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ABSTRACT
Re-using whole repositories as a starting point for new projects is
often done by maintaining a variant fork parallel to the original.
However, the common artifacts between both are not always kept
up to date. As a result, patches are not optimally integrated across
the two repositories, which may lead to sub-optimal maintenance
between the variant and the original project. A bug existing in both
repositories can be patched in one but not the other (we see this as a
missed opportunity) or it can be manually patched in both probably
by different developers (we see this as effort duplication). In this
paper we present a tool (named PaReco) which relies on clone de-
tection to mine cases of missed opportunity and effort duplication
from a pool of patches. We analyzed 364 (source→target) variant
pairs with 8,323 patches resulting in a curated dataset containing
1,116 cases of effort duplication and 1,008 cases of missed opportu-
nities. We achieve a precision of 91%, recall of 80%, accuracy of 88%,
and F1-score of 85%. Furthermore, we investigated the time interval
between patches and found out that, on average, missed patches in
the target variants have been introduced in the source variants 52
weeks earlier. Consequently, PaReco can be used to manage vari-
ability in “time” by automatically identifying interesting patches in
later project releases to be backported to supported earlier releases.

CCS CONCEPTS
• Software and its engineering → Software version control; Soft-
ware defect analysis; Software maintenance tools; Software con-
figuration management and version control systems.
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1 INTRODUCTION
Code reuse is the practice of using existing code to speed up the
development process. “Traditional” code reuse is performed by
declaring a dependency towards another library or another pack-
age [21]. An alternative code reuse is the “clone&own” paradigm [9,
13, 14, 37, 51]. One would opt for the paradigm of “clone&own”
over the “traditional” code reuse because the involved projects have
traceability links and easily share new updates.

The “clone&own” paradigm is a commonly adopted approach for
developing multi-variant software systems, where a new variant of
a software system is created by copying and adapting an existing
one and the two continue to evolve in parallel [9, 13, 14, 37, 51]. As
a result, two or more software projects will share a common code
base as well as independent, project-specific code. Themulti-variant
software systems are referred to as a software family, or family in
short [13, 14]. With an increasing number of variants in the family,
development becomes redundant and maintenance efforts rapidly
grow [7, 23, 45, 54]. For example, if a bug is discovered and fixed in
one variant, it is often unclear which other variants in the family
are affected by the same bug and how this bug should be fixed in
these variants. Although clone&own development paradigm has
limitations, studies have reported their prevalence on social coding
platforms like GitHub [9, 14].

This study aims to empirically quantify the extent to which di-
vergent variants exhibit redundancy and missed essential updates
concerning bug-fixes. Therefore, we present a tool (named PaReco)
that can support the maintenance of divergent variants. PaReco
mines bugfixes (patches) from a pool of updates in a source variant
and relies on clone detection to classify the patches as interesting
(i.e., redundant, missed) or uninteresting in the target variants. We
present the illustration of the source / target variants in Fig. 1.

To the best of our knowledge, this is the first large-scale study on
automatically identifying (and recommending) relevant bug fixes
to developers of “clone&own” variants. Our contributions are three-
fold. (1) We analyzed 364 (source→target) variant pairs and vali-
dated the tool’s output. This results in a curated dataset containing
1,116 cases of effort duplication and 1,008 cases of missed oppor-
tunities. The curated datasets can be accessed in our replication
package [3]. (2) We quantify how many cases of effort duplication
and missed opportunities exist between divergent variants. Next,
we investigated the time interval between such patches to assess
the window of opportunity for relevant bug fixes. (3) We developed
PaReco which can be used as-is to support the management of vari-
ability in “space” (concurrent variations of the system at a single
point in time). This can be achieved through mining interesting
patches from one variant (source) and classify the patches as in-
teresting or not interesting to the target variants. Existing tools
in the GitHub marketplace notify projects about bug fixes, but are
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missed opportunity

Figure 1: Illustration of the patch classification from source to target variant.

restricted to analysing only mainline repositories (e.g., Qodana1
and LGTM2). PaReco can analyse both mainline and forks. PaReco
can also be configured to manage variability in “time” (sequential
variations of the system due to its evolution). This can be achieved
by automatically identifying interesting patches in later project
releases that can be backported to earlier releases of the project. To
tool is available and released under an open-source license [31].

2 TERMINOLOGY, PROBLEM, AND
CONCRETE EXAMPLES

In this section, we provide an overview of the problem, define the
terminology used, and show a concrete example.

2.1 Terminology
Having explained the problem overview, let us now give the formal
definitions of the terms used in our study.

• current_date. The date when we collected the dataset for this
study on 2021-08-06.

• divergence_date. The date after the last synchronization of
variants. This is determined using the GitHub API. Each variant
pair has its own divergence_date.

• hunk. A hunk is a grouping of differing lines between two ver-
sions of a file [25]. A hunk is written in the format @@ -l,s
+l,s @@ with l the starting line number, s the number of lines
the change applies to for each respective file, - indicating the
original file and the + indicating the new (modified) file.

• buggy file. This is a file containing buggy lines before the pull
request to fix the bug is created.

• patched files. These are files that are integrated back into the
main development branch at the pull request integration with
buggy lines removed and new ones added.

• diff_file. The resulting file after applying the diff tool [24] on
the buggy and the patched file. It contains both the removed

1https://github.com/marketplace/Qodana
2https://github.com/marketplace/lgtm

lines from the buggy file and added lines in the patched file and
is stored in the file system where the PaReco executed.

• patch. A patch is a collection of one or more diff_files. In our
study, we specifically refer to a patch when this collection of
diff_files stems from a pull request that was created to fix a bug.

• git_head file. The latest version of a file retrieved from the
git_head on the current_date in the main branch of the target
variant.

• social fork. These are forks that are created for isolated devel-
opment to fix a bug, feature, refactoring and thereafter merged
back into the mainline [56].

• divergent variant. A variant fork is created by splitting off
a new development branch to steer development into a new
direction while leveraging the code of the mainline project [9,
14]. Variants in divergent variant pairs contain unsynchronized
commits between themselves. We use the GitHub API to identify
unsynchronized commits in a pair, where one variant is ahead by
𝑋–commits and behind by 𝑌–commits. In the unsynchronized
commits we do not go deeper to identify the commits that are
integrated using techniques that change the commit ID [20].

2.2 Classifying patches - Illustration
Figure 1 is an illustration of clone&own, where variant2 (forked
repository) was forked from variant1 (original repository). When
variant2 was created (fork_date), it inherited all commits from
variant1. Then, between the fork_date and divergence_date,
both variants synchronised commits with each other, keeping both
variants even. After the divergence_date, the variants stopped
synchronizing commits. As a result, all commits after the divergen-
ce_date are unique to the respective variant.

Let us assume that the developer of variant1 identified a bug after
the divergence_date spread across files foo, bar, and lot. The
developer decided to create a social fork of variant1, patched the
buggy files, and finally integrated the patch back into the main
branch of variant1 using a pull request. There are four possible
scenarios on the git_head of variant2:
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(1) The developer of variant2 could have applied the patch to the
buggy file in one of the previous commits before the commit at
the git_head. This is a case of effort duplication (ED).

(2) The files at the git_head of the target still contains the buggy
lines. This is a case of missed opportunity (MO). We can even
calculate how long the target branch has missed the patch by
calculating the distance between the patch integration date and
the current date of the git_head.

(3) The file at the git_head of the target contains both the buggy
and the patched lines. The developer of the target could have
fixed the bug partially or only fixed one occurrence of the bug
instead of all. In this case both effort duplication and missed
opportunity are present. This is a split case (SP).

(4) The file at the git_head of the target does not contain both the
buggy and the patched lines. This case would be interesting (NI).
This scenario could happen when the developer of variant2
has replaced the buggy lines with new lines, but the tool we
use is not able to recognize these new lines as clones.

Note that for illustration purposes, we only present an example
where a patch is variant1 as source and variant2 target. However,
in the above example variant1 and variant2 are interchangeable.

2.3 Motivating example
To put the terminologies and problem into perspective, we present
one concrete motivating example of a missed opportunity (MO).
Due to space limitations, examples of effort duplication and split
(SP) cases can be found in the online appendix [3]. In this example,
variant1 represents the source (upstream) – qmk/qmk_firmware,
and variant2 represents the target (fork) – sekigon-gonnoc/qmk_-
firmware that are hosted on GitHub. The variants have diverged be-
tween 2018-10-05 and 2021-08-06 (current_date), adding 5,315
and 117 unique commits in variant1 and variant2, respectively.
One of the upstream pull requests (number 12587) contains one
commit cc0a5f0 with one file. The file tmk_core/common/chibi-
os/eeprom_teensy.cwas changed to fix a gcc10 build warning
for issue #12587. The pull request was merged on 2021-04-20.

Listing 1 shows the diff_file. Listing 2 shows the latest version
of that code in variant2 at 2021-07-16.

Listing 1: Diff file for PR–1287 from the source variant
1 @@ −363 ,7 +363 , 7 @@
2
3 } whi l e ( p < ( u i n t 1 6 _ t ∗ ) SYMVAL( __eeprom_workarea_end__ ) ) ;
4 − f l a s h end = ( u i n t 3 2 _ t ) ( ( u i n t 1 6 _ t ∗ ) SYMVAL( __eeprom_workarea_end__ ) − 1 )

;
5 + f l a s h e nd = ( u i n t 3 2 _ t ) ( p − 1 ) ;

Listing 2: Unpatched lines in file eeprom_teensy.c in the
git_head–1200fa9 of target variant
1 return ;
2 }
3 } while ( p < ( u i n t 1 6 _ t ∗ ) SYMVAL( __eeprom_workarea_end__ ) ) ;
4 f l a s h e nd = ( u i n t 3 2 _ t ) ( ( u i n t 1 6 _ t ∗ ) SYMVAL( __eeprom_workarea_end__ ) − 1 ) ;
5 }

We can see that the code in variant2 is identical to the buggy code
in variant1. However, the fixed line is not found in the git_head
file of variant2. This means that the bug is still present in the
forked repository, even though a patch exists in the source variant

that fixes the bug. We classify this as a missed opportunity (MO)
in variant2, because the patch that fixed the bug in variant1 is
not applied to variant2. The patch however, can be applied to
variant2 to fix the bug that is still there.

The developers of variant2may have missed the patch (PR 12587)
applied in variant1 since the patch is buried in a pool of changes
that could be interesting. Furthermore, we have shown a straight-
forward MO example for illustration purposes that one can easily
observe. However, patches can range from easy to complex. For ex-
ample, a pull request may contain many commits, files, and changed
lines. In a study very related to ours, Jang et al. [29] state that find-
ing all unpatched code clones is tricky and involves numerous
considerations. For example, how many lines of code need to be
similar for a case to be reported? Is one copied line enough, or are
we only interested in multiple line matches? Should whitespace
matter? Should the order of statements matter, and if so, should we
only consider some syntactic classes? Jang et al. [29] created the
clone detection tool ReDeBug to find unpatched code clones (MO)
in OS distribution-sized code bases (> 1 billion LOC) that include
code written in many different languages. ReDeBug is a lightweight
syntax-based code clone detection tool that identifies unpatched
code clones at scale.

3 STUDY DESIGN
Our overarching goal is to understand the extent of patch redun-
dancy, and how many divergent variants miss important patch.

3.1 Research Questions
RQ1 How many cases of effort duplication and missed opportunities

exist between divergent variants? Since the variants are diver-
gent, effort duplication implies that variant developers could be
independently fixing common bugs. In the case of SP, only a
part of the patch is implemented in the target, while for MO, the
target is still buggy. This RQ aims at finding out the prevalence
of these cases in variant pairs. Target variant developers can use
the patches of MO and SP as a starting point to fix the buggy code
in their variants. The cases of ED can be used in follow-up studies
to investigate (how?) and (why?) target variant developers clone
the patches even though the variants have diverged.

RQ2 How much patch technical lag exists between the source and target
variants in divergent variants? This RQ is a follow-up of RQ1 on
the missed patches (i.e., MO/SP). We would understand how long
the patches introduced in the source variant have been missed
reby the target variants. Gonzalez-Barahona et al. [26] proposed
the concept of technical lag to reflect how outdated a software
system is, concerning its upstream dependencies. In this study,
we define a new technical-lag-based metric called patch technical
lag that measures how outdated a target variant is concerning
the applied patches of MO and SP in the source variant. We aim
to get a better understanding of patch technical lag in the soft-
ware families. The insights will help manage and control patch
technical lag, through tools designed to monitor and recommend
the missed patches as soon as they are introduced.
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Figure 2: Method overview.

3.2 Data Collection
Step 1 Divergent variant pair identification: To identify divergent
variant pairs, we leveraged the dataset from Businge et al. [9, 14]
who report a total of over 1.5K variant pairs. We were interested
in actively maintained divergent variant pairs. In our first filter
we retained variant pairs that were updated at least not earlier
than six months back from the 2021-08-06 [10, 12, 48]. We next
retained included pairs written in Java, C, PHP or Ruby, as these
are the programming languages that our clone detection tool can
process. To ensure that we have divergent variant pairs, we also
applied another filter to select pairs where there was at least six
months between divergence_date and the earlier of the two dates
of variant1 update_date and variant2 update_date. Finally,
since we identified the patches from pull requests, we ensured that
at least one of the variants in the pair had merged one pull request.
After all the filtering, we retained a total of 182 diverged variant
pairs. Moreover, since source and target can be interchanged, we
can extend this to a total of 364 source→target pairs.

We wanted to compare the diverged commits of the 182 mainline–
variant pairs. To this end, we collected unsynchronized commits in
the variant pairs. The boxplots in Fig. 3 show the distributions by the
programming languages we considered. While it is not surprising
that the number of commits to the mainline is always higher than
to the fork, it is interesting that most forks also have a pretty high
number of commits. This gives us confidence that we are studying
real variants as opposed to social forks.
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Figure 3: Distribution of diverged commits in the variant
pairs; categorized in the different programming languages.

Step 2 Source Variant Patch Identification: To identify source variant
patches, we mine the pull requests (PRs) that were integrated be-
tween the divergence_date and the current_date (see Fig 1). We
specifically look for PRs that contain keywords related to bug-fixes,
such as fix, resolve, addresses, and crash. The full list of keywords is
described in previous studies [19, 44, 46]. The bug fixing keywords
have been manually validated by Castelluccio et al. [19] achieving
a precision of 87.3% and a recall of 78.2%, respectively.

Step 3. File Extraction: From this step on we use PaReco that is a re-
sult of reusing and extending the clone detection tool ReDeBug [29].
ReDeBug only finds unpatched code clones (MO), which only solves
part of our problem. PaReco extends the logic of ReDeBug to iden-
tify patched code clones (ED) by looking at the lines added in a
patch. As a result of looking at both the unpatched and patched
clones, PaReco can also identify code snippets containing both
patched and unpatched lines that we define as split cases (SP). This
extension also immediately identifies uninteresting patches (NI, CC,
NE) that are not part of ReDeBug.

We extract the buggy, patched, and diff files from the PR commits
in the source variant (see Section 2.3 and Fig 1). Then we extract
the corresponding files at the git_head of the target variant. First,
for every modified file in the PR of the source variant, our tool will
find the corresponding file at the git_head in the target variant.
We identify the files at the git_head by comparing paths [1] of
the PR commits and the files at the git_head. We only consider
the file paths that match. For simplicity, during the file extraction
at the git_head, our tool currently considers the deleted, moved,
and renamed files as missing files. To process the extracted files we
reuse and extend the clone detection tool ReDeBug [29] resulting
in PaReco. ReDeBug only finds unpatched code clones (MO), which
only solves part of our problem. PaReco extends the logic of ReDe-
Bug to identify patched code clones (ED) by looking at the lines
added in a patch. As a result of looking at both the unpatched and
patched clones, PaReco can also identify code snippets containing
both patched and unpatched lines that we define as split cases (SP).
This extension also immediately identifies uninteresting patches
(NI, CC, NE) that are not part of ReDeBug.

The tool then performs normalization (i.e., removes language com-
ments, removes all nonASCII characters, removes redundantwhites-
paces except new lines, and converts all characters to lower case).
Next the tool tokenizes the extracted files from both the source and
the target variants. Representing source code as a token sequence
enables the detection of clones with different line structures, which



PaReco: Patched Clones and Missed Patches among the
Divergent Variants of a Software Family

cannot be detected by the line-by-line algorithm. Tokenization is
performed using n-grams, where we maintain the n = 4 as used in
the original tool. In the RedeBug tool, n-grams are computed based
on lines. For every set of 4 consequent lines of code, one n-gram is
created. For example, for a file with 5 lines of code, two n-grams of
size 4 are considered. After tokenization, the diff file in the source
variant is extracted. Since ReDeBug only cares about unpatched
code clones, the tool was implemented to detect in the buggy snip-
pets (missed opportunities). The tool performs a clone detection
between the source and the target to determine if the buggy lines
in the buggy file are still present in the same file in the target. In
this study we care about both the patched (effort duplication) and
unpatched (missed opportunity) code clones. Therefore, in addition
to the patched snippet identification performed in ReDeBug, our
tool compares the source and target to determine if the target con-
tains patched lines that are present in the diff file of the source
variant (ED).

Step 4. Hunk classification: To classify a hunk, our tool checks for a
code snippet with patched lines or the buggy lines in the commit at
the git_head of the target. We perform this check by comparing
the tokens computed from 4-grams generated by ReDeBug. If the
snippet contains only buggy lines, then PaReco classifies the hunk
as MO. If the snippet contains patched lines, then PaReco classifies
it as ED. If the snippet contains both buggy and patched lines then
PaReco classifies it as SP. The snippet is classified as NI if PaReco
cannot find both the buggy and patched lines.

Step 5. File classification. At this step, we aggregate the code snip-
pets (hunks) classifications into the classification of files. In addition
to the hunks’ classes, files in the target can take on two other classes:
(i) cannot classify (CC) class is where a pull request contains only
files written in programming languages that the clone detection
tool cannot process. (ii) non-existent (NE) class is where the pull
request contains files missing in the target variant. If a file contains
more than one hunk from different classification, we first focus on
the hunks in the interesting classes of MO, ED, and SP during the file
classification. In any given file of interest in the target variant, if
we can identify at least one hunk classified as MO, ED, and SP, we
assume that the associated patch in the source variant could be
interesting to the target. To this end, we classify a file according
to the most prevalent hunk class of MO, ED, and SP. For example, if
a file has 10 hunks, one is classified as MO, and the remaining nine
hunks classified as NI, CC, or NE, then the file is classified as MO. SP
class prevails as the file classification in the case of ties between MO
/ ED / SP. In case none of MO / ED / SP is present, then the file takes
on the class of the most prevalent class of NI / CC / NE.

Step 6. Patch classification. The patch classification is an aggre-
gation of the file classifications. Like for files in Step 5, if a patch
contains more than one file, we first focus on the interesting classes
of MO, ED, and SP. We then follow the same criteria discussed in
Step 5, to aggregate a patch from its classified files.

Step 7. Patch technical lag calculation. We calculate patch technical
lag as the elapsed time from when a developer integrates a patch
into the main development branch of the source variant and the
time of the commit at the git_head of the target variant that still
contains buggy lines (see illustration in Figure 1). The timewhen the

patch was integrated in the source variant can easily be determined
using the GitHub API v3 to extract the pull request merge_date. In
this RQ, we only considered target variants that had at least one
patch classified as either MO or SP. We identified a total of 97 target
variants having a total of 1,109 patches classified as MO or SP.

4 RESULTS & DISCUSSION – RQ1
How many cases of effort duplication and missed opportunities exist
between divergent variants?

𝑅𝑄1 aims to investigate how often there are patches classified as
MO, ED, or SP among the 364 variant pairs in our dataset. Here we
present the results of the patch classification using PaReco and the
accuracy of the patch classification. We validate the accuracy of
PaReco manually in Section 4.2.

4.1 Tool patch classifications
We applied PaReco on the 8,323 patches identified in 364 source
variant repositories. Table 1 shows how the 8,323 patches from the
182 diverged variant pairs were classified. We present the aggregate
statistics to show the distribution of the patch classifications in the
target repositories. The upper part presents the patch classification
where source variant is the upstream repository and the target
variant is the forked repository. The lower part of the table presents
the statistics with the source and target interchanged between
upstream and fork.

Figure 4 presents grouped boxplots for the statistics in Table 1. The
plot shows how the patches from the source variants are shared
among the different patch classes in the target variants. Each class
is represented by two boxplots. The boxplots on the left of each
class represent the results in the upper part of Table 1 and those on
the right represent the results in the lower part of Table 1.

Table 1: Descriptive statistics for patches identified in the
source variant and classified in the target variants.

Metric Mean Min Median Max Total

upstream (source), fork (target)
Missed opportunity (MO) 5.3 0 0 207 957
Effort duplication (ED) 5.8 0 0 169 1,062
Split (SP) 0.5 0 0 25 92
Not Applicable (NI) 6.6 0 0 211 1,198
Cannot classify (CC) 12.6 0 1 194 2,292
Not existing file (NE) 9.7 0 2 319 1,773
Error (EE) 0 0 0 2 7
Patches 40.6 0 1 629 7,381

fork (source), upstream (target)
Missed opportunity (MO) 0.3 0 0 8 51
Effort duplication (ED) 0.3 0 0 9 54
Split (SP) 0.1 0 0 4 9
Not Applicable (NI) 0.6 0 0 12 120
Cannot classify (CC) 2.1 0 0 63 378
Not existing file (NE) 1.8 0 0 68 330
Error (EE) 0 0 0 0 0
Patches 5.2 0 0 132 942
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Figure 4: Distribution of the patch classification.

From the results of Table 1 and Figure 4, we can see that most
patches originated from the upstream variants; only few patches
originated from the forked variants. We also observe that most
patches are classified in the negative classes of NI, CC, and NE. This
shows that the majority of the patches contain NI files, CC files, or
NE files. However, we do observe a good number of patches that
have been classified in the interesting / positive classes of MO, ED,
and SP: a total of 2,225 of the 8,323 (26.7%) patches.

When considering the upstream repository as the source and the
fork as the target (i.e., upper part of the table), we observe that
72 of the 182 (39.5%) variant pairs contain 957 of the 2,225 (43%)
patches that are classified as MO. We also observe that 60 of the 182
(33%) variant pairs contain 1,062 of the 2,225 (47.7%) patches that
are classified as ED. Finally, we observe that 21 of the 182 (11.5%)
variant pairs contain 92 of the 2,225 (4.1%) patches that are classified
as split cases. When the source and the target are interchanged to
fork→upstream (i.e., lower part of the table), we observe that 26 of
the 182 (14%) variants contain a total of only 114 of the 2,225 (5%)
patches classified as positive classes of MO, ED, and SP).

We observe that very few fork variants integrate patches that could
be interesting to the upstream variants from the results. This is not
surprising since when we look back in Fig. 3, we can see that the
mainlines have more updates than their fork counterparts. We also
observe that most patches are classified as uninteresting classes of
(NI), CC, and NE. From Fig. 3, we observe that there CC classification
(unhandled programming language) comprise the highest number
of patches. The patches in the CC class could have an impact on the
results we observe in MO, ED, and SP classes. As an example in our
dataset, apache/kafka which is a multi-language project: Java-74.5%,
Scala-22.5%, other programming languages-3%. The project has 629
patches that are classified as MO-176, ED-89, SP-29, and CC-211. We
believe that extending PaReco to accommodate Scala would reduce
the number of CC cases. We will also extend PaReco to extract
renamed and moved files from the target variant to gain interesting
patches from the NE class. The curated dataset for Fig. 4 can be
found in the online-appendix [3].

Recall that in Section 3.2–Step 6 we stated that a patch is classified
MO, ED, or SP if it contains at least one file classified as interesting.
Figure. 5 contains violin plots that show the distribution of patches
concerning the proportion of interesting files in each patch. For
example, a point on the violin plot with x-axis label ED and a value
close to zero on the y-axis indicates that the patch has many files
with the most significant proportion classified as one of NE, NI, or
CC and a tiny proportion classified as ED. The negative value on the
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Figure 5: Distribution of interesting files in the patches. For
example, a patch on the ED box plot with a y-axis value of
1.0, indicates that all the files in the patch were classified ED.

y-axis is a result of a smoothed violin plot indicating the existence
of value near to -0.2 such as 0. The size of the plots indicates the
number of data points in the category. Focusing on the bigger-sized
violin plots of ED and MO we can see the upper quartiles are both
on 1.0. However, we can also see that the difference between the
upper quartiles is bigger than the difference of the lower quartiles
of the violin plot , indicating that the plots are positively skewed.
This implies that ED and MO classes have more patches above the
median, where the proportion of interesting files in the patches is
high. Details of Fig. 5 can be found in the online-appendix [3].
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Figure 6: All classifications of patches considered for
spack/spack (upstream) and BlueBrain/spack (fork).

Concrete example. The variant pair spack/spack (upstream) and
BlueBrain/spack (fork) are both projects package manager for
supercomputers. The upstream is owned by Spack [50] while the
fork is owned by the Blue Brain[6]. BlueBrain/spackwas forked
on 2018-03-12. The two repositories diverged on 2020-12-06. As
of 2022-02-11, spack/spack had 1,150 unique commits of 24,706
commits, while BlueBrain/spack had 1,657 unique commits of
25,213 commits.

Figure 6 presents the results of patch classifications in the form
of a grouped bar plot of the variant pair. The first two bars la-
belled MO, the first bar shows the number of patches in the source
spack/spack (source), that are classified as MO in the target BlueBr-
ain/spack (target). The second bar (short) on MO shows the results
when the source and target interchanged. We can see that in the
variant pair shown in Figure 6 there are more cases of MO than ED.
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Summary: Tool patch classifications: Of the 2,225 interesting
patch classifications, the most prominent class is effort duplication
(ED); comprising a total of 1,116 (50.2%) patches. Next is missed
opportunity (MO), comprising a total of 1,008 (45%) patches. Finally,
we identify a total of 101 (5%) split cases (SP), containing both MO
and ED hunks. We have also shown that most interesting patches
have the upstream repository as the source variant. There are very
few cases having the fork as the source variant.

4.2 Accuracy of patch classifications
Weuse sixmetrics to evaluate the accuracy of our tool: true positives
(TP), false positives (FP), false negatives (FN), precision ( #𝑇𝑃

#𝑇𝑃+#𝐹𝑃 ),
recall ( #𝑇𝑃

#𝑇𝑃+#𝐹𝑁 ) and the F1-score. We manually analyse these met-
rics on the classification results of the 8,323 patches.

Criteria for ground-truth establishment. To find the real classi-
fications of a patch, we mimic the behaviour of our tool manually.
For a given patch, we find and extract all the diff files from the
source variant and the corresponding files in the commit at the
git_head of the target variant. For each hunk in each diff file, we
manually look at the hunk lines and search if they exist in the file
at the git_head of the target variant. We do this as follows: We
search for the first line of the hunk in the target variant. If a match
is found we go to the next line in the hunk and continue until we
find a line prefixed with “+” or “-”, i.e., the added patched lines or
the deleted buggy lines. The other lines are called the context. It is
important to note that all other matches that we find in the file of
the target variant should be in the same order as listed in the hunk.
If we only find the buggy lines in the file of the target variant, then
we classify it as MO; if we find the patched lines only, we classify it
as ED; if we find both, then we have a SP, otherwise it is an NI. Once
all the hunks have been manually classified, we follow the criteria
in Section 3.2–Step 5 to classify the files and Step 6 to classify the
patches. For the files written in a language that our tool cannot
process, we verify if the extension of that file indeed falls out of the
scope of our tool, and for the files that are found to not exist in the
target, we open the snapshot of the target in GitHub and check if
that file indeed does not exist.

Accuracy of measurement.We calculated a sample from our pop-
ulation of 8,323 patches using an online sample size calculator [2].
We used the following parameters: confidence level = 95%, margin
of error = 5%, population proportion of = 26% / 74% (correspond-
ing to 2,225–26% for positive cases and 6,098–74% negative cases).
From this we determined a sample size of 286 cases for the manual
analysis. The manual analysis was conducted by the first author of
this paper and the second author validated the labels.

However, while conducting the manual analysis, the author ob-
served that big patches containing many files / hunks and a lot of
changed lines of code took very long and yet, they were not obvious
to decide. To mitigate the challenge, we decided to filter out the
complex cases. We excluded patches that had changes in more than
five files, more than 15 lines added, and more than 15 lines removed.
Using this criteria we filtered out 1,794 complex case patches (21.6%)
from the total population of patches. The new population of 6,528
patches contained 1,632 (25%) positive cases (MO, ED, SP) and 4,896

were negative cases (NI, CC, NE). The new sample size using the
population proportion of 25% while maintaining the values of the
other parameters becomes 276 patches.

We group the results on two levels of classification:

(1) First level. Contains the interesting cases (MO, ED, and SP) repre-
senting the positive and uninteresting cases representing the
negative cases (NI, CC, and NE). We also present the classifica-
tion results for the three levels of granularity of the bug fix (i.e.,
patch, file, and hunk). So, for example, if a patch is classified
by the tool as any of MO, ED, and SP (predicted, positive) and
during the manual classification, we find out that the patch is
any of NI, CC, and NE (actual, negative), then we label the case
as false positive (FP).

(2) Second level. Here we go deeper into the positive cases to see if
they were correctly classified. For example, if a patch is clas-
sified by our tool as MO (predicted, positive) and during the
manual analysis, we observe that it is supposed to be ED (actual,
negative). Therefore, we label the case as false positive (FP).

In Table 2 we present the confusion matrix. prThe (+) in the first
column stands for the actual positive cases and the (+) in the last
row of the table stands for the predicted class. The (-) in the last
row of the table stands for the predicted negative cases and the (-)
in the first column stands for the actual negative cases. In Table 3
we present the precision, recall, and accuracy for the First level of
classification. From Table 3 we observe a precision of > 89%, a recall
of > 74%, and an accuracy of > 86% for all the levels of granularity.
This means that our tool is good at correctly classifying both the
positive interesting classes and the negative uninteresting classes.

Table 2: Confusion matrix for the classifications on different
levels after manual validation of the results of PaReco. (+) –
positive cases (MO, ED, and SP) and (-) – negative cases (NI, CC,
and NE)

Predicted
Patch Files Hunks

A
ct
ua
l + 81 20 103 36 149 46

- 8 167 10 353 17 113
+ - + - + -

Table 3: Precision, recall and accuracy for the different clas-
sification levels for the results in Table 2.

Precision Recall Accuracy F1-score
Patches 91.0% 80.2% 88.0% 85.3%
Files 91.1% 74.1% 86.3% 81.7%
Hunks 89.8% 76.4% 89.4% 82.6%

Table 4 shows the confusion matrix for sampled data from our
dataset on the Second level, for the MO, ED, and SP classes at the
three different levels of granularity (patch, file, and hunk). Table 5
shows the precision, recall and accuracy corresponding to the re-
sults in Table 4. For both MO and ED we observe relatively high
values of precision, recall, and accuracy (all ≥ 84%). Our validation
results are comparable to the study of Kim et al. [36] who validated
ReDeBug vulnerable code clone discovery (ED in our case) and re-
ported a precision of 85%. This gives us confidence that our tool is
relatively good at identifying interesting patches. Looking at the
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results of the SP cases, we observe low values for the precision
and recall at the granularity levels file and hunk, yet those of the
patch granularity are all 100%. The low values originate from the
imbalanced data, since we have few positive cases and many neg-
ative cases. This issue of data imbalance is visible from the high
accuracy for SP at all levels of granularity. The dataset for SP is
biased towards the most prominent class (the negative class), which
is the reason for the low levels of precision and recall. From the
results presented, we conclude that our tool is relatively good at
performing patch classifications.

Table 4: Confusion matrix for interesting classifications.
Predicted

MO ED SP

A
ct
ua
l

Patch
+ 34 1 40 4 3 0
- 4 50 6 39 0 86

Files
+ 42 3 52 2 1 2
- 8 126 7 118 2 174

Hunk
+ 55 9 60 9 10 2
- 7 227 12 217 15 271

+ - + - + -

Table 5: Precision, recall, accuracy, and F1-score for confusion
matrix in Table 4.

Precision Recall Accuracy F1-score
MO

Patches 89.5% 97.1% 94.4% 93.1%
Files 84.0% 93.3% 93.9% 88.4%
Hunks 88.7% 85.9% 94.6% 87.3

ED
Patches 87.0% 90.9% 88.8% 88.9%
Files 88.1% 96.3% 95.0% 92.0%
Hunks 83.3% 87.0% 93.0% 85.1%

SP
Patches 100% 100% 100% 100%
Files 33.3% 33.3% 97.7% 33.3%
Hunks 40.0% 83.3% 94.3% 54.0%

Incorrect Classifications. During the manual analysis we identi-
fied 98 misclassified hunks. After analyzing the incorrect classifica-
tions, we summarized them into four categories and indicate if the
issue is resulting from the original code or our extended code.

(1) Hunk classification failure – extended code (44 cases): For various
reasons we found that some hunks were misclassified.

(2) One line hashing – original code (24 cases): During the manual
analysis, we observed that some hunks were divided into n-
grams of size one instead of four, resulting in misclassification.

(3) Issues with comments – original code (22 cases): In some hunks,
we noticed that Python and C comments that are supposed to
be ignored were also hashed and considered in the matching.
Multi-line comments that are only partially present in the hunk
were not removed by the regular expressions used for this
during normalization.

(4) File extension misunderstood – original code (4 cases): PHP is one
of the programming languages that our tool can process. We
noticed in four misclassified cases that the tool could not guess
the MIME type of the PHP files to be PHP, causing the patches
to be classified as CC.

In follow-up studies these issues will be analysed critically so as
to have a minimal misclassifications as possible. We have already
submitted issues to the ReDeBug repository in GitHub regarding
misclassifications.We are also planning to address the issues and we
shall submit a pull request to the repository when we are confident
that the issue has been solved in our tool.
Summary: Accuracy of patch classifications: Although PaReco
classified only 26% as interesting patches from the total patches.
The validation exercise reveals relatively high results precision,
recall, accuracy, and F1-score for patch classifications of 91%, 80%,
88% and 85%, respectively.

4.3 Discussion & Implications
RQ1 focused on automatically identifying a patch in one of the
source repositories (variant1 or variant2) and then correctly clas-
sifying the patch as interesting or as not interesting. In Section 4.1
we already discussed that PaRecomisses a lot of interesting patches
that PaReco classified as NI, NE, CC. We also discussed how we plan
to extend PaReco to identify more interesting patches. As a prelim-
inary analysis, we have analysed the patches in the CC category
and observed other frequent languages such as JavaScript, Scala,
Kotlin, JSON, C++, Yaml, and Rust. The tool can be extended to
analyze these languages and, hence, gain more on the interesting
patches that can be identified. Although our study is in the early
stages, the results reveal that clone-and-own variant on GitHub
exhibits redundant development and miss important updates. We
believe that the study is in the right direction towards support-
ing the maintenance clone-and-own variant. We also believe that
although PaReco is still a work in progress, developers can find
PaReco useful in supporting the maintenance clone-and-own vari-
ants. Furthermore, follow-up studies will also focus on user studies
with the developers regarding the tool’s results. For example, a user
study can reveal the threshold of the proportion of interesting files
in a patch (c.f. Fig. 5) for a patch to be considered interesting.

Actionable result: PaReco as-is can be used by developers to
manage clone-and-own variants. Follow-up studies will be focused
on extending PaReco to a patch recommender tool.

Missed opportunity. The results of MO are expected due to the di-
verged status of the variants. However, it does provide insights into
the number of patches in the source variants that go undetected in
the target variants. The results are interesting since they reveal that,
as much as the variants have diverged, some interesting changes
like patches in common files could be propagated to improve the
quality of the variants. The previous studies on variants [9, 14] re-
ported over 80% of the variants pairs have uncommon maintainers.
We replicated the same experiment in this study and observed 89%
of the variants pairs have uncommon maintainers. The results in
this study are not surprising since we consider only variant pairs
that have diverged. To this end, as a result of distinct development
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teams, the variant developers may be aware that there could be
some interesting changes, but these changes are not easy to find in
a pool of other changes.

Split (SP). These cases are also interesting since they reveal that
the target variant only contains part of the patch applied in the
source variant and the other part is missed. In addition to the
patch being incomplete in the target variant, the expertise of the
developers fixing the patch might also vary. It is plausible that a
less experienced developer fixed the incomplete patch. To this end,
the developer of the target variant can make use of the split cases
and fix the missing part of the patch in their repositories.

Actionable result: This study shows that there is great potential
to automate the identification of those difficult to find changes that
can be recommended to variant developers. Variant maintainers
can already use PaReco as-is to uncover interesting patches from
a source variant and integrate them into their repository.

Effort Duplication. Since we study only divergent pairs, this im-
plies that the majority of fork variants either re-implement patches
already implemented in the upstream or they clone only the inter-
esting patches from the upstream into their projects. In the case of
cloning only the interesting patches, there are a number of ways
this can be achieved: (1) copying the patch code snippets from the
source repository and pasting it in the target; or (2) synchroniz-
ing the variant pairs using GitHub tools that change the commit
ID during the integration, such as PR squash / rebase, and other
git tools that completely change the commit history such as git
squash. Patch integration using these tools would merge all the
differences in the variants, which is not something that the variant
developers would desire [35]. Moreover, the study of Businge et
al. [14] revealed that the two techniques of PR squash / rebase are
infrequently used techniques to integrate change between variants.
To this end, it is likely that such integration techniques may be
less prominent in explaining the many cases of effort duplication.
Another method that can be used to clone the patches is (3) git
cherry-picking, where the developer integrates only desired com-
mits [18]. However, from the study of Businge et al. [14] it was
observed that the cherry-picking was less frequently used as an
integration technique. Furthermore, since we observe considerable
numbers of MO, it is unlikely that the integration techniques that
change the commit history are being used.

A follow-up study, engaging with the developers, could help reveal
the frequently used to patch integration techniques and (why?) they
are preferred. Developer engagement could also tell the developers’
challenges in incorporating the patches. Furthermore, in Fig. 5 the
ED cases with a low proportion of interesting files indicate that
these patches are not exact but share some clones. The variable
part of these patches can be a source for further investigation. For
example, if different developers implement the same patch, one
of the patches in the variant pair might be more elegant than the
other. If this happens to be the case, the more elegant patch should
be recommended to the other variant developer.

Actionable result: To avoid reinventing the wheel, developers can
use PaReco to identify interesting patches in a family of variants.

5 RESULTS & DISCUSSION - RQ2
How much patch technical lag exists between the source and target
variants in divergent variants?

5.1 Results
Here we present the results of the patch technical lag in our target
variant projects. Figure 7 is a line plot showing how much technical
lag there is in each of the 1,109 patches classified as MO or SP in
the target variants; it plots the technical lag in each patch. A point
on the line plot represents a patch (x-axis) and how much technical
lag in terms of weeks (y-axis). The median of the technical lag for
these patches is 27 weeks (over half a year), which is relatively high.
This implies that patches introduced in the source variant spend at
least 27 weeks before they are noticed by the target variants. The
median value could be more as of today, since the current_date
as seen in Figure 1 is as of 2021-07-28 when this data was collected.
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Figure 7: A line plot showing the patch technical lag of the
patches of MO and SP in the target variants.
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Figure 8: A line plot showing the patch technical lag of the
target variants with respect to the patches of MO and SP.

Since each variant may have one or more patches classified as MO
or SP, we calculate the technical lag of a target variant based on the
technical lag of the patches in that variant. We take the mean of all
the patches’ technical lag as the technical lag of the target variant
and plot it in Figure 8. Figure 8 is a line plot showing how much
technical lag there is in each of the 97 target variants. A point on
the line plot represents a target variant (x-axis) and the technical
lag in terms of weeks (y-axis). We observe a median of 52 weeks as
the technical lag of the target variants, which is relatively high.

Summary – RQ2: We have found that most of the missed and the
incomplete patches in the target variants have a patch technical
lag of 27 weeks or more. We have also observed that the patch
technical lag per variant is about 52 weeks.
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5.2 Discussion & Implications
Our empirical results have revealed thatmany variants exhibit patch
technical lag. However, a survey with variant developers reported
by Businge et al. [9] show that there is limited code integration
between variants. The authors further reveal that variant developers
indicated reasons for lack of code integration such as: “variants have
nothing to share”, “variants have technically diverged”, “variants
are implementing different technology”. This implies that target
variant developers may be ignorant of interesting patches of MO in
the source variants. Furthermore, the developers may not have the
time and effort to identify the missed patches since an interesting
patch may be buried in a pool of other uninteresting changes. These
developers could use PaReco to find these interesting patches and
reduce the patch technical lag. PaReco can uncover and recommend
the interesting patches to the target variants as they are introduced
in the source variants.

Although our tool supports variability management in the space
dimension (divergent variants), the tool could also manage vari-
ability in time (sequential releases of one variant). The study of
Decan et al. [22] reports that older releases of packages in the pack-
age managers of npm, Cargo, Packagist, and RubyGems, still have
dependent packages. This implies that to support the dependent
packages of the different package releases, the owners have to main-
tain the releases in parallel. Therefore, a patch in a later release has
to be backported to all the earlier releases with dependent packages.
With many releases involved, not all patches found later can be
interesting to earlier releases. PaReco can also be used to mine
patches in a later release of a project and classify the patches as MO
in earlier releases of the same project. The classified MO patches can
be used to benefit backporting in earlier buggy releases. Studies
involved in understanding the evolution of software projects over
subsequent reselases can benefit from PaReco [15–17]

Actionable result: By specifying a time interval, PaReco can
mine a patch from the source variant and classify the patch as
interesting or not interesting to the target variant. PaReco can
also be used to manage variability in “time” by automatically
identifying interesting patches in later project releases that can be
used for backporting in earlier still supported buggy releases.

6 RELATEDWORK
Throughout earlier sections of the paper, we discussed a number of
studies that relate to ours. In this section, we shall only discuss the
studies that we have not yet discussed.

Software product-line (SPL). A more systematic way of devel-
oping variants is through SPL, which consists of a set of similar
software products (i.e., variants) with well-defined commonalities
and variabilities. Horcas et. al. [28] survey SPL tools and give 12
different roadmaps for existing tools that can handle all or some
part of the SPL processes. Lapeña et. al. [38] implemented an ap-
proach that ranks legacy code of similar products based on the
requirements of the new product and searches for relevant methods
in the highest ranked legacy code, decreasing the amount of code
the developers need to verify during clone&own.

Managed clone&own variants. The common goal of studies on
managed clone&own variants is to support the engineering of multi-
variant software systems by reducing their limitations. Mahmood et
al. [41] design, formalize, and prototype a lightweight method that
generalizes clone-management and product-lines through exploit-
ing the spectrum between the two extremes of ad hoc clone&own
and fully integrated platform. Bittner et al. [5] proposed an approach
that ranks the relevancy of legacy products for a new development
at the requirements level, and to locate their most significant meth-
ods for each of the new product requirements. To support the
ongoing development of clone&own projects, there are studies that
have proposed a feature trace recording a method to infer feature
traces in source code changes [30, 40, 42].

Clone detection. Since we employ a clone detection technique, our
work can also be related to different studies on clone detection. Hou
and Zhang [43] present a survey on the different methods and tech-
nologies used for clone detection. They discuss text-based, token-
based, tree-based, and metric-based clone detection and program
dependency graphs. Zhang and Sakurai [55] recently performed
a comprehensive review of clone detection tools from a security
perspective. In total they included 8 tools from different studies,
including ReDeBug, VUDDY and VGraph. Our work can also be
related to the study of Businge et al [11] and Kawuma et al. [34]
who studied clones in the Eclipse framework. The authors report
that clones in the Eclipse framework range between 9% to 10%.
The VUDDY [36] clone detection tool identifies type-1 and type-2
clones, but only supports C and C++. Another tool VGraph [8] uses
a technique mostly similar to ReDeBug, as they focus on the lines
of source code that are modified during the patching process. How-
ever, they represent the code as a graph instead of text. There are
also other tools like SourcerCC [49], CPMiner [39], CCFinder [32].
These use a token-based method to tokenize source code and a mea-
sure to quantify the overlap between tokens for clone detection, but
unlike the other three tools, no information from the patch is used.
Hat et al. [27] analyzed shared files and their variants on GitHub,
and present changes might be useful for meta-maintenance of clone-
and own variants. Kawamitsu et al. [33] identify clone&own reuse
on file-level based on the Longest Common Subsequence similarity
between a copy and candidate origin file in C programs.

7 THREATS TO VALIDITY
Construct validity. These threats concern the relation between the
theory behind the experiment and the observed findings. They can
be mainly due to imprecision in the measurements we performed.
Imprecisions in our measurements could occur during patch extrac-
tion from the source target and during clone detection to identify
interesting patches for the target. For patch extraction, we have
used keywords that earlier studies have validated. For clone detec-
tion, we have extended the tool ReDeBug that has been tested on
OS-sized distribution projects. We have also gone ahead to validate
our results manually, and our validation results are comparable to
earlier studies by Kim et al. [36] that have also manually validated
the ReDeBuG tool in a similar context. Based on the method em-
ployed to extract files for comparison between the source and the
target, we acknowledge possible imprecisions since we considered
all files that PaReco could not find in the target as non-existent files.
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Last but not least, we also acknowledge a possible threat resulting
from considering the most prevalent positive classes of MO, ED, SP
of the file class as the class of patch.

Internal validity. These threats concern choices and factors in-
ternal to the study that could influence the observations we made.
Given that the method we use to identify the patches is entirely
based on bug-fixing keywords in the merged pull requests, the tool
may suffer from false positives (wrong patches) and false negatives
(missed patches). To reduce the false negatives one could identify
more patches by searching commit messages. However, a patch may
spread in more than one commit [4, 47, 52, 53], making identifying
a complete patch difficult, if not impossible. More false-negative
patches could be missed by PaReco through other integration tech-
niques like direct integration or using other methods like git push.
Although we do not control the false negatives, they do not impact
the classification’s accuracy. Regarding the false positives, while
performing the manual validation on the patches, we analyzed the
PR titles, and we did not find any false positives. Furthermore, these
false positives do not impact the classification’s accuracy since the
tool would classify them as not interesting (NI). The variant pair
filtering criterion using an educated estimation of cut-off dates and
the filtering of complex cases using the number of changed files
and changed lines of code could also be a threat to our findings.

External validity. The threats concern whether the results can
be generalized outside the scope of this study. We cannot claim
that the results represent all the patches since, while validating
the tool’s accuracy, we excluded the complex cases. However, our
results are still representative since less complex cases considered
in the validation exercise constituted 78.4% of the total population.
While our dataset can be regarded as representative of variants
on GitHub, we do not make any claim about its generalizability to
other social coding platforms (e.g., BitBucket/GitLab).

8 CONCLUSION AND FUTUREWORK
To understand the extent of redundant and missed patches among
divergent variants, we conducted an empirical investigation on 364
source→target divergent variant pairs. To this end, we introduced
and used PaReco, a tool that relies on clone detection to identify
the redundant and missed patches among variants in both space
and time. Form the 364 source→target pairs analyzed, we found
2,225 interesting patches classified with an overall precision, recall,
accuracy and F1-score of 91%, 80%, 88% and 85%, respectively. 47.7%
of interesting patches are classified as effort duplication that are
found in only a third of the divergent variant pairs. In follow-up
work we plan to extend PaRecowith more capabilities and accuracy,
and to transform it into a patch recommender tool.
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