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Abstract—
Previous research has shown how developers “self-admit"

technical debt introduced in the source code, commenting why
such code represents a workaround or a temporary, incomplete
solution. This paper investigates the extent to which previously
self-admitted technical debt can be used to provide recommenda-
tions to developers when they write new source code, suggesting
them when to “self-admit" design technical debt, or possibly
when to improve the code being written. To achieve this goal, we
have developed a machine learning approach named TEDIOUS
(TEchnical Debt IdentificatiOn System), which leverages various
kinds of method-level features as independent variables, including
source code structural metrics, readability metrics and, last
but not least, warnings raised by static analysis tools. We
assessed TEDIOUS on data from nine open source projects for
which there are available tagged self-admitted technical debt
instances, also comparing the performances of different machine
learners. Results of the study indicate that TEDIOUS achieves,
when recommending self-admitted technical debts within a single
project, an average precision of about 50% and a recall of 52%.
When predicting cross-projects, TEDIOUS improves, achieving
an average precision of 67% and a recall of 55%. Last, but not
least, we noticed how TEDIOUS leverages readability, size and
complexity metrics, as well as some warnings raised by static
analysis tools.

Index Terms—Self-Admitted Technical Debt; Recommender
Systems; Static Analysis Tools.

I. INTRODUCTION

Technical Debt (TD) refers to portions of a software system
that are, from different perspectives, not in the most suitable
shape yet. Cunningham defines TD as “not quite right code
which we postpone making it right” [15]. In other words, TD
could be code containing workaround, poorly structured or
hard-to-read code, or even code that under some circumstances
could turn out to be faulty. Technical debt has been related to
various life cycle activities and various software artifacts, e.g.,
requirements, design, code, test, or documentation [3], [22].
Previous studies have investigated developers perception of
TD [17], [24]. Among other findings concerning TD introduc-
tion and management, such studies highlighted how very often
TD introduction is intentional [24], but also that awareness
constitutes an important problem in TD management [17].

Potdar and Shihab [35] and Maldonado and Shihab [16]
observed that very often, developers “self-admit" TD by com-
menting it with sentences explaining that the code is somewhat
temporary and possibly requires more work in future. The
presence of Self-Admitted Technical Debt (SATD) is not

uncommon in software projects. Potdar and Shihab [35] found
that up to 31% of files contain SATD, and that such a SATD
often remains in the source code for a long time; they also
found that introducing SATD is something done more often
by experienced developers than by non-experienced ones. This
latter fact suggests that junior developers may possibly benefit
from an appropriate support to decide when some code is not
of good enough quality and should be documented as TD.

Previous work by Bavota and Russo [8] found that, in
general, there is little correlation between SATD and code
quality metrics such as Weighted Method Complexity (WMC),
Coupling Between Objects (CBO), and Buse and Weimer
Readability [10]. However, the scope of their study was to
define a taxonomy of TD and the number of manually analyzed
SATD was limited. Also, they computed metrics at class-
level, where you could have methods with varying length,
complexity, cohesion, coupling, or readability.

This paper proposes TEDIOUS (TEchnical Debt Identifica-
tiOn System), a machine learning approach that leverages var-
ious kinds of features extracted from source code as indepen-
dent variables, and the knowledge of previous SATD (or SATD
from other projects) as dependent variable to train machine
learners able to recommend developers with “technical debt
to be admitted”. The purpose of such recommendations can
be two-fold. First, it can be used to encourage developers to
self-admit TD, especially since as Potdar and Shihab [35] have
found, mainly experienced developers do that. Second, such
recommendations could be used as an alternative (supervised,
based on previous SATD) to smell detectors for identifying
opportunities to improve source code.

TEDIOUS, differently from the study of Bavota and
Russo [8], recommends SATD at method-level rather than
at class-level. This is because we found that SATD-related
comments are in most cases at method if not at block level.
Second, we only consider certain types of TD, namely design
debts. This is because design debts are the largest fraction [27].
Furthermore, requirement, documentation, defect or test debt
would require a different analysis of further artifacts (which is
in our future work agenda, but out of the scope of this paper).

We consider as features (i) a set of structural metrics
extracted from methods, e.g., LOC, McCabe cyclomatic com-
plexity and number of parameters; (ii) the method’s read-
ability [10]; (iii) warnings produced by two static analysis
tools, namely CheckStyle [1] and PMD [2]. As SATD knowl-
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Fig. 1. Proposed approach for recommending SATD.

edge, we use 9 Java open source projects from a previously-
annotated dataset [27], from which we only consider design-
related SATD. On such a dataset, we experimented with
five different machine learners, performing SATD prediction
within-project and cross-project.

Our results indicate that TEDIOUS is able to recommend
SATD with an overall within project prediction precision of
(about) 50% and recall of 52%1, where Random Forest is able
to achieve the best performance. TEDIOUS is able to improve
when working cross-projects, thanks to the availability of a
larger training set. It achieves an average precision of 67%,
recall 55%, and accuracy of 92%. This indicates its ability
to be applied on new projects having little or no history of
known SATD. We also provide evidence that SATD discovered
by TEDIOUS are only weakly related to methods level anti
patterns/code smells. Last, but not least, the analysis of feature
importance highlights the major role played by different kinds
of features, on the one hand readability, size, and complexity
metrics, and on the other hand the output of static analysis
tools. The obtained results encourage the applicability of
TEDIOUS on the one hand to help developers documenting
TD but, above all, for the automated learning of code-checking
rules in a Continuous Integration pipeline.

II. THE APPROACH

This section describes TEDIOUS, our proposed machine
learning approach that classifies design TD using SATD as
oracle. As mentioned in the introduction, the approach works
at the granularity of methods, i.e., it is able to determine
whether a method could likely contain a design debt. This is
because developers self-admit TD for methods or small blocks,
rather than for entire classes [16], [35].

TEDIOUS works as depicted in Fig. 1. It takes as input
labeled data (training set), i.e., programs in which TD has
been self-admitted, and unlabeled data (test set) which could
be for example source code under development, for which the
approach should recommend whether or not to admit TD, or
should point out source code worthwhile of being improved.

From the training set, on the one hand, we extract various
kinds of metrics and static analysis warnings from source

1Precision and recall computed on the positive instances, i.e., those that
should be recommended as SATD.

code. On the other hand, we identify SATD in order to build
an oracle and train the model. After that, we preprocess the
dataset, i.e., we deal with multi-collinearity, perform feature
selection and re-balancing. Finally, we use the preprocessed
metrics and the oracle (i.e.,, the presence of a SATD in a
method) to train our machine learners. At the same time,
we extract the same features from the test set and perform
the same filtering except re-balancing which is done only on
the labeled data. Finally, we use the machine learning model
previously built to classify the test set.

A. Features

To recognize TD, we employ three pieces of information,
namely source code structural metrics, readability metrics, and
warnings raised by static analysis tools. Overall, the rationale
for combining source code structural metrics, readability met-
rics, and the output of static analysis tools is to capture (i)
symptoms of complex, heavily coupled, poorly designed code
(captured by structural metrics), (ii) symptoms of poorly doc-
umented code, likely, hard to read and understand (readability
metrics), and (iii) more specific bad choices that could either
influence the code maintainability and understandability, or
that could potentially introduce defects (captured by static
analysis tools). In the following, we describe in detail the
metrics we extract and use.

1) Source Code Metrics: We use metrics easy to calculate
but representative of size (i.e., LOC, number of statements),
coupling (i.e., number of call sites), complexity (i.e., McCabe
cyclomatic complexity [31], number of defined variables,
number of expressions, number of identifiers), and number of
comments. Note: as it will be clearer in the study design, in
the empirical evaluation we have removed the SATD-related
comments, to avoid the approach becoming a self-prophecy.
In total, we compute 9 source code metrics.

Source code metrics have been computed on an XML
representation of the Java source code parse tree obtained
through the srcML tool [13]. Concerning comments, we assign
to a method any comment contained in the method body
and any contiguous comment (block or line), i.e., comment
immediately preceding the method definition. We exclude
from our analysis getter and setter methods, as they are
irrelevant for the kind of TD we aim at detecting. This is
done by (i) matching the method name prefix (get and set),
and (ii) considering only as getters and setters methods having
the desired prefix and long no more than two LOC.

In addition to the aforementioned metrics, we consider a
code readability metric (and related tool) proposed by Buse
and Weimer [10]. This metric estimates code readability based
on characteristics such as indentation, line length, identifier
length, comment density, and the use of certain keywords and
operators. We included the readability metric since, as reported
in previous work by Bavota and Russo [8], code readability
is one of the factors correlated with the introduction of a
TD. A poor readability is likely to render the code difficult
to understand and maintain [10].



2) Warnings Raised by Static Analysis Tools: Last, but not
least, we consider warnings raised by static analysis tools.
Indeed, static analysis tools check for a variety of poor
practices. Each single, specific flagged practice, e.g., unused
variables, is likely not related to a TD. However, one may
wonder if too many flagged practices are justifiable or not,
and if an excess of warnings may also be a symptom for
a TD. To this aim, in this work we use two very popular
static analysis tools able to identify warnings by analyzing
source code, namely CheckStyle and PMD. CheckStyle [1]
is a static analysis tool often used to check the adherence
to coding standards, but also to identify pieces of code that
are good candidates for code smells. CheckStyle performs its
analyses using checks defined in a configuration file. In our
study we used a default configuration file containing code
styles defined by Oracle2 and featuring 43 checks. PMD [2]
is a source code analyzer able to find common programming
flaws such as unused objects, unnecessary catch blocks,
or incomprehensible naming. We use all 168 default PMD
checks. We have chosen CheckStyle and PMD because of their
adoption by OSS [9], because of their capability of providing a
range of different kinds of warnings, related to code style and
poor programming practices and, last but not least, because
they can be executed on the source code without requiring
compilation. Also for PMD and CheckStyle, we removed
SATD comments when performing the analysis.

B. Identification of Self-Admitted Technical Debt

In order to train TEDIOUS, we need methods tagged as
design debt. We use as tagging the presence of SATD [16],
[35]. It is not the purpose of this paper to propose novel
methods to identify SATD from information contained in
comments, previous work has suggested approaches to identify
SATD based on pattern matching [16], [35] or combining
natural language processing (NLP) with machine learners [27].
Also, Maldonado et al. have published a corpus of annotated
SATD from ten open source projects [27], which we use in
our empirical evaluation.

C. Feature Preprocessing

First, we identify features that are strongly correlated, and
for each group of such features we only keep one of them
that better correlates with the dependent variable. To this
aim, we use the R varclus function of the Hmisc package.
Such a function produces a hierarchical clustering of features
based on their correlation, in turn computed with a specified
correlation measure (in this work we use the Spearman’s
ρ rank correlation measure). Then, we identify clusters by
cutting the tree at a given level of ρ2. In our case, we
perform a cut for ρ2 = 0.64, which corresponds to a strong
correlation [12] (i.e., ρ = 0.8).

After that, we remove features that in our dataset do not vary
or vary too much, because they would not be useful to build
a predictor. This is performed using the RemoveUseless filter
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implemented in Weka [21], which removes from a dataset,
features that never vary as well as features with a percentage
of variance above a threshold (we set to 99%). Also, we nor-
malize metrics within each project dataset, especially because
source code of different projects can be very different in terms
of size and complexity, and we are interested to achieve a good
cross-project prediction performance too.

Finally, we have to deal with the fact that in this work,
the training set is unbalanced, i.e., only a minority of the
methods typically contain SATD. To balance the training
set, we could either under sample the majority class (i.e.,
methods not containing SATD), or over-sample the minority
class by generating artificial instances from the existing ones.
The latter is more suitable when the number of instances of
the minority class is very small, as under sampling would
result in a very small training set. In our work we apply the
SMOTE (Synthetic Minority Over-sampling Technique) [11]
implementation available in Weka to perform over-sampling.

D. Building and Applying Machine Learning Models

After preprocessing has been performed, we build the
machine learning models on the training set and use them to
perform predictions on the test set. In this work we experiment
with five different kinds of machine learners implemented in
Weka [21], namely Decision Trees (J48), Bayesian classifiers,
Random Forests, Random Trees, and Bagging with Decision
Trees. We used such machine learners with their default
configuration provided by Weka.

III. STUDY DEFINITION AND EXECUTION

The goal of this study is to assess the performance of the
proposed approach in recommending SATD. The quality focus
is source code quality, and in particular understandability and
maintainability that could possibly be improved by keeping
track of existing TD (by self-admitting it) in order to improve
it afterwards. The perspective is that of researchers interested
in developing and evaluating approaches able to suggest to
developers when to admit TD. The study aims at addressing
the following research questions:
• RQ1 : How does TEDIOUS work for recommending

SATD within-project?
• RQ2 : How does TEDIOUS work for recommending

SATD across-project?
• RQ3 : How would a method-level smell detector compare

with TEDIOUS?

A. Dataset

To evaluate the proposed approach, we rely on a dataset
containing validated SATD [27]. The dataset consists of ten
open source projects, for which SATD has been identified
using a NLP approach [27] and manually validated. From such
dataset, we had to exclude the EMF project for which we
were unable to download the considered source code release
(2.4.1). Table I summarizes the characteristics of the dataset,
namely project releases analyzed, their number of files, classes,
methods, number of comment blocks attached to files, classes
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TABLE I
CHARACTERISTICS OF THE STUDIED PROJECTS.

Project Release Number of Number of Comments Number of Design SATD % of Methods
Files Classes Methods Comments ∈ Methods /∈ Methods ∈ Methods with design SATD

Ant 1.7.0 1,113 1,575 11,052 20,325 13,359 1 57 0.5%
ArgoUML 0.34 1,922 2,579 14,346 64,393 17,722 203 425 2%
Columba 1.4 1,549 1,884 7,035 33,415 10,305 8 418 5%
Hibernate 3.3.2 GA 2,129 2,529 17,405 15,901 9,073 21 377 2%
jEdit 4.2 394 889 4,785 15,468 10,894 6 77 2%
jFreeChart 1.0.19 1,017 1,091 10,343 22,827 15,412 4 1,881 18%
jMeter 2.1 1,048 1,328 8,680 19,721 12,672 95 424 5%
jRuby 1.4.0 970 2,063 14,163 10,599 7,809 16 275 2%
Squirrel 3.0.3 2,325 4,123 16,648 25,216 15,574 35 173 1%

and methods, number and percentage of methods containing
a design SATD. Some differences, e.g., number of classes,
methods or comments, could be observed when comparing
figures in Table I and those reported by Maldonado et al. [27].
We attribute these differences to the different tooling, tools
characteristics and processing. In our processing we did not
make a distinction between a class and its inner classes and the
total number of classes includes the interfaces. However, this
does not directly affect our work, as we were only interested
to trace method-level SATD.

As it can be seen from Table I, and as explained in
Section II, there is a clear prevalence of method-related SATD
than of class-level SATD. Table I also clearly shows that
the classification problem (SATD prone versus non SATD
prone) is highly unbalanced. As it can be noticed, besides
JFREECHART, where the percentage of design SATD methods
is 18%, in all other cases it is 5% or below.

To build the oracle, we started from the replication package
of Maldonado et al. [27]. Since the dataset reports SATD at file
level, we attributed SATD to methods by matching the SATD
string onto comments attached to methods. If the SATD is
matched onto a comment contained in a class, but not attached
to any method, then it is assigned to the class, while comments
outside the class are attached to the file. In any case, both file
and class-level SATD (a minority, as it can be noticed from
Table I) are not considered in our study.

B. Analysis Method

To address RQ1 we performed a 10-fold cross validation
for SATD of each project. Namely, we train every time the
approach on 9/10 of the project methods, and we test on the
remaining 1/10. To limit the effect of the randomness, the
process is repeated 10 times, and performance indicators are
averaged over the 10 iterations. For RQ2, instead, we train the
approach every time on 8 projects and test it on the remaining
one.

To assess the performance of TEDIOUS we use standard
metrics in automated classification, namely, precision, recall,
and F1 score computed for the SATD category, i.e., for
methods classified as SATD with respect to the true SATD
methods.

Precision (Pr) is defined as the percentage of methods
predicted as having SATDs that are correct with respect to
our oracle, i.e., Pr = TP/(TP + FP ), where TP and FP
are the number of true and false positives respectively. Recall

(Rc) is the percentage of SATD methods in the oracle that
the approach is able to retrieve, i.e., Rc = TP/(TP + FN).
Finally, the F1 score is the harmonic mean between precision
and recall: F1 = 2 · (Pr ·Rr)/(Pr +Rc).

Neither of the three metrics described above takes into
account true negatives (because they are computed for the
true SATD class only) therefore it is important to complement
the results’ evaluation using other metrics, namely, accuracy,
Matthews Correlation Coefficient (MCC) [30] and the Area
under the Receiving Operating Characteristics (ROC) Curve
(AUC).

Accuracy (Acc) is the percentage of methods correctly
predicted among the total number of methods analyzed: Acc =
(TP + TN)/(TP + TN + FP + FN).

The MCC is a measure used in machine learning to assess
the quality of a two-class classifier especially when the classes
are unbalanced [30]. It ranges between -1 an 1 (0 means that
the approach performs like a random classifier). It is defined
as:

MCC =
TP · TN − FP · FN√

(TP + FP )(FN + TN)(FP + TN)(TP + FN)

As for other correlation measures, MCC < 0.2 indicates a
low correlation, 0.2 ≤MCC < 0.4 a fair, 0.4 ≤MCC < 0.6
a moderate, 0.6 ≤ MCC < 0.8 a strong, and MCC ≥ 0.8 a
very strong correlation [12].

The ROC [36] curve represents the true positive rate against
the false positive rate at various classifier thresholds. The
higher the area below the ROC, the more the classifier will be
better than a random classifier, which has an AUC=0.5.

Intuitively, we prefer a balancing between both precision
and recall, as in practical settings we want an approach that
is able to alert developers whenever in their code they omit
to admit a TD. Moreover, we cannot use only the F1 score
as an indicator since we want to reduce the possibility of
classifications that occurred by chance, and for this reason
we also report and discuss MCC and AUC values.

In addition to the aforementioned performance indicators,
we provide indications about the importance of the considered
metrics. In our case we use a specific technique implemented
by Weka for Random Forests (which in our study outper-
form the other classifiers) named Mean Decrease Impurity
(MDI) [25], which measures the importance of variables on
an ensemble of randomized trees.

To address RQ3 we compute and report the performance
of a smell detector, namely DECOR [32], in classifying as



TABLE II
AVERAGE PERFORMANCE OF DIFFERENT MACHINE LEARNERS FOR

WITHIN-PROJECT PREDICTION.

Without Balancing
ML Pr Rc F1 Acc MCC AUC
Random Forests 49.97 52.19 47.15 93.32 0.47 0.92
Bagging 51.91 48.45 45.97 93.35 0.45 0.92
Bayesian 24.29 78.77 34.18 89.01 0.38 0.93
j48 34.86 54.42 39.54 94.18 0.39 0.82
Random Trees 23.09 52.49 29.96 90.35 0.30 0.73

With Balancing
ML Pr Rc F1 Acc MCC AUC
Random Forests 26.56 68.26 36.04 90.45 0.37 0.92
Bagging 18.4 75.12 28.24 85.58 0.31 0.90
Bayesian 4.00 94.07 7.55 15.66 0.04 0.72
j48 16.95 77.76 26.45 84.04 0.30 0.85
Random Trees 16.03 63.22 24.49 85.34 0.26 0.75

TD methods labeled as SATD. Most of the smells defined by
DECOR (and by most of the existing smell detectors) are at
class level, therefore we limit the attention to method-level
smells, namely Long Method and Long Parameter List. The
rules DECOR uses for identifying a Long Method or a Long
Parameter List are LOC> th1 and ParNbr> th2, where th1
and th2 are two thresholds on the LOC and on the number
of parameters respectively. In our study, we consider th1 and
th2 varying along different percentiles of LOC and number
of parameters, belonging in the range [0.5 − 0.95]. Also, we
consider DECOR’s default thresholds, namely percentile 0.75
for LOC and outlier for long parameter list, i.e., third quartile
+1.5 · IQR (interquartile range).

Finally, we qualitatively discuss some examples of false pos-
itives and false negatives, explaining to what extent TEDIOUS
is limited in its capability to recommend any kind of design
TD.

IV. STUDY RESULTS

This section reports the study results, addressing the re-
search questions formulated in Section III.

A. How does TEDIOUS work for recommending SATD
within-project?

Table II highlights the average performance computed by
executing 10 times the 10-fold cross validation for each system
in our dataset, using different machine learners’ algorithms,
and with or without balancing the training set with SMOTE.

The Random Forest classifiers executed on an unbalanced
dataset achieve the best balancing between average precision
(49.97%) and average recall (52.19%), with an average F1

score of 47.15%. The accuracy (which keeps into account
the classification of negatives) is 93.13%, and it is in all
cases (except for Bayesian classifiers with balancing) above
80%. Moreover, MCC has an average value > 0.4 (moderate
correlation), and the AUC in three cases (Random Forests,
Bagging and Bayesian) is > 0.9 while for j48 and Random
Trees it is > 0.7.

When using a balanced training set, as expected, we have
a decrease in terms of precision and an increase of the
recall. Random Forest classifiers are the ones that work better

TABLE III
WITHIN-PROJECT PREDICTION: RESULTS OF RANDOM FORESTS FOR

EACH SYSTEM, WITHOUT AND WITH SMOTE BALANCING.

Without Balancing
System Pr Rc F1 Acc MCC AUC
Ant 0.91 16.39 1.73 84.59 0.00 0.77
ArgoUML 85.19 38.10 52.65 93.25 0.54 0.91
Columba 36.40 65.94 46.91 96.02 0.47 0.94
Hibernate 53.44 65.22 58.74 96.80 0.57 0.97
jEdit 5.24 25.71 8.71 85.51 0.06 0.81
jFreeChart 84.58 82.52 83.54 98.91 0.83 0.99
jMeter 53.38 47.37 52.30 96.69 0.51 0.94
jRuby 52.27 84.02 64.45 94.21 0.64 0.97
Squirrel 73.33 44.44 55.35 99.51 0.57 0.97

With Balancing
System Pr Rc F1 Acc MCC AUC
Ant 2.46 44.26 4.67 85.02 0.08 0.83
ArgoUML 47.03 65.39 54.71 89.34 0.50 0.90
Columba 15.35 74.64 25.46 88.35 0.30 0.94
Hibernate 19.85 89.13 32.47 87.04 0.38 0.95
jEdit 7.74 34.29 12.63 87.25 0.11 0.86
jFreeChart 62.98 92.68 75.00 97.94 0.75 0.99
jMeter 32.03 64.47 42.79 93.4 0.42 0.92
jRuby 32.75 91.91 48.29 87.72 0.50 0.92
Squirrel 18.81 57.58 28.36 98.02 0.32 0.96

also using a balanced dataset (as shown in the bottom part
of Table II). It exhibits an average F1 score of 36.04% with
a moderate correlation (MCC=0.47) regarding the predicted
instances and AUC=0.92. The Bayesian classifiers are the
ones which exhibit the worst performance if used on a
completely balanced dataset. Indeed, the MCC value is ' 0
which means that the predictions are perfectly in-line with a
random classifier. The other classifiers we considered have a
precision that ranges in the interval [16.03%−51.91%], an Rc
∈ [52.49% − 78.77%], with an F1 score ' 30%. Moreover,
the MCC coefficient is always above 0.30, and AUC> 0.7,
meaning that our predictions reach a fair to moderate correla-
tion and perform better than a random classifier (which would
have MCC=0 and AUC=0.5).

Table III reports detailed results per system, considering
Random Forest classifiers only, i.e., the best performing
machine learner. The top part of the table reports results
without balancing. First of all, it is important to highlight
that, except for JFREECHART for which we have a percentage
of methods with SATD in the oracle that is 18%, for the
other eight systems we have very few methods containing
SATD compared to the total number of methods analyzed
(≤ 5%). In particular, for ANT we have 0.5% of methods
with SATD in the dataset. This explains the low prediction
performances achieved for this system (without balancing we
obtain a precision of 0.91% and a recall of 16.39%), and
even balancing does not help so much (precision 2.46% and
recall 44.26%), because data from the few SATDs is not even
able to act as a seed for an artificial training set. To some
extent, the same happens on JEDIT (precision 5.24% and recall
25.71%). For such systems, even if the AUC is > 0.7, we
obtain a very low MCC, close to zero (random classifier).
At the same time, TEDIOUS works quite well on the other
systems. We can note that for JFREECHART, we obtain high



TABLE IV
TOP 10 DISCRIMINANT FEATURES (WITHIN-PROJECT PREDICTION). (M): SOURCE CODE METRICS, (CS): CHECKSTYLE CHECKS, (P): PMD CHECKS.

Metric Name Ant ArgoUML Columba Hibernate jEdit jFreeChart jMeter jRuby Squirrel
Readability (R) 5 1 2 1 1 1 1 1 1
LOC (M) 2 2 5 2 2 3 2 3 4
DeclNbr (M) 4 3 7 4 3 4 3 4 3
ParNbr (M) 8 5 9 7 7 7 7 7 7
ExprStmtNbr (M) 6 4 — 5 4 5 5 5 5
McCabe (M) 10 7 — 6 6 6 6 6 6
CommentNbr (M) — 6 — 3 5 2 4 2 2
LineLength (CS) — — — 9 — — 9 8 9
LocalVariableCouldBeFinal (P) — — — 10 9 — — 9 10
DataflowAnomalyAnalysis (P) — 10 — — 10 — — — —
FinalParameters (CS) — — — — — 8 8 — —
MissingSwitchDefault (CS) — 8 4 — — — — — —
AvoidReassigningParameters (P) 7 — — — — — — — —
CollapsibleIfStatements (P) 9 — — — — — — — —
EmptyIfStmt (P) — — 8 — — — — — —
IfStmtsMustUseBraces (P) — — — — 8 — — — —
LeftCurly (CS) — — — — — — — — 8
LocalVariableName (CS) — — 1 — — — — — —
MethodArgumentCouldBeFinal (P) — — — — — — — 10 —
MethodLength (CS) — — — — — — 10 — —
OptimizableToArrayCall (P) — — 10 — — — — — —
ParameterNumber (CS) — — — — — 10 — — —
ParenPad (CS) — — — 8 — — — — —
ShortVariable (P) — — — — — 9 — — —
SimplifyBooleanReturns (CS) — 9 — — — — — — —
SwitchStmtsShouldHaveDefault (P) — — 6 — — — — — —
UselessParentheses (P) 3 — — — — — — — —
UseLocaleWithCaseConversions (P) — — 3 — — — — — —
UseStringBufferForStringAppends (P) 1 — — — — — — — —

precision and recall, (84.58% and 82.52% respectively) and a
very high MCC (0.8) and AUC (0.99). Moreover, TEDIOUS
is able to work well on the other five systems in our dataset,
namely JRUBY, HIBERNATE, SQUIRREL, ARGOUML and
JMETER with an F1 > 50%, an MCC ∈ [0.51 − 0.64], and
AUC ∈ [0.91 − 0.97]. Differently from ANT, and even if
SQUIRREL has only 1% of SATD methods, TEDIOUS is able
to correctly classify them with an average precision of 73.33%
and an average recall of 44.44%.

When looking at results with balancing (bottom part of the
table), we can notice that, in general, the performances are
in-line with the ones obtained without balancing, but slightly
lower. For example, the F1 score varies in the range [4.67%−
54.71%].

Table IV reports the top-10 features ranked, for each system
in terms of MDI. For each system we indicate the ranking
of each feature. The first four features, in the top-10 for
all projects, are source code metrics. Interestingly, the most
important metric is the Buse and Weimer’s readability met-
ric [10], which is the most important metric in 7 projects, the
2nd-most important in COLUMBA and ranked 5th for ANT. On
the one hand, this contrasts with findings of previous work [8],
but we recall that we have performed the analysis at method-
level, since a class could contain very readable methods and
other methods (tagged as SATD) with poor readability. Other
important metrics are the number of declarations (DeclNbr),
of parameters (ParNbr), and, as expected, the LOC. The

last two metrics are particularly relevant since they are often
used by smell detectors, and in RQ3 we will investigate the
extent to which they are sufficient to perform a prediction
without other indicators. Other features appearing in 7-9
systems are the number of expressions (ExprStmtNbr), the
(again, expected) McCabe cyclomatic complexity, the number
of comments (CommentNbr, which, again excludes the SATD
comment blocks that would have biased the prediction), and
the CheckStyle LineLength (i.e., line too long) warning.

Other features, mostly CheckStyle and PMD warnings play
a role in very specific systems, and many of them relate to
poorly written code (e.g., LocalVariableName is related to
single-character variables or local variables with the same
name in different scopes; LocalVariableCouldBeFinal if as-
signed only once). Due to the lack of space, we refer to the
CheckStyle3 and PMD4 documentation for further details on
their meaning.

Among the top-10 features, we can also notice the
ParameterNumber and MethodLength CheckStyle warnings.
Intuitively, they could be correlated with two of our top
features, ParNbr and LOC respectively. However, they
are boolean features telling whether the method length or
number of parameters are too high according to CheckStyle-
defined thresholds (150 LOC and 7 parameters by default,

3http://checkstyle.sourceforge.net/checks.html
4https://pmd.github.io/pmd-5.5.5/pmd-java/rules/index.html

http://checkstyle.sourceforge.net/checks.html
https://pmd.github.io/pmd-5.5.5/pmd-java/rules/index.html


TABLE V
AVERAGE PERFORMANCE OF DIFFERENT MACHINE LEARNERS FOR

CROSS-PROJECT PREDICTION.

Without Balancing
ML Pr Rc F1 Acc MCC AUC
Random Forests 67.22 54.89 55.43 91.89 0.55 0.91
Bagging 58.85 58.50 52.46 91.27 0.52 0.88
Bayesian 49.25 64.35 48.18 89.11 0.47 0.85
j48 48.51 62.47 47.18 89.22 0.46 0.78
Random Trees 48.31 51.62 45.35 90.14 0.43 0.74

With Balancing
ML Pr Rc F1 Acc MCC AUC
Random Forests 47.49 78.75 56.45 89.52 0.52 0.89
Bagging 28.42 83.17 38.91 75.25 0.31 0.86
Bayesian 15.68 98.04 23.84 21.70 0.06 0.83
j48 35.73 83.41 46.89 83.85 0.43 0.82
Random Trees 31.49 63.21 36.87 80.76 0.30 0.76

respectively). Their outcome was not correlated with ParNbr
and LOC, and therefore not removed by the Spearman’s
analysis. In any case, they are in the top-10 in one system each.

RQ1 summary: Random Forest classifiers achieve the
best performance in recommending design TD, with
average precision of 49.97% and recall of 52.19%. Except
for a couple of projects with a very limited percentage
of SATD instances, in all other cases the high values
of MCC and AUC indicate healthy classifiers. While
balancing increases recall, it does not necessarily repre-
sent a convenient choice due to the substantial precision
decrease. Code readability, complexity and size play a
major role in the prediction, along with some system-
specific static analysis checks.

B. How does TEDIOUS work for recommending SATD
across-project?

To answer RQ2, we evaluate the performance of TEDIOUS
in cross-project predictions. The average performances of each
machine learner are reported in Table V without balancing (top
part of the table) and with SMOTE balancing (bottom). By
looking at the table, we can immediately notice that, on the
one hand, results are consistent with those of RQ1, because
(i) Random Forests outperform other machine learners, and
(ii) there is no strong payoff in performing re-balancing with
SMOTE. Specifically, the Random Forest classifiers achieve an
average precision of 67.22% and an average recall of 54.89%,
vs. within-project precision 49.97% and recall 52.19%. Also
other classifiers exhibit good overall performance with a preci-
sion between 48.31% (Random Trees) and 58.85% (Bagging),
and a recall between 51.62% (Random Trees) and 64.35%
(Bayesian classifiers). MCC is always above 0.4 (moderate),
and AUC above 0.7. Also in this case, balancing allows to
increase recall at the cost of precision. Also in this case
the machine learner achieving the best compromise between
precision and recall is the Random Forests classifier, with a
precision of 47.49%, a recall of 78.75%, and a F1 score of
56.45% (slightly better than without balancing).

TABLE VI
CROSS-PROJECT PREDICTION: RESULTS OF RANDOM FORESTS FOR EACH

SYSTEM, WITHOUT AND WITH SMOTE BALANCING.

Without Balancing
System Pr Rc F1 Acc MCC AUC
Ant 27.94 53.52 36.71 98.23 0.38 0.97
ArgoUML 94.46 88.29 91.27 92.72 0.85 0.98
Columba 67.84 43.88 53.29 92.19 0.51 0.92
Hibernate 72.84 52.10 60.75 96.74 0.60 0.95
jEdit 35.90 24.78 29.32 96.55 0.28 0.91
jFreeChart 94.89 95.98 95.43 98.05 0.94 0.99
jMeter 70.51 59.76 64.69 95.55 0.63 0.91
jRuby 91.89 5.11 9.69 58.32 0.15 0.75
Squirrel 48.75 70.62 57.86 98.63 0.58 0.97

With Balancing
System Pr Rc F1 Acc MCC AUC
Ant 13.56 71.83 22.82 95.34 0.30 0.96
ArgoUML 89.74 92.65 91.18 92.27 0.84 0.96
Columba 49.01 69.06 57.33 89.56 0.53 0.94
Hibernate 52.61 68.87 59.66 95.49 0.58 0.95
jEdit 20.70 57.52 30.44 92.42 0.31 0.72
jFreeChart 84.85 96.81 90.44 95.67 0.88 0.98
jMeter 46.05 79.05 58.19 92.25 0.57 0.91
jRuby 50.50 93.10 65.48 57.09 0.28 0.64
Squirrel 20.42 79.90 32.53 95.61 0.39 0.93

Table VI reports detailed results per system, considering the
best performing machine learner, i.e., Random Forests. The top
part of the table reports results without SMOTE balancing.
We have only 3 systems for which TEDIOUS is not able to
reach an F1 score greater than 37%, namely JRUBY, JEDIT
and ANT. Again, these are systems with a low percentage of
SATD methods (< 2.15%). As for within-project prediction,
an exception is represented by SQUIRREL, for which, despite
the fact that only 1.42% of methods have SATD, TEDIOUS
achieves a precision ' 50% and a recall of 70.62%. Finally,
there are 2 systems, JFREECHART and ARGOUML, for which
TEDIOUS achieves an F1 score > 91% with MCC values of
0.94 and 0.85 respectively, i.e., very strong correlation.

Therefore, results tell us that, except for some systems with
a very limited percentage of SATD, cross-project prediction
is surprisingly very beneficial. This can be explained because,
when performing within-project prediction, TEDIOUS has to
learn from a fairly limited number of SATD. SMOTE re-
balancing does not help a lot because the very limited samples
are not even enough to play a role as a seed for the generation
of artificial samples, and, also, static analysis warnings have a
sparse and often boolean nature for a method (either zero or
one), making SMOTE not very appropriate for them.

Looking at the bottom part of Table VI, reporting results
with SMOTE balancing, we can notice that performances
are in-line with the ones obtained when not applying the
balancing, even if they are generally lower. Indeed, in this case
the maximum F1 score is 91.18% using ARGOUML instances
as testing set. The only project for which re-balancing turns
out to be very beneficial is JRUBY. The balancing helped
to improve the performances: the F1 score increased up to
65.48% with a precision of 50.50% and a recall of 93.10%.
This is because without re-balancing JRUBY exhibited a very
high precision (91.89%) but a very poor recall (5.11%). In this



case, re-balancing brought the recall very high while keeping
the precision still acceptable.

Table VII reports the top-10 features for cross-project
prediction, ranked by MDI. Results are in-line with respect
to within-project prediction, and the contribution of the
same features we discussed before is becoming clearer.
Readability plays again (and always) the most important
role, followed by LOC and CommentNbr. The number of
parameters (ParNbr) becomes less important than other metrics
capturing the code size and complexity, such as DeclNbr
and ExprStmptNbr. The four important checks are the PMD
and CheckStyle ones related to declaring final variables,
parameters not being reassigned, and the LineLength. Also
in this case we notice the presence of potentially related
variables, i.e., both CheckStyle’s FinalParameters and PMD’s
MethodArgumentCouldBeFinal. They are different because
the latter recommends final only if the parameter is never
re-assigned, while the former does not. For such a reason,
the variables did not correlate enough and they were both
retained in the model.

RQ2 summary: When recommending SATD, cross-
project prediction is able to increase the performance of
predictors because of the larger and diverse training set
available. Features related to code readability, size and
complexity play a major role in the recommendation of
design SATD.

C. How would a method-level smell detector compare with
TEDIOUS?

Table VIII reports the performance of a prediction per-
formed, instead of using our approach, by relying on DECOR
Long Method and Long Parameter List smell detectors, and
by considering the union of both, i.e., by recommending a
TD if either a Long Method or a Long Parameter List has
been detected. As explained in Section III-B, we report results
for thresholds at different percentiles of LOC and number of
parameters, as well as the DECOR’s default thresholds. When
combining the smells, for the sake of simplicity we consider
the same threshold for both.

As the table shows, even with different thresholds, smell
detection is never able to achieve performances comparable
to TEDIOUS. That is, both precision and recall are low, the
F1 score is always below 22% and the MCC below 0.20
(low correlation). Not surprising, the most suitable “trivial”
predictor is the Long Method, which achieves a precision
∈ [7.76%− 24.50%] and a recall ∈ [55.18%− 18.48%].

RQ3 summary: While LOC and number of parameters
play an important role for machine learners, DECOR
Long Method and Long Parameter List smell detectors
are not able to achieve performances comparable to
TEDIOUS.

D. Discussion of false positives and false negatives

In the following we discuss some examples, among 100
we manually inspected, to explain cases in which TEDIOUS
correctly classified or misclassified SATD.

As an example of true positives of different nature,
in ARGOUML there are two methods createFlow in
class CoreFactoryEUMLImpl and invokeFeature in class
ModelAccessModelInterpreter both having a labeled
design SATD, characterized by different source code metrics.
More in detail, the first one has a Readability ≈ 1, only two
lines of code and McCabe = 1, while the second one has
a Readability = 0, is made up of 755 lines of code with
a complexity of 178. TEDIOUS is able to correctly identify
both of them, possibly because of multiple trees produced by
the Random Forests ensemble classifier.

As an example of false positive, the method initialize of the
class RE (regular expression) of JEDIT has 511 LOC, 5 pa-
rameters, 197 calls, 32 declarations, 618 expressions, 97 com-
ments, McCabe = 102 and, unsurprisingly, Readability = 0.
It is clearly classified as SATD while it is not, because it
is a piece of intrinsically complex code, which may or may
not be improved by developers. At the same time, SATD
recommendations for such unreadable, complex and long
methods should not be totally annoying and worthless.

As an example of false negative, the method start in
class ColumbaServer of COLUMBA has a design-SATD
comment, immediately after an “if” condition, saying that
“something is very wrong here”. However, if one looks at the
method structure, there is nothing that could be considered as a
symptom of the TD presence. In summary, there are cases for
which the SATD could not be properly detected using only
structural and source code metrics. This is a limitation for
TEDIOUS’ applicability.

V. THREATS TO VALIDITY

In this section, we discuss the threats to validity of our study
following the guidelines for case study research [41].

Construct validity threats concern the relationship between
theory and observation. In this study construct validity threats
are mainly due to measurement errors of labeled design-SATD
and of metrics. As for the SATD, we use the annotated dataset
of Maldonado et al. [27] to build our oracle. However, as
explained in Section III-A, we had to match the SATD pattern
onto methods, as method information was not available in the
dataset. This introduced the possibility of imprecision. We are
aware that not all comments in the dataset [27] were matched
in the code. We attribute this to the different processing
chain. However, this only implies we are making the task
more difficult as the process creates false negatives. Indeed,
methods that should be tagged as SATD prone, but that are
not, if properly traced, would make the dataset more balanced,
likely leading to improved results. As future work we plan to
manually revise those cases where a non perfect match exists.

Internal validity threats concern factors internal to our
study that could have influenced our results. As explained in
Section II-D, machine learners have been applied with default



TABLE VII
TOP 10 DISCRIMINANT FEATURES (CROSS-PROJECT PREDICTION). (M): SOURCE CODE METRICS, (CS): CHECKSTYLE CHECKS, (P): PMD CHECKS.

Metric Ant ArgoUML Columba Hibernate jEdit jFreeChart jMeter jRuby Squirrel
Readability (M) 1 1 1 1 1 1 1 1 1
LOC (M) 2 2 3 2 2 2 2 2 2
CommentNbr (M) 7 3 4 3 3 4 4 3 3
DeclNbr (M) 4 4 2 4 4 3 3 4 4
ExprStmtNbr (M) 5 5 5 5 5 5 5 5 5
McCabe (M) 6 6 6 6 6 6 6 6 6
ParNbr (M) 3 7 7 7 7 7 7 7 7
LocalVariableCouldBeFinal (P) 10 9 9 8 10 8 10 10 8
MethodArgumentCouldBeFinal (P) — 10 10 10 8 9 8 8 7
FinalParameters (CS) 8 — 8 9 9 — 8 8 8
LineLength (CS) 9 8 — — — 10 — — 10

TABLE VIII
OVERALL DECOR PERFORMANCES IN PREDICTING SATD (THE LAST LINE REPORTS RESULTS FOR DEFAULT THRESHOLDS).

Percentile Long Method (LM) Long Parameter List (LPL) LM ∪ LPL
Prec. Rec. F1 Acc. MCC Prec. Rec. F1 Acc. MCC Prec. Rec. F1 Acc. MCC

0.50 7.76 55.18 13.60 54.01 0.05 11.93 43.91 18.76 75.06 0.12 7.93 68.28 14.21 45.91 0.06
0.55 8.31 53.53 14.38 58.19 0.06 11.93 43.91 18.76 75.06 0.12 8.35 67.80 14.87 49.09 0.08
0.60 8.47 49.26 14.46 61.77 0.06 11.93 43.91 18.76 75.06 0.12 8.75 67.14 15.48 51.89 0.09
0.65 8.88 46.86 14.93 64.98 0.07 11.93 43.91 18.76 75.06 0.12 9.07 65.97 15.94 54.36 0.10
0.70 9.83 43.70 16.05 70.01 0.08 11.93 43.91 18.76 75.06 0.12 9.56 63.71 16.62 58.07 0.11
0.75 11.36 40.41 17.74 75.41 0.11 11.93 43.91 18.76 75.06 0.12 10.27 61.88 17.61 62.02 0.12
0.80 12.59 36.66 18.74 79.15 0.12 17.62 33.30 23.05 85.41 0.17 12.74 53.53 20.58 72.89 0.15
0.85 14.55 31.72 19.95 83.30 0.13 17.62 33.30 23.05 85.41 0.17 14.14 50.77 22.11 76.54 0.17
0.90 15.74 23.62 18.89 86.69 0.12 13.52 12.58 13.03 88.99 0.07 14.16 31.76 19.58 82.89 0.13
0.95 24.50 18.48 21.07 90.92 0.17 14.91 7.09 9.61 91.25 0.06 19.58 22.59 20.98 88.83 0.15
Default 11.36 40.41 17.73 75.41 0.11 17.62 33.29 23.04 85.41 0.17 11.58 54.69 19.12 69.64 0.13

Weka settings, therefore it is possible that better results could
be obtained through an appropriate calibration. However, this
simply means that in the worst case our results represent a
lower-bound. Also, for CheckStyle we used default configura-
tion rules provided by Oracle (available with the CheckStyle
tool), and default rules for PMD as well. Developers have
the capability of customizing such rules, and an appropriate
customization could have produced a different set of warnings
and, possibly, increased the usefulness of the checks for the
prediction. In future work we plan to use SATD to help
customizing CheckStyle and PMD rules as well.

Source code metrics (except for readability, for which we
used the tool by Buse and Weimer [10]) have been computed
using srcML [13], and therefore it is possible that alternative
metric extractors could produce different results. However,
since we showed that TEDIOUS has the potential to learn
SATD recommendations, it is still possible to apply it using
different code analyzers and different metrics.

As explained in Section III-A, we skipped the EMF project
from the Maldonado et al. [27] dataset as we could not
download the archive of release 2.4.1. However, this should
not bias our study, as EMF is comparable to ARGOUML in
terms of LOC, to HIBERNATE and COLUMBA in terms of
number of classes, and smaller than SQUIRREL.

Conclusion validity threats concern the relationship between
the treatments and the outcome. We report results using
appropriate diagnostics for the machine learner performances
(AUC and MCC) and for evaluating the importance of features
(MDI). Then, when discussing findings we keep into account
ranges of acceptability of AUC and MCC (i.e., AUC should

be larger than 0.5 and MCC should be in the positive range).
Reliability validity threats concern the possibility of repli-

cating this study. We attempt to provide all the necessary
details needed to replicate our study. We plan to share our
full replication package comprising source code, raw data and
scripts.

External validity threats concern the possibility of gen-
eralizing our results. Despite the fact we used the same
systems of the previous study [27], and even though the 9
systems cover different domains, we cannot be guaranteed
that the finding generalize to the universe of Java programs.
We report a consistency evaluation across the 9 systems,
however more studies are needed to verify to what extent our
findings generalize to other projects, domains, or programming
languages.

VI. RELATED WORK

The main subjects related to this paper can be divided in
four sections: relationship between technical debt and source
code metrics, self-admitted technical debt, code smell detec-
tion, and the use of static analysis tools in software projects.

A. Relationship Between Technical Debt and Source Code
Metrics

Several authors have tried to relate source code metrics
to technical debt, and specifically to design and code debt.
Marinescu proposed to identify design debt using a rule-based
approach leveraging source code metrics capturing coupling,
cohesion and encapsulation [29]. Griffith et al. [20] empirically
compared the detection of technical debt performed by five
different methods and tools, finding that while some of such



methods produced correlated results, they do not exhibit a
strong relationship with software quality attributes of the
QMOOD quality model [7]. Also, Arcelli Fontana et al. [5]
studied how different tools detect technical debt, finding that
there is limited agreement among tools, and also that tools
ignore some pieces of information, e.g., the change history.
Arcelli Fontana et al. [4] focused on the impact of design
smells on code debt, in order to give advices about which
design debt should be prioritized for refactoring actions.

B. Self-Admitted Technical Debt

Potdar and Shihab [35] investigated TD in the source code
of open source projects and observed that developers often
“self-admit” technical debt by commenting it with sentences
explaining that the code is somewhat temporary and may
require rework in future. Maldonado and Shihab [16] de-
veloped an approach that leverages developers’ comments
to identify instances of SATD in the code. The proposed
approach is based on pattern matching and classifies SATD
into five types: design, defect, documentation, requirement
and test. Bavota and Russo [8] conducted a large-scale em-
pirical study of self-admitted technical debt in open source
projects, investigating the diffusion and evolution of SATD,
the actors involved in SATD management, and the relation
between SATD and code quality metrics. They observed that
SATD are prevalent in software projects and survive for long
time. Similarly to previous work by Griffith et al. [20], they
found no clear relation between SATD and some software
quality metrics, namely WMC, CBO, and Buse and Weimer
Readability metrics. Wehaibi et al. [40] examined the relation
between SATD and fault-proneness, finding that there is no
strong relation between the occurrence of SATD and the
fault-proneness of a system. More recently, Maldonado et
al. [27] used NLP techniques to detect SATD. Comments were
classified into different types of technical debt and were used
to train a maximum entropy classifier, which turned out to
outperform the previous pattern matching approach by Potdar
and Shihab [35]. In this paper we do not propose a new
approach to identify SATD using information from developers’
comments. Instead, we leverage structural information about
the code to recommend developers with “technical debt to be
admitted” acting at method-level.

C. Code Smell Detection and Automated Static Analysis Tools

Several code smells detection approaches exist in the liter-
ature. They range from manual inspection techniques [37], to
metric-based heuristics [28], [33], using rules and thresholds
on various metrics [32], historical information [34], graph
matching [18], [38] or machine learning techniques [19], [23],
[26]. Differently from these previous approaches that do not
take into account developers’ feedback during the detection
of code smells, our approach leverages instances of SATD
provided by developers to identify technical debt in the code.
Also, our approach uses warnings generated by automated
static analysis tools in addition to source code metrics.

Prior to this work, several authors have also investigated
the benefits that automated static analysis tools (ASATs) can
bring to software development activities. Couto et al. [14]
examined the role that ASATs can play in the context of
fault detection and found no relationship between warnings
generated by FindBugs and fault occurence. However, Wedyan
et al. [39] were able to recommend refactoring opportunities
to developers successfully using information provided by
ASATs. Ayewah et al. [6] evaluated the relevance of warnings
generated by FindBugs, a static analysis tools for Java, and
found that developers consider them to be relevant and they
are willing to fix the issues raised in these warnings. Recently,
Beller et al. [9] conducted a large-scale study on the use of
ASATs in OSS and reported that ASATs are not adopted by
many popular software systems, because of the limited amount
of programming languages supported by these tools.

Overall, although commonalities can be found with several
works referred above, to the best of authors’ knowledge,
TEDIOUS is the first attempt to predict TD at the method
level using a variety of easy to obtain information.

VII. CONCLUSION

This paper describes TEDIOUS (TEchnical Debt Identifi-
catiOn System), a machine learning recommender to suggest
when developers should admit method-level design TD. It
is based on size, complexity, readability metrics, and checks
produced by static analysis tools.

We have evaluated TEDIOUS on 9 projects from a publicly
available dataset from Maldonado et al. [27]. Results indicate
for within-project prediction an average precision of about
50%, recall of 52%, and accuracy of 93% when recommending
true instances. Because of the highly unbalanced data (few
methods contain labeled design-SATD), and despite the fact
that oversampling introduces limited benefits with respect to
that, cross-project prediction substantially improves the per-
formance of TEDIOUS (average precision of 67%, recall of
55% and accuracy of 92%). For some projects, JFREECHART
and ARGOUML, TEDIOUS achieved values above 88% for
both precision and recall. TEDIOUS leverages, in particular,
source code readability, as well as size and complexity metrics,
but also some static analysis tool checks.

Given the findings, we envision different applicability sce-
narios for TEDIOUS. In the first, TEDIOUS acts as a recom-
mendation system suggesting to developers when documenting
TDs. In the second scenario, TEDIOUS could help customiz-
ing — for example in a Continuous Integration pipeline — the
warnings raised by static analysis tools, by learning rules upon
them from previous SATD. In the third scenario, TEDIOUS
could complement existing smell and anti pattern detection
tools such as DECOR [32], as our study suggested that a
simple detector of Long Methods and Long Parameter List
is not able to achieve performance comparable to TEDIOUS.

Our future works will be geared to extend the pool of
studied programs and to verify if any benefit could be achieved
by adding more information. Last, but not least, we plan to



extend TEDIOUS to the recommendation of further families
of SATD.
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