Models

Despite the large number of quality models and publicly available quality assessment tools

like PMD, very few studies have investigated the use of quality models by developers in

their daily based activities. It would be interesting to understand how these models affect

developers behaviors as well as their ability to write good code. I am currently working

on the integration of our quality models in Gutsy, a software development monitoring tool

built on SVN to automatically provide feedback to developers. With our quality models,

Gutsy will provide feedback to developers on the quality of their code each time a new

commit is made. With Gutsy, I plan to perform a series of experiments aimed at assessing

the usability of a quality model in a software development environment.
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9.2.3 Extension of DEQUALITE

Although we have proved in this thesis that antipatterns and design patterns significantly

impact systems change- and fault-proneness, it would be interesting to assess their impact

on more subjective quality attributes like understandability. I am currently performing a

series of controlled experiments to understand the effect of various antipatterns on the un-

derstandability of systems. Promising results have already been obtained for the God Class

and the Spaghetti Code. With these results, I will be able to build with DEQUALITE,

quality models for the prediction of classes understandability.

In the near future, I plan to investigate new sources of information on systems, which

could help improve the quality models built with DEQUALITE, such as source code

identifiers. Recent studies by [Marcus et al., 2008 ; Butler et al., 2009] have related source

code identifiers to quality and showed that the identification of flawed identifiers in systems

could help predict faults. It would be interesting to investigate whether a combination of

system design and the quality of its identifiers improves quality assessment.
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Yann-Gaël Guéhéneuc, Jean-Yves Guyomarc’h, Khashayar Khosravi, and Houari
Sahraoui. Design patterns as laws of quality. Technical report, University of Montréal,
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based reverse-engineering of design components. In David Garlan and Jeff Kramer,
editors, Proceedings of the 21st International Conference on Software Engineering, pages
226–235. ACM Press, May 1999.

[Kerievsky, 2004] cited page 19
J. Kerievsky. Refactoring to Patterns. Addison-Wesley, 1st edition, Aug. 2004.
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design smells: Lessons from a study of god classes. In Proceedings of the 16th Working
Conference on Reverse Engineering (WCRE). IEEE CS Press, October 2009.

[Venners, 2005] cited pages 3, 9, 56
Bill Venners. How to use design patterns – A conversation with Erich Gamma, part I,
May 2005. http://www.artima.com/lejava/articles/gammadp.html.

[Vicinanza et al., 1991] cited page 86
S.S. Vicinanza, T. Mukhopadhyay, and M.J. Prietula. Software-effort estimation: an
exploratory study of expert performance. Information Systems Research, 2(4):243–262,
dec 1991.

[Vinayagasundaram and Srivatsa, 2007] cited pages 15, 17
B. Vinayagasundaram and S.K. Srivatsa. Software quality in artificial intelligence sys-
tem. Information Technology Journal, 6(6):835–842, 2007.

[Vokac, 2004] cited pages 3, 19, 32
Marek Vokac. Defect frequency and design patterns: An empirical study of industrial
code. IEEE Transactions on Software Engineering, pages 904–917. IEEE Press, Dec.
2004.

[Wake, 2003] cited page 45
William C. Wake. Refactoring Workbook. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2003. isbn: 0321109295.

[Webster, 1995] cited pages 9, 45
Bruce F. Webster. Pitfalls of Object Oriented Development. M & T Books, 1st edition,
February 1995. isbn: 1558513973.



158

[Wei and Raed, 2007] cited pages 21, 29, 80
Li Wei and Shatnawi Raed. An empirical study of the bad smells and class error
probability in the post-release object-oriented system evolution. In Elsevier, editor,
Journal of Systems and Software, 80(7). Elsevier, 2007.

[Wendorff, 2001] cited pages 3, 9, 19, 56, 74
Peter Wendorff. Assessment of design patterns during software reengineering: Lessons
learned from a large commercial project. In Pedro Sousa and Jürgen Ebert, editors,
Proceedings of 5th Conference on Software Maintenance and Reengineering, pages 77–
84. IEEE Computer Society Press, March 2001.

[Weyuker et al., 2008] cited page 11
Elaine J. Weyuker, Thomas J. Ostrand, and Robert M. Bell. Comparing negative
binomial and recursive partitioning models for fault prediction. In Proceedings of
PROMISE’08. ACM, 2008.

[Wirfs-Brock and McKean, 2002]

Rebecca Wirfs-Brock and Alan McKean. Object Design: Roles, Responsibilities and
Collaborations. Addison-Wesley Professional, 2002. isbn: 0201379430.

[Wood et al., 1999] cited pages 14, 21
M. Wood, J. Daly, J. Miller, and M. Roper. Multi-method research: An empirical
investigation of object-oriented technology. journal of Systems and Software, 48(1).
Elsevier, 1999.

[Wuyts, 1998] cited page 43
Roel Wuyts. Declarative reasoning about the structure of object-oriented systems.
In Joseph Gil, editor, Proceedings of the 26th Conference on the Technology of Object-
Oriented Languages and Systems, pages 112–124. IEEE Computer Society Press, August
1998.

[Wydaeghe et al., 1998] cited page 20
B. Wydaeghe, K. Verschaeve, B. Michiels, B. Van Damme, E. Arckens, and V. Jonckers.
Building an OMT-editor using design patterns: An experience report. In TOOLS (26),
pages 20–32. IEEE Computer Society, 1998.

[Yin, 2002] cited pages 76, 101, 118
R. K. Yin. Case Study Research: Design and Methods - Third Edition. SAGE Publica-
tions, London, 2002.

[Zhang, 2004] cited pages 120, 123
Harry Zhang. The optimality of naive bayes. In Valerie Barr and Zdravko Markov,
editors, In FLAIRS Conference, 2004.

[Zhu et al., 2002] cited page 2
Hong Zhu, Yanlong Zhang, Qingning Huo, and Sue Greenwood. Application of haz-
ard analysis to software quality modelling. In Proc. of the 26th Annual International
Computer Software and Applications Conf. IEEE CS Press, 2002.



159

[Zimmermann et al., 2007] cited pages 29, 125, 127, 128
Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting defects for
eclipse. In Third International Workshop on Predictor Models in Software Engineering,
2007.

[Zuse, 1991] cited page 10
H. Zuse. Software Complexity: Measures and Methods. Walter de Gruyter & Co, New
York, 1991. isbn: 978-0899256405.



Appendix A

Definitions of Metrics

This Appendix presents the definitions of all the metrics used in this dissertation.

A.1 Definitions of metrics

ACAIC: ancestor Class-Attribute Import Coupling.

ACMIC: ancestors Class-Method Import Coupling.

AID: average Inheritance Depth of an entity.

ANA: count the average number of classes from which a class inherits informations.

CAM: computes the relatedness among methods of the class based upon the parameter
list of the methods.

CBOin: coupling Between Objects of one entity.

CBOout: coupling Between Objects of one entity.

CIS: counts the number of public methods in a class.

CLD: class to Leaf Depth of an entity.

cohesionAttributes: returns the degree of cohesion between methods and attributes
of a class.

connectivity: returns the degree of connectivity of an entity in a system.

CP: the number of packages that depend on the package containing entity.

DAM: returns the ratio of the number of private (protected) Attributes to the total
number of Attributes declared in a class.

DCAEC: returns the DCAEC (Descendants Class-Attribute Export Coupling) of one
entity.
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DCC: returns the number of classes a class is directly related to (by attribute declara-
tions and message passing.

DCMEC: returns the DCMEC (Descendants Class-Method Export Coupling) of one
entity.

DIT: returns the DIT (Depth of inheritance tree) of an entity.

DSC: count of the total number of classes in the design.

EIC: the number of inheritance relationships in which superclasses are in external pack-
ages.

EIP: the number of inheritance relationships where the superclass is in the package
containing entity and the subclass is in another package.

ICHClass: compute the complexity of an entity as the sum of the complexities of its
declared and inherited methods.

LCOM1: returns the LCOM (Lack of COhesion in Methods) of an entity.

LCOM2: returns the LCOM (Lack of COhesion in Methods) of an entity.

LOC: returns the number of line of code of an entity.

MFA: the ratio of the number of methods inherited by a class to the number of methods
accessible by member methods of the class.

MOA: count the number of data declarations whose types are user defined classes.

NAD: number of attributes declared.

NADExtended: number of attributes declared in a class and in its member classes.

NCM: returns the NCM (Number of Changed Methods) of an entity.

NCP: the number of classes package containing entity.

NMA: returns the NMA (Number of New Methods) of an entity.

NMD: number of methods declared.

NMDExtended: number of methods declared in the class and in its member classes.

NMI: returns the NMI (Number of Methods Inherited) of an entity.

NMO: returns the NMO (Number of Methods Overridden) of an entity.

NOA: returns the NOA (Number Of Ancestors) of an entity.

NOC: returns the NOC (Number Of Children) of an entity.
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NOD: returns the NOD (Number Of Descendents) of an entity.

NOH: count the number of class hierarchies in the design.

NOM: counts all methods defined in a class.

NOP: returns the NOP (Number Of Parents) of an entity.

NOParam: compute the average number of parameters of methods.

NOPM: count of the Methods that can exhibit polymorphic behavior.

PIIR: the number of inheritance relationships existing between classes in the package
containing entity.

PP: the number of provider packages of the package containing entity.

REIP: EIP divided by the sum of PIIR and EIP.

RFP: the number of class references from classes belonging to other packages to classes
belonging to the package containing entity.

RPII: PIIR divided by the sum of PIIR and EIP.

RRFP: RFP divided by the sum of RFP and the number of internal class references.

RRTP: RTP divided by the sum of RTP and the number of internal class references.

RTP: the number of class references from classes in the package containing entity to
classes in other packages.

SIX: returns the SIX (Specialisation IndeX) of an entity.

WMC1: computes the weight of an entity considering the complexity of a method to
be unity.

McCabe: number of points of decision + 1.

CBO: coupling Between Objects of one entity.

LCOM5: returns the LCOM (Lack of COhesion in Methods) of an entity.

WMC: computes the weight of an entity by computing the number of method invoca-
tions in each method.

PageRank: measures the relative importance of a class in the overall structure of rela-
tions among classes.



Appendix B

Specification of Code Smells and
Antipatterns

This Appendix presents the definitions of code smells and antipatterns studied in this
dissertation.

B.1 Detailed Definitions of the code Smells

In this dissertation we focused on the following code smells:

AbstractClass: this code smell is characteristic of the Speculative Generality Antipat-
tern. This odor exists when we have generic or abstract code that isn’t actually
needed today. Such code often exists to support future behavior, which may or may
not be necessary in the future.

ChildClass: this code smell occurs when the number of methods declared in a class and
the number of it’s declared attributes is very high. It is a symptom of poor object
decomposition. The public interface of the class differing greatly from the one of its
super-class. This code smell characterises the Tradition Breaker antippatern.

ClassGlobalVariable: this code smell occurs when a class declares public class variable
that are used as “global variable” in procedural programming.

ClassOneMethod: this code smell occurs when a class has only one method.

ComplexClassOnly: this code smell is present when a class both declares many fields
and methods and which methods realise complex treatments, using many if and
switch instructions. Such a class is probably providing lots of services while being
difficult to maintain and fragile due to its complexity.

ControllerClass: this odor is present when a class monopolises most of the processing
done by a system, takes most of the decisions, and closely directs the processing of
other classes.
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DataClass: this code smell is present when a class contains only data and performs no
processing on these data. It is composed of highly cohesive fields and accessors.

FewMethod: this code smell characterise Lazy classes that declare few methods.

FieldPrivate: this code smell is present when many private fields are declared. It’s
generally symptomatic of the Functional Decomposition antipattern.

FieldPublic: this code smell is symptomatic of the Class Data Should Be Private an-
tippatern. It occurs when the data encapsulated by a class is public, thus allowing
client classes to change this data without the knowledge of the declaring class.

FunctionClass: this code smell occurs when we have a main class, i.e., a class with a
procedural name, such as Compute or Display. It is symptomatic of the Functional
Decomposition antipattern.

HasChildren: this code smell describes classes with many children.

LargeClass: this odor concerns classes that are trying to do too much. These classes do
not follow the good practice of divide-and-conquer which consists of decomposing a
complex problem into smaller problems. These classes also have low cohesion.

LargeClassOnly: this code smell concerns classes with a very high number of attributes
and/or methods defined.

LongMethod: this odor is a method with a high number of lines of code. A lot of
variables and parameters are used. Generally, this kind of method does more than
its name suggests it.

LongParameterListClass: this odor corresponds to a method with high number of pa-
rameters. This smell occurs when the method has more than four parameters. Long
lists of parameters in a method, though common in procedural code, are difficult to
understand and likely to be volatile.

LowCohesionOnly: this code smell characterises the lack of cohesion in a class.

ManyAttributes: this code smell occurs when the number of attributes declared in a
class is too high.

MessageChainsClass: this code smell is present when you see a long sequence of
method calls or temporary variables to get some data. This chain makes the code
dependent on the relationships between many potentially unrelated objects.

MethodNoParameter: this code smell occurs when a class declares methods with no
parameter.

MultipleInterface: this code smell occurs when a class implements a high number of
interfaces. It is generally symptomatic of the Swiss Army Knife antipattern.
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NoInheritance: this odor is present when inheritance is scarcely used.

NoPolymorphism: this odor is present when polymorphism is scarcely used.

NotAbstract: this odor occurs when a developer haven’t yet seen how a higher-level
abstraction can clarify or simplify his code.

NotClassGlobalVariable: this odor manifest itself in the anipattern Anti-Singleton
when a class declares public class variable that are used as “global variable” in pro-
cedural programming. It reveals procedural thinking in object-oriented programming
and may increase the difficulty to maintain the program.

NotComplex: this code smell characterises classes performing “atomic” functionality,
with little complexity.

OneChildClass: this code smell occurs when a class does not have child class.

ParentClassProvidesProtected: this code smell occurs when a subclass does not use
attributes and/or methods protected inherited by a parent.

RareOverriding: this code smell occurs when a class rarely overrides inherited at-
tributes and/or methods.

TwoInheritance: this odor characterises a hierarchy with a depth greater than two.

B.2 Detailed Definitions of the Antipatterns

This dissertation focused on the following antipatterns:

Anti-Singleton: it is a class that declares public class variable that are used as “global
variable” in procedural programming. It reveals procedural thinking in object-
oriented programming and may increase the difficulty to maintain the program.

Blob: (called also God class [Riel, 1996]) corresponds to a large controller class that
depends on data stored in surrounded data classes. A large class declares many
fields and methods with a low cohesion. A controller class monopolises most of the
processing done by a system, takes most of the decisions, and closely directs the
processing of other classes [Wirfs-Brock and McKean, 2002].

Class Data Should Be Private: it occurs when the data encapsulated by a class is
public, thus allowing client classes to change this data without the knowledge of the
declaring class.

Complex Class: it is a class that both declares many fields and methods and which
methods realise complex treatments, using many if and switch instructions. Such
a class is probably providing lots of services while being difficult to maintain and
fragile due to its complexity.
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Large Class: it is a class with too many responsibilities. This kind of class declares a
high number of usually unrelated methods and attributes.

Lazy Class: it is a class that does not do enough. The few methods declared by this
class have a low complexity.

Long Method: it is a method with a high number of lines of code. A lot of variables
and parameters are used.Generally, this kind of method does more than its name
suggests it.

Long Parameter List: it corresponds to a method with high number of parameters.
This smell occurs when the method has more than four parameters.

MessageChains: it Occurs when you have a long sequence of method calls or temporary
variables to get some data. This chain makes the code dependent on the relationships
between many potentially unrelated objects [Fowler, 1999].

Speculative Generality: it is an abstract class without child classes. It was added in
the system for future uses and this entity pollutes the system unnecessarily.

Swiss Army Knife: it refers to a tool fulfilling a wide range of needs. The Swiss Army
Knife design smell is a complex class that offers a high number of services, for
example, a complex class implementing a high number of interfaces. A Swiss Army
Knife is different from a Blob, because it exposes a high complexity to address all
foreseeable needs of a part of a system, whereas the Blob is a singleton monopolising
all processing and data of a system. Thus, several Swiss Army Knives may exist in
a system, for example utility classes.

The Refused Parent Bequest: it appears when a subclass does not use attributes
and/or methods public and/or protected inherited by a parent. Typically, this means
that the class hierarchy is wrong or badly organized.

The Spaghetti Code: it is an antipattern that is characteristic of procedural think-
ing in object-oriented programming. Spaghetti Code is revealed by classes with no
structure, declaring long methods with no parameters, and utilising global variables
for processing. Names of classes and methods may suggest procedural program-
ming. Spaghetti Code does not exploit and prevents the use of object-orientation
mechanisms, polymorphism and inheritance.



Appendix C

Detailed figures on systems

We present in this Appendix some detailed figures of the systems studied in Chapter 6.

C.1 Detailed Characteristics of the Analysed Systems
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Table C.1 – Analysed releases, LOC, classes, number of changes and faults/issues per release. Changes
and faults are counted from one release to the next.
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0.26.2 316,971 1,841 1,198 276 3.2.1 3,284,732 15,176 11,854 4,078 2.3.2 X X 9,281 41 1.6R3 69,307 230 37 1
– – – – – 3.2.2 3,286,300 15,184 10,682 2,137 3.0.0 X X 360 6 1.6R4 69,323 230 185 156
– – – – – 3.3 3,752,212 17,162 7,386 1,822 3.0.1 X X 2,787 13 1.6R5 69,758 230 310 115
– – – – – 3.3.1 3,756,164 17,167 40,314 14,915 3.0.2 X X 732 2 1.6R6 79,406 270 19 4
– – – – – – – – – – 3.0.3 X X 2,062 23 – – – – –
– – – – – – – – – – 3.0.4 X X 1,558 4 – – – – –
– – – – – – – – – – 3.0.5 X X 232 1 – – – – –
– – – – – – – – – – 3.1.0 X X 190 0 – – – – –
– – – – – – – – – – 3.1.1 X X 1,568 15 – – – – –
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C.2 Detailed Number of Classes Participating to Antipat-

terns per Releases

Table C.2 – ArgoUML: summary of the number of classes participating
to antipatterns in the analysed releases.
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0.10.1 352 26 136 42 56 16 172 195 79 105 9 0 0
0.12 322 49 140 53 77 19 197 224 92 137 9 0 0
0.14 420 73 158 63 91 47 259 252 228 229 14 0 0
0.16 347 74 157 62 79 44 249 244 260 198 15 0 0
0.18.1 246 71 62 92 112 49 252 219 140 371 7 0 0
0.20 242 84 47 94 144 51 256 222 146 403 13 0 0
0.22 267 80 73 93 129 26 266 233 155 460 20 0 0
0.24 274 84 44 99 135 36 288 248 151 493 19 0 0
0.26 3 116 51 103 166 42 346 299 166 574 22 0 0
0.26.2 3 116 51 103 166 44 348 300 166 574 22 0 0
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Table C.3 – Eclipse: summary of the number of classes participating to
antipatterns in the analysed releases.
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1.0 330 600 382 511 1 2403 2372 1087 1043 397 2 54 67
2.0 478 828 412 692 1 2889 3375 2038 1438 692 1 70 43
2.1.1 615 991 448 811 1 3428 4165 2076 1558 695 1 87 38
2.1.2 617 994 450 814 1 3428 4167 2076 1558 694 1 87 38
2.1.3 618 995 454 814 1 3430 4197 2076 1559 694 1 87 38
3.0 975 1417 1453 1137 4 4667 5367 2770 1803 1248 1 146 68
3.0.1 980 1419 1457 1128 4 4673 5370 2775 1816 1248 1 146 68
3.0.2 980 1419 1457 1125 4 4671 5372 2775 1815 1250 1 146 68
3.2 1528 1920 2064 1768 4 7034 6766 2352 2673 2190 0 200 78
3.2.1 1536 1925 2065 1768 4 7044 6779 2357 2693 2191 0 200 79
3.2.2 1536 1931 2066 1767 4 7051 6777 2361 2694 2196 0 200 80
3.3 1783 2194 2281 2123 8 8560 7925 3070 3038 2584 1 228 95
3.3.1 1784 2194 2285 2125 8 8561 7956 3233 3041 2582 1 228 96
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Table C.4 – Mylyn: summary of the number of classes participating to
antipatterns in the analysed releases.
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1.0.1 4 40 61 29 43 2 134 43 70 45 12 0 1
2.0M1 5 46 64 33 51 5 167 66 73 54 14 0 0
2.0M2 7 45 66 34 52 4 167 67 81 61 15 0 0
2.0M3 10 56 71 42 61 2 188 74 87 71 16 0 0
2.0.0 9 48 55 34 52 4 153 40 75 70 14 0 0
2.1 9 55 57 40 59 4 169 39 104 65 18 0 0
2.2.0 10 61 66 41 64 4 180 40 112 83 20 0 0
2.3.0 12 68 77 46 67 4 196 43 131 112 24 0 0
2.3.1 12 68 77 46 67 4 196 43 134 112 24 0 0
2.3.2 12 68 77 46 67 4 196 43 134 112 24 0 0
3.0.0 70 71 68 47 67 66 253 90 151 168 36 0 0
3.0.1 70 71 69 47 67 66 258 90 153 167 36 0 0
3.0.2 70 72 68 48 68 71 261 90 157 172 35 0 0
3.0.3 70 72 68 48 67 71 262 91 153 172 35 0 0
3.0.4 70 72 68 48 67 71 262 91 153 172 35 0 0
3.0.5 70 72 68 48 67 71 258 91 153 172 35 0 0
3.1.0 127 93 183 72 99 18 349 95 181 290 39 0 0
3.1.1 127 93 183 72 99 18 349 95 181 290 39 0 0
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Table C.5 – Rhino: summary of the number of classes participating to
antipatterns in the analysed releases.
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1.4R3 16 0 4 6 9 4 14 9 20 5 0 0 0
1.5R1 9 0 28 10 12 4 17 15 35 9 0 0 0
1.5R2 12 0 33 13 15 5 23 27 44 14 1 0 0
1.5R3 12 0 33 14 16 5 24 26 44 15 1 0 0
1.5R4 10 0 29 14 15 7 32 28 40 16 4 0 0
1.5R41 10 0 29 14 15 7 32 28 40 16 4 0 0
1.5R5 3 0 23 12 15 11 28 8 42 9 5 0 0
1.6R1 1 0 22 13 16 8 31 8 52 13 6 0 0
1.6R2 1 0 15 13 16 7 31 8 55 14 5 0 0
1.6R3 1 0 15 13 17 7 31 8 52 14 5 0 0
1.6R4 1 0 15 13 17 7 31 8 52 14 5 0 0
1.6R5 1 0 15 13 17 7 31 8 52 14 5 0 0
1.6R6 1 0 17 14 19 9 35 8 66 11 2 0 0
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C.3 Detailed Logistic Regression Results

Table C.6 – ArgoUML: contingency table and Fisher test results for
classes that participated in at least one antipattern/underwent at least
one change.

Release DC DNC NDC NDNC p-value odds ratio
1 0.10.1 492 93 235 631 0.00 14.17
2 0.12 429 183 227 694 0.00 7.16
3 0.14 494 341 192 825 0.00 6.22
4 0.16 714 84 362 676 0.00 15.84
5 0.18.1 462 309 145 972 0.00 10.00
6 0.20 751 31 515 565 0.00 26.54
7 0.22 711 144 385 689 0.00 8.83
8 0.24 744 159 252 831 0.00 15.40
9 0.26 144 848 51 1195 0.00 3.98

10 0.26.2 282 711 69 1176 0.00 6.75

Table C.7 – ArgoUML: contingency table and Fisher test results for
classes that participated in at least one antipattern/underwent at least
one bug fixing.

Release DB DNB NDB NDNB p-value odds ratio
1 0.10.1 37 548 13 853 0.00 4.43
2 0.12 37 575 12 909 0.00 4.87
3 0.14 102 733 8 1009 0.00 17.53
4 0.16 127 671 29 1009 0.00 6.58
5 0.18.1 90 681 27 1090 0.00 5.33
6 0.20 97 685 30 1050 0.00 4.95
7 0.22 43 812 6 1068 0.00 9.42
8 0.24 70 833 39 1044 0.00 2.25
9 0.26 19 973 3 1243 0.00 8.08

10 0.26.2 99 894 14 1231 0.00 9.73

Tables C.6, C.8, C.10, and C.12 report the results of the logistic regression for the
correlations between change-proneness and the antipatterns.
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Table C.8 – Eclipse: contingency table and Fisher test results for classes
that participated in at least one antipattern/underwent at least one
change.

Release DC DNC NDC NDNC p-value odds ratio
1 1.0 1958 1691 501 488 0.10 1.13
2 2.0 3543 1352 897 257 0.00 0.75
3 2.1.1 2177 3735 240 1067 0.00 2.59
4 2.1.2 2346 3568 413 894 0.00 1.42
5 2.1.3 2869 3049 589 718 0.03 1.15
6 3.0 3190 4726 909 1186 0.01 0.88
7 3.0.1 5895 2030 1615 480 0.01 0.86
8 3.0.2 5476 2449 1502 595 0.02 0.89
9 3.2 1682 8905 252 2926 0.00 2.19

10 3.2.1 2609 7988 460 2730 0.00 1.94
11 3.2.2 3045 7558 685 2507 0.00 1.47
12 3.3 1731 10404 192 2804 0.00 2.43
13 3.3.1 4207 7946 812 2174 0.00 1.42

Table C.9 – Eclipse: contingency table and Fisher test results for classes
that participated in at least one antipattern/underwent at least one issue
fixing.

Release DB DNB NDB NDNB p-value odds ratio
1 1.0 493 3156 105 884 0.02 1.32
2 2.0 754 4141 120 1034 0.00 1.57
3 2.1.1 425 5487 57 1250 0.00 1.70
4 2.1.2 385 5529 44 1263 0.00 2.00
5 2.1.3 584 5334 67 1240 0.00 2.03
6 3.0 529 7387 58 2037 0.00 2.52
7 3.0.1 944 6981 136 1959 0.00 1.95
8 3.0.2 2391 5534 396 1701 0.00 1.86
9 3.2 778 9809 90 3088 0.00 2.72

10 3.2.1 1234 9363 181 3009 0.00 2.19
11 3.2.2 1025 9578 158 3034 0.00 2.05
12 3.3 1032 11103 85 2911 0.00 3.18
13 3.3.1 1755 10398 361 2625 0.00 1.23
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Table C.10 – Mylyn: contingency table and Fisher test results for classes
that participated in at least one antipattern/underwent at least one
change.

Release DC DNC NDC NDNC p-value odds ratio
1 1.0.1 187 100 192 1082 0.00 10.51
2 2.0M1 83 270 39 1319 0.00 10.37
3 2.0M2 196 170 187 1199 0.00 7.38
4 2.0M3 400 4 480 995 0.00 206.60
5 2.0.0 218 119 152 1179 0.00 14.17
6 2.1 173 188 107 1269 0.00 10.89
7 2.2.0 188 203 109 1309 0.00 11.10
8 2.3.0 281 169 214 1268 0.00 9.83
9 2.3.1 79 372 40 1445 0.00 7.66

10 2.3.2 396 55 338 1147 0.00 24.38
11 3.0.0 56 579 16 1565 0.00 9.45
12 3.0.1 485 151 388 1192 0.00 9.85
13 3.0.2 129 518 71 1516 0.00 5.31
14 3.0.3 345 303 194 1396 0.00 8.18
15 3.0.4 222 426 193 1397 0.00 3.77
16 3.0.5 58 588 31 1561 0.00 4.96
17 3.1.0 56 827 12 1868 0.00 10.53
18 3.1.1 206 677 97 1784 0.00 5.59

Table C.11 – Mylyn: contingency table and Fisher test results for classes
that participated in at least one antipattern/underwent at least one bug
fixing.

Release DB DNB NDB NDNB p-value odds ratio
1 1.0.1 26 261 12 1262 0.00 10.45
2 2.0M1 9 344 2 1356 0.00 17.70
3 2.0M2 5 361 0 1386 0.00 >>300

Table C.12 – Rhino: contingency table and Fisher test results for classes
that participated in at least one antipattern/underwent at least one
change.

Release DC DNC NDC NDNC p-value odds ratio
1 1.4R3 36 6 42 74 0.00 10.41
2 1.5R1 56 6 46 90 0.00 17.98
3 1.5R2 37 48 11 251 0.00 17.37
4 1.5R3 65 16 55 215 0.00 15.71
5 1.5R4 38 57 11 270 0.00 16.19
6 1.5R41 67 28 20 261 0.00 30.71
7 1.5R5 61 24 40 247 0.00 15.51
8 1.6R1 71 23 32 260 0.00 24.73
9 1.6R2 20 75 6 288 0.00 12.69

10 1.6R3 24 70 5 294 0.00 19.95
11 1.6R4 84 10 60 239 0.00 33.05
12 1.6R5 59 35 23 276 0.00 19.97
13 1.6R6 27 75 6 346 0.00 20.56
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Table C.13 – Rhino: contingency table and Fisher test results for classes
that participated in at least one antipattern/underwent at least one bug
fixing.

Release DB DNB NDB NDNB p-value odds ratio
1 1.4R3 31 11 35 81 0.00 6.44
2 1.5R1 20 42 2 134 0.00 31.29
3 1.5R2 7 78 0 262 0.00 Inf
4 1.5R3 58 23 41 229 0.00 13.93
5 1.5R4 3 92 1 280 0.05 9.06
6 1.5R41 29 66 4 277 0.00 30.05
7 1.5R5 27 58 12 275 0.00 10.57
8 1.6R1 32 62 5 287 0.00 29.26
9 1.6R2 0 95 1 293 1.00 0.00

10 1.6R3 1 93 0 299 0.24 Inf
11 1.6R4 80 14 59 240 0.00 23.00
12 1.6R5 39 55 15 284 0.00 13.29
13 1.6R6 3 99 0 352 0.01 Inf

Table C.14 – ArgoUML: number of significant p-values across the anal-
ysed releases obtained by logistic regression for the correlations between
change-proneness and kinds of antipatterns.

Antipatterns Proneness to
Changes

Antisingleton 8
Blob 2
ClassDataShouldBePrivate 3
ComplexClass 2
LargeClass 2
LazyClass 5
LongMethod 10
LongParameterList 9
MessageChains 10
RefusedParentRequest 9
SpeculativeGenerality –
SwissArmyKnife –
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Table C.15 – ArgoUML: number of significant p-values across the anal-
ysed releases obtained by logistic regression for the correlations between
fault-proneness and kinds of antipatterns.

Antipatterns Proneness to
Faults

Antisingleton 5
Blob 1
ClassDataShouldBePrivate 2
ComplexClass –
LargeClass 3
LazyClass –
LongMethod 1
LongParameterList 5
MessageChains 7
RefusedParentRequest 4
SpeculativeGenerality –
SwissArmyKnife –

Table C.16 – Eclipse: number of significant p-values across the anal-
ysed releases obtained by logistic regression for the correlations between
change-proneness and kinds of antipatterns.

Antipatterns Proneness to
Changes

AntiSingleton 5
Blob 8
ClassDataShouldBePrivate 7
ComplexClass 12
LargeClass –
LazyClass 12
LongMethod 12
LongParameterList 10
MessageChains 12
RefusedParentBequest 6
SpeculativeGenerality 3
SwissArmyKnife 6
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Table C.17 – Eclipse: number of significant p-values across the analysed
releases obtained by logistic regression for the correlations between issue-
proneness and kinds of antipatterns.

Antipatterns Proneness to
Faults

AntiSingleton 13
Blob 7
ClassDataShouldBePrivate 7
ComplexClass 13
LargeClass –
LazyClass 12
LongMethod 13
LongParameterList 9
MessageChains 10
RefusedParentBequest 4
SpeculativeGenerality 4
SwissArmyKnife 1

Table C.18 – Mylyn: number of significant p-values across the anal-
ysed releases obtained by logistic regression for the correlations between
change-proneness and kinds of antipatterns.

Antipatterns Proneness to
Changes

Antisingleton 7
Blob 9
ClassDataShouldBePrivate 9
ComplexClass 2
LargeClass 4
LazyClass 3
LongMethod 17
LongParameterList 7
MessageChains 18
RefusedParentBequest 10
SpeculativeGenerality 6
SwissArmyKnife –
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Table C.19 – Mylyn: number of significant p-values across the analysed
releases obtained by logistic regression for the correlations between fault-
proneness and kinds of antipatterns.

Antipatterns Proneness to
Faults

Antisingleton –
Blob –
ClassDataShouldBePrivate 2
ComplexClass 1
LargeClass –
LazyClass –
LongMethod –
LongParameterList 2
MessageChains 1
RefusedParentRequest 1
SpeculativeGenerality –
SwissArmyKnife –

Table C.20 – Rhino: number of significant p-values across the anal-
ysed releases obtained by logistic regression for the correlations between
change-proneness and kinds of antipatterns.

Antipatterns Proneness to
Changes

Antisingleton –
Blob 1
ClassDataShouldBePrivate 6
ComplexClass –
LargeClass 4
LazyClass 1
LongMethod 7
LongParameterList 6
MessageChains 13
RefusedParentBequest 6
SpeculativeGenerality 1
SwissArmyKnife –
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Table C.21 – Rhino: number of significant p-values across the analysed
releases obtained by logistic regression for the correlations between fault-
proneness and kinds of antipatterns.

Antipatterns Proneness to
Faults

Antisingleton –
Blob –
ClassDataShouldBePrivate 3
ComplexClass –
LargeClass 3
LazyClass 2
LongMethod 3
LongParameterList 3
MessageChains 7
RefusedParentBequest –
SpeculativeGenerality 1
SwissArmyKnife –
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Tables C.14, and C.15, and C.16, and C.17, and C.18, and C.19, and C.20, and C.21
report the results of the the number of significant p-values across the analysed releases
obtained by logistic regression for the correlations between change-/fault-proneness and
kinds of antipatterns.
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Table C.22 – ArgoUML: logistic regression results for the correlations between change-proneness and
kinds of antipatterns.

Antipatterns 0
.1
0
.1

0
.1
2

0
.1
4

0
.1
6

0
.1
8
.1

0
.2
0

0
.2
2

0
.2
4

0
.2
6

0
.2
6
.2

Antisingleton < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.62 0.98
Blob 0.25 0.60 0.01 0.05 0.61 0.23 0.83 0.30 0.31 0.56
ClassDataShouldBePrivate < 0.01 < 0.01 0.06 0.37 < 0.01 0.11 0.07 0.63 0.26 0.93
ComplexClass 0.98 0.44 0.75 0.12 0.74 0.97 0.01 0.50 < 0.01 0.31
LargeClass 0.98 0.21 0.21 0.54 0.06 0.97 0.01 0.07 0.62 0.01
LazyClass < 0.01 0.11 0.38 0.01 < 0.01 0.97 < 0.01 0.01 0.39 0.77
LongMethod < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LongParameterList < 0.01 < 0.01 0.02 < 0.01 0.02 0.01 0.14 < 0.01 < 0.01 < 0.01
MessageChains < 0.01 0.04 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
RefusedParentRequest < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.64 < 0.01
SpeculativeGenerality 0.98 0.36 0.80 0.11 0.11 0.99 0.15 0.14 0.59 0.43
SwissArmyKnife – – – – – – – – – –
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Table C.23 – ArgoUML: logistic regression results for the correlations between fault-proneness and
kinds of antipatterns.

Antipatterns 0
.1
0
.1

0
.1
2

0
.1
4

0
.1
6

0
.1
8
.1

0
.2
0

0
.2
2

0
.2
4

0
.2
6

0
.2
6
.2

Antisingleton 0.61 0.89 0.08 < 0.01 < 0.01 < 0.01 0.03 0.02 1.00 0.33
Blob 0.86 0.56 0.03 0.87 0.42 0.22 0.32 0.24 0.52 0.13
ClassDataShouldBePrivate 0.02 0.10 0.21 0.24 0.63 0.30 0.39 0.32 0.02 0.29
ComplexClass 0.32 0.51 0.09 0.83 0.75 0.76 0.63 0.62 0.17 0.90
LargeClass 0.51 < 0.01 0.36 0.66 0.43 0.04 0.09 0.10 0.46 < 0.01
LazyClass 0.99 0.99 0.98 0.49 0.88 0.84 0.99 0.72 0.99 0.68
LongMethod 0.28 0.79 0.10 0.07 0.29 0.52 0.37 0.99 0.87 < 0.01
LongParameterList 0.26 0.89 0.27 0.51 0.70 < 0.01 < 0.01 0.01 0.01 < 0.01
MessageChains 0.64 0.04 0.02 < 0.01 < 0.01 < 0.01 0.11 0.05 0.07 < 0.01
RefusedParentRequest < 0.01 0.81 < 0.01 < 0.01 0.58 0.56 0.27 0.12 0.25 < 0.01
SpeculativeGenerality 0.99 0.99 0.99 0.98 0.98 0.89 0.53 0.98 0.99 0.62
SwissArmyKnife – – – – – – – – – –
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Table C.24 – Eclipse: logistic regression results for the correlations between change-proneness and
kinds of antipatterns.

Antipatterns 1
.0

2
.0

2
.1
.1

2
.1
.2

2
.1
.3

3
.0

3
.0
.1

3
.0
.2

3
.2

3
.2
.1

3
.2
.2

3
.3

3
.3
.1

AntiSingleton 0.51 0.27 < 0.01 0.76 < 0.01 0.71 0.17 0.48 < 0.01 < 0.01 0.11 < 0.01 0.12
Blob < 0.01 0.01 0.09 < 0.01 0.46 0.02 < 0.01 < 0.01 0.58 0.07 0.76 < 0.01 < 0.01
ClassDataShouldBePrivate 0.08 < 0.01 0.44 < 0.01 < 0.01 < 0.01 0.02 0.23 0.29 < 0.01 0.31 0.10 < 0.01
ComplexClass 0.02 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.06 0.02 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LargeClass 0.95 0.95 0.95 0.93 0.93 0.80 0.99 0.87 0.79 0.42 0.91 0.60 0.43
LazyClass 0.03 0.20 < 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LongMethod < 0.01 0.37 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LongParameterList < 0.01 < 0.01 < 0.01 0.37 < 0.01 < 0.01 < 0.01 0.08 0.97 < 0.01 0.02 < 0.01 0.05
MessageChains < 0.01 0.64 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
RefusedParentBequest 0.10 0.06 1.00 0.73 < 0.01 0.02 < 0.01 < 0.01 0.01 0.23 0.62 0.07 0.01
SpeculativeGenerality 0.04 0.64 0.05 0.09 0.80 0.13 0.15 0.47 0.17 0.05 0.18 0.27 0.04
SwissArmyKnife 0.03 0.88 0.08 0.03 0.74 0.01 0.02 0.01 0.05 0.29 0.81 0.76 < 0.01
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Table C.25 – Eclipse: logistic regression results for the correlations between issue-proneness and kinds
of antipatterns.

Antipatterns 1
.0

2
.0

2
.1
.1

2
.1
.2

2
.1
.3

3
.0

3
.0
.1

3
.0
.2

3
.2

3
.2
.1

3
.2
.2

3
.3

3
.3
.1

AntiSingleton < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.04 < 0.01 < 0.01 < 0.01 < 0.01 0.02
Blob 0.85 < 0.01 0.01 0.01 0.13 0.96 < 0.01 < 0.01 0.09 0.89 0.01 < 0.01 0.24
ClassDataShouldBePrivate < 0.01 < 0.01 0.04 < 0.01 0.17 0.98 < 0.01 < 0.01 0.39 0.81 0.01 0.17 0.07
ComplexClass < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LargeClass 0.95 0.96 0.96 0.98 0.96 0.97 0.69 0.45 0.78 0.95 0.94 0.61 0.81
LazyClass 0.08 0.02 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LongMethod < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LongParameterList < 0.01 < 0.01 < 0.01 0.02 < 0.01 0.91 0.18 < 0.01 0.04 0.67 < 0.01 0.05 0.02
MessageChains 0.10 < 0.01 0.48 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.22 < 0.01 < 0.01 < 0.01 < 0.01
RefusedParentBequest < 0.01 0.05 0.10 < 0.01 0.40 < 0.01 0.52 0.11 0.76 0.50 0.24 0.39 0.45
SpeculativeGenerality 0.77 0.18 0.15 0.88 0.68 0.09 0.01 0.01 < 0.01 < 0.01 0.36 0.15 0.34
SwissArmyKnife 0.44 0.50 0.89 0.57 0.22 0.44 0.73 0.12 0.49 0.10 0.62 0.83 0.01
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Table C.26 – Mylyn: logistic regression results for the correlations between change-proneness and
kinds of antipatterns.

Antipatterns 1
.0
.1

2
.0
M
1

2
.0
M
2

2
.0
M
3

2
.0
.0

2
.1

2
.2
.0

2
.3
.0

2
.3
.1

2
.3
.2

3
.0
.0

3
.0
.1

3
.0
.2

3
.0
.3

3
.0
.4

3
.0
.5

3
.1
.0

3
.1
.1

Antisingleton 0.99 0.70 0.99 0.52 0.59 0.61 0.12 0.05 0.13 0.86 0.04 < 0.01 < 0.01 < 0.01 < 0.01 0.04 0.08 < 0.01
Blob 0.18 0.29 0.99 0.61 0.02 < 0.01 0.09 0.01 0.12 < 0.01 0.44 < 0.01 < 0.01 0.03 0.04 0.08 0.50 < 0.01
ClassDataShouldBePrivate < 0.01 < 0.01 0.98 0.03 < 0.01 < 0.01 0.29 < 0.01 0.98 < 0.01 0.14 < 0.01 0.20 < 0.01 0.12 0.94 0.97 0.89
ComplexClass 0.77 0.75 1.00 0.03 0.40 0.03 0.05 0.54 0.70 0.97 0.15 0.10 0.06 0.76 0.54 0.98 0.64 0.17
LargeClass 0.18 < 0.01 0.99 0.06 0.28 0.54 0.03 0.41 0.02 0.96 0.89 0.32 < 0.01 0.35 0.89 0.98 0.60 0.51
LazyClass 0.97 0.07 1.00 0.94 0.11 0.98 0.98 0.98 0.99 0.53 0.77 < 0.01 0.28 0.03 < 0.01 0.43 0.98 0.97
LongMethod < 0.01 < 0.01 0.98 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LongParameterList < 0.01 0.28 < 0.01 < 0.01 0.25 < 0.01 0.09 0.02 < 0.01 < 0.01 0.19 0.61 0.22 0.98 0.26 0.86 0.20 0.10
MessageChains < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
RefusedParentBequest 0.61 0.04 0.99 < 0.01 0.31 < 0.01 0.49 < 0.01 0.36 < 0.01 0.61 < 0.01 0.23 < 0.01 < 0.01 0.62 < 0.01 < 0.01
SpeculativeGenerality < 0.01 0.16 0.99 < 0.01 0.98 0.25 0.46 0.06 0.97 0.01 0.19 < 0.01 0.12 0.03 < 0.01 0.23 0.67 0.47
SwissArmyKnife – – – – – – – – – – – – – – – – – –
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Table C.27 – Mylyn: logistic regression results for the correlations between fault-proneness and kinds
of antipatterns.

Antipatterns 1
.0
.1

2
.0
M
1

Antisingleton 0.99 1.00
Blob 0.15 0.59
ClassDataShouldBePrivate 0.03 < 0.01
ComplexClass 0.04 0.68
LargeClass 0.13 0.58
LazyClass 1.00 1.00
LongMethod 0.07 0.58
LongParameterList 0.13 0.02
MessageChains < 0.01 0.74
RefusedParentRequest 0.64 0.99
SpeculativeGenerality 0.99 1.00
SwissArmyKnife – –
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Table C.28 – Rhino: logistic regression results for the correlations between change-proneness and
kinds of antipatterns.

Antipatterns 1
.4
R
3

1
.5
R
1

1
.5
R
2

1
.5
R
3

1
.5
R
4

1
.5
R
4
1

1
.5
R
5

1
.6
R
1

1
.6
R
2

1
.6
R
3

1
.6
R
4

1
.6
R
5

1
.6
R
6

Antisingleton 0.99 0.36 0.06 0.68 0.68 0.53 0.45 1.00 1.00 1.00 1.00 1.00 0.99
Blob – – – – – – – – – – – – –
ClassDataShouldBePrivate 1.00 0.09 0.01 < 0.01 0.32 < 0.01 < 0.01 < 0.01 0.13 0.66 0.04 0.07 0.18
ComplexClass 1.00 1.00 0.31 0.99 0.99 0.99 0.99 0.87 1.00 1.00 1.00 0.39 0.70
LargeClass 1.00 1.00 0.05 0.99 0.99 0.98 0.99 0.03 1.00 1.00 0.99 0.01 0.03
LazyClass 1.00 1.00 0.99 0.09 0.99 0.82 0.40 0.31 0.99 0.99 0.04 0.98 0.14
LongMethod 0.69 0.99 0.51 0.44 0.29 0.05 0.04 < 0.01 0.11 0.17 < 0.01 < 0.01 0.02
LongParameterList 0.99 0.99 < 0.01 < 0.01 0.30 < 0.01 0.98 0.99 0.61 0.33 0.99 0.72 0.52
MessageChains 0.99 0.01 < 0.01 0.03 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
RefusedParentBequest 0.99 0.04 0.79 0.51 0.62 < 0.01 0.03 < 0.01 0.99 0.99 0.99 < 0.01 0.28
SpeculativeGenerality – – 1.00 0.99 0.10 0.16 0.59 0.29 1.00 1.00 0.99 0.01 0.99
SwissArmyKnife – – – – – – – – – – – – –



189

Table C.29 – Rhino: logistic regression results for the correlations between fault-proneness and kinds
of antipatterns.

Antipatterns 1
.4
R
3

1
.5
R
1

1
.5
R
2

1
.5
R
3

1
.5
R
4

1
.5
R
4
1

1
.5
R
5

1
.6
R
1

1
.6
R
2

1
.6
R
3

1
.6
R
4

1
.6
R
5

1
.6
R
6

Antisingleton 0.10 0.21 0.20 0.43 0.40 0.68 0.63 1.00 1.00 1.00 1.00 1.00 1.00
Blob – – – – – – – – – – – – –
ClassDataShouldBePrivate 0.99 0.04 0.20 0.06 0.61 0.57 0.71 0.02 1.00 1.00 0.03 0.34 1.00
ComplexClass 0.24 0.18 1.00 0.99 1.00 1.00 0.46 1.00 1.00 1.00 1.00 0.42 1.00
LargeClass 0.55 0.01 1.00 0.99 1.00 1.00 < 0.01 1.00 1.00 1.00 0.99 < 0.01 1.00
LazyClass 0.99 0.99 1.00 0.05 1.00 0.99 0.11 0.99 1.00 1.00 0.04 0.99 < 0.01
LongMethod 0.27 0.11 0.30 0.42 0.75 0.67 0.17 0.01 1.00 1.00 0.01 < 0.01 0.15
LongParameterList 0.66 0.06 0.01 < 0.01 0.18 < 0.01 0.92 0.77 1.00 1.00 0.99 0.09 1.00
MessageChains 0.05 0.08 0.16 0.01 0.64 0.02 < 0.01 < 0.01 1.00 1.00 < 0.01 < 0.01 0.41
RefusedParentBequest 0.99 0.78 0.84 0.09 1.00 0.36 0.75 0.69 1.00 1.00 0.99 0.45 1.00
SpeculativeGenerality – – 1.00 0.99 1.00 0.10 0.38 1.00 1.00 1.00 0.99 0.01 1.00
SwissArmyKnife – – – – – – – – – – – – –
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Figure C.1 – Percentages of (S)tructural and (N)on-(S)tructural changes
occurring to classes participating (and not) in antipatterns.

Tables C.22, and C.23, and C.24, and C.25, and C.26, and C.27, and C.28, and C.29
provide more details on the results of applying logistic regression for the correlations
between changes and faults and kinds of antipatterns.

C.4 Detailed kinds of changes

Figure C.1 shows barcharts of percentages of structural (S) and non-structural (NS) kinds
of changes for classes participating or not in different antipatterns, for the whole set of
classes participating in any kind of antipattern (ANTIPATTERN) and for the set of classes
not participating in any antipattern (NOANTIPATTERN).


