
Automated Software Engineering manuscript No.
(will be inserted by the editor)

Exact Search-space Size for the Refactoring
Scheduling Problem

Rodrigo Morales · Francisco Chicano ·
Foutse Khomh · Giuliano Antoniol

Received: date / Accepted: date

Abstract Ouni et al. “Maintainability defects detection and correction: a
multi-objective approach” proposed a search-based approach for generating
optimal refactoring sequences. They estimated the size of the search space
for the refactoring scheduling problem using a formulation that is incorrect;
the search space is estimated to be too much larger than it is. We provide in
this paper the exact expression for computing the number of possible refactor-
ing sequences of a software system. This could be useful for researchers and
practitioners interested in developing new approaches to automate refactoring.

Keywords Software maintenance · Search-based software engineering ·
Refactoring

1 Introduction

Refactoring is a software maintenance activity that aims to improve code
design, while preserving behavior [9]. In the last decade, many works have
reported that refactoring can reduce software complexity, improve developer
comprehensibility and also improve memory efficiency and startup time [2,14].
Hence, developers are advised to perform refactoring operations on a regular
basis [3]. However, manual refactoring is a complicated task, as there could be
more than one correct solution depending on the design attributes that one is
interested in improving. Moreover, the order in which a set of candidate refac-
torings should be applied is uncertain, and can lead to different designs; some

Rodrigo Morales, Foutse Khomh, Giuliano Antoniol
DGIGL
Polytechnique Montréal, Canada
E-mail: rodrigomorales2@acm.org, foutse.khomh@polymtl.ca,antoniol@ieee.org

Francisco Chicano
Dept. de Lenguajes y Ciencias de la Computación
Universidad de Málaga, Andalućıa Tech,
Spain E-mail: chicano@lcc.uma.es

2 Rodrigo Morales et al.

refactorings can have sequential dependencies that requires a specific order to
enable further refactorings, and other refactorings can be mutually exclusive
(i.e., incompatible refactorings). Finding the right sequence of refactorings to
apply on a software system is usually a hard task for which no polynomial-
time algorithm is known. However, knowing the size of the search space (the
possible refactoring sequences) helps to determine the best technique to solve
the problem in a reasonable amount of time.

Recently, researchers have formulated the problem of refactoring as an op-
timization problem and suggested different metaheuristics techniques to solve
it [4–8,10–12]. The goal is to find a sequence of refactoring operations that
most improves the design quality of a software system. The concept of “qual-
ity” here can be interpreted in many different ways. We can reduce the number
of design defects, a.k.a., anti-patterns in the software, or improve some desir-
able quality attributes like maintainability and reusability. We assume that the
potential refactoring operations that can be applied in the sequence are deter-
mined before the search starts. This is a big assumption, since new refactoring
opportunities could arise as a consequence of a change in the code. However,
the search for new refactoring opportunities after every change in the code is
a costly operation. Thus, most (if not all) the works on automatic refactoring
assume that there is a list of refactoring opportunities at the beginning of the
search and the optimization algorithm simply selects which of them will be
applied and their order.

Ouni et al. [10] provided a formula for the size of the search space of the
automatic refactoring problem. The expression is NS = (n!)n, where NS is
the number of refactoring sequences (size of the search space), and n is the
number of available refactoring operations (the list of refactoring operations
available at the beginning of the search). This formula, however, is not correct.
To illustrate this, let us suppose that n = 3, then the number of refactoring
sequences should be (3!)3 = 63 = 216, according to Ouni et al. [10]. A simple
manual enumeration, shown in Table 1, proves that the number of refactoring
sequences is, in fact, 16. Thus, we wish to find a closed form expression for
the number of ordered subsets of a set of size n. The On-Line Encyclopedia
of Integer Sequences, sequence A000522 [1] gives values of S for low values
of n. In the rest of this paper, we derive asymptotic and exact closed-form
formula for these numbers. The asymptotic result seems to have been known to
Ramanujan (Notebook II) [13], while the exact result has been discussed in the
community more recently. We present them with proof here for completeness
and ease of reference for the reader.

2 Asymptotic behaviour of the number of refactoring sequences

In order to provide an exact expression for the number of refactoring sequences,
we need to formally describe how to count the number of possible combinations
from a set of refactoring operations.

Exact Search-space Size for the Refactoring Scheduling Problem 3

Table 1 Number of possible refactoring sequences for the set of refactoring operations {r1,
r2, r3}.

1. None 9. r3, r1
2. r1 10. r3, r2
3. r2 11. r1, r2, r3
4. r3 12. r1, r3, r2
5. r1, r2 13. r2, r1, r3
6. r1, r3 14. r2, r3, r1
7. r2, r1 15. r3, r2, r1
8. r2, r3 16. r3, r1, r2

Let us denote with R the set of refactoring opportunities and with n = |R|
its cardinality. The number of refactoring sequences can be found by (1) se-
lecting a subset of refactorings from R and, (2) finding all the possible per-
mutations of the selected subset of refactorings. Let S be the set of sequences
of refactorings in R. Following the previous idea, the cardinality of S can be
computed as:

|S| =
∑
R′⊆R

|R′|! =

n∑
k=0

(
n

k

)
k! =

n∑
k=0

n!

(n− k)!k!
k! =

n∑
k=0

n!

(n− k)!

= n!

n∑
k=0

1

(n− k)!
= n!

n∑
k=0

1

k!
≤ n! · e, (1)

where the last inequality follows from the Taylor expansion of ex. That is,
ex =

∑∞
k=0 x

k/k!, and if we evaluate the previous expression in x = 1 we have
e =

∑∞
k=0 1/k!.

As a consequence, we have |S| ∈ O(n!), that is, the number of refactoring
sequences (assuming there are no destructive conflicts among them) is O(n!).
But, on the other hand, |S| ≥ n!, because we can select all the refactoring
operations for the sequence and build at least n! different sequences. Thus,
|S| ∈ Θ(n!). That is, the size of the set S grows as n!. This is already much
smaller than Ouni et al.’s result, by a power of n. The asymptotic behavior
obtained in this section could be enough in many contexts to characterize the
growth of the search space. In the next section, we provide an exact expression,
valid for all the values of n.

3 The exact expression

Let us call En the difference between the value of |S| and e · n!, that is:
En = e · n!− |S|. Then, according to (1) we have:

En = e · n!− |S| = n!

∞∑
k=n+1

1

k!
, (2)

which can be considered a series in n.

4 Rodrigo Morales et al.

Lemma 1 The series En fulfills the following recurrence:

En+1 = (n+ 1)En − 1, (3)

where E0 = e− 1.

Proof The proof is a simply algebraic manipulation:

En+1 = (n+ 1)!

∞∑
k=n+2

1

k!
= (n+ 1)!

∞∑
k=n+1

1

k!
− 1

= (n+ 1)

(
n!

∞∑
k=n+1

1

k!

)
− 1 = (n+ 1)En − 1

Lemma 2 The following equality holds for En:

En = e

∫ 1

0

tne−tdt. (4)

Proof We will prove this simply by checking that the integral fulfills the re-
currence equation (3) with the initial value E0 = e− 1. Let us start with the
explicit expression for En+1 and let us integrate by parts:

En+1 = e

∫ 1

0

tn+1e−tdt =
[
−e−t+1tn+1

]1
0

+ e

∫ 1

0

(n+ 1)tne−tdt

= −1 + (n+ 1)e

∫ 1

0

tne−tdt = −1 + (n+ 1)En.

Now we can easily see that:

E0 = e

∫ 1

0

t0e−tdt = e

∫ 1

0

e−tdt =
[
−e−t+1

]1
0

= −1 + e.

Since both, the initial value and the recurrence equation holds for (4), and
the recurrence equation is order 1, then the equality holds for all n ≥ 0.

Theorem 1 The exact expression for |S| is be · n!c for n ≥ 1 and |S| = 1 for
n = 0.

Proof The case n = 0 is trivial (if we don’t have refactoring operations, there
is only one way to build a sequence of refactoring operations).

For n ≥ 1, first we notice that En is a strictly decreasing series for n ≥
0. The reason is that for any t ∈ (0, 1) we have that the integrand in the
expression for En, tne−t is greater than the integrand for En+1, since tn >
tn+1. Then, we have, En+1 < En, for n ≥ 0. Using the recurrence equation we
can easily see that E1 = e− 2 < 1, and thus, En < 1 for all n ≥ 1.

In order to finish the proof, we just recall that En = e · n! − |S|, and we
can write e · n! − |S| < 1 for n ≥ 1. We already had |S| ≤ e · n!. Combining
both, we have:

|S| ≤ e · n! < |S|+ 1, (5)

and the result follows.

Exact Search-space Size for the Refactoring Scheduling Problem 5

Applying the formula to the example presented in Section 1 with n = 3 we
have |S| = be · 3!c = b16.3097c = 16, which is the correct answer, c.f., Table 1.

Note that we are assuming that applying the permutation of a subset of
refactoring operations always leads to a different software design. For example,
consider the sequences 5 and 7 from Table 1, composed of refactorings r1 and
r2. However, in case of independent refactorings, i.e., refactorings that target
code entities which are not related at all, this assumption may not be true.
Hence, there is a chance to reduce even more the search space if we remove
these permutations, after a previous analysis of refactoring interdependences.
Thus, the value obtained after applying the proposed formula can be freely
used as an upper bound of the maximum size of the search space, as long as we
assume that applying a refactoring sequence does not create new refactoring
opportunities that were not in the original set. If this can happen, the number
of possible refactorings can be larger than our upper bound. However, when
working in an iterative mode, one expects that a software maintainer would
repeat the process of detecting refactoring candidates until: (1) there are no
more refactorings to apply, or (2) the software maintainer is satisfied with the
achieved design quality. Hence this does not constitute a limitation for the
application of the proposed formula.

4 Conclusion

We provided an exact and easy to compute formula for the number of refac-
toring sequences that can be scheduled from a set of refactoring candidates for
a software system. The formula assumes that distinct refactoring sequences
result in distinct designs. If this is not the case, the search space is smaller
and the provided expression should be interpreted as an upper bound of the
search space as long as we assume that applying a refactoring sequence does
not lead to new refactoring opportunities in addition to the ones present in
the original set.

The correct expression for the number of refactoring sequences can be used
to decide which is the most suitable search algorithm to be used to generate
the best refactoring sequence. In particular, the expression can be used to
determine if exact methods are able to find the optimal refactoring sequence
in a reasonable time.

Acknowledgements This work has been supported by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) and Consejo Nacional de Ciencia y Tecnologia,
México (CONACyT).

References

1. The on-line encyclopedia of integer sequences, sequence no. A000522.
http://oeis.org/A000522. Accessed: 2017-01-16

6 Rodrigo Morales et al.

2. Bois, B.D., Demeyer, S., Verelst, J., Mens, T., Temmerman, M.: Does god class de-
composition affect comprehensibility? In: IASTED Conf. on Software Engineering, pp.
346–355 (2006)

3. Fowler, M.: Refactoring: improving the design of existing code. Pearson Education India
(1999)

4. Harman, M., Tratt, L.: Pareto optimal search based refactoring at the design level. In:
Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp.
1106–1113. ACM

5. Moghadam, I.H., Cinneide, M.O.: Code-imp: A tool for automated search-based refac-
toring. In: Proceedings of the 4th Workshop on Refactoring Tools, pp. 41–44. IEEE
Computer Society (2011)

6. Morales, R., Sabane, A., Musavi, P., Khomh, F., Chicano, F., Antoniol, G.: Finding the
best compromise between design quality and testing effort during refactoring. In: 2016
IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1, pp. 24–35 (2016)

7. Morales, R., Soh, Z., Khomh, F., Antoniol, G., Chicano, F.: On the use of developers’
context for automatic refactoring of software anti-patterns. Journal of Systems and
Software (2016). To appear

8. O’Keeffe, M., Cinneide, M.O.: Search-based software maintenance. In: Software Main-
tenance and Reengineering, 2006. CSMR 2006. Proceedings of the 10th European Con-
ference on, pp. 10 pp.–260 (2006)

9. Opdyke, W.F.: Refactoring object-oriented frameworks. Ph.D. thesis, University of
Illinois at Urbana-Champaign (1992)

10. Ouni, A., Kessentini, M., Sahraoui, H., Boukadoum, M.: Maintainability defects de-
tection and correction: a multi-objective approach. Automated Software Engineering
20(1), 47–79 (2013)

11. Ouni, A., Kessentini, M., Sahraoui, H., Hamdi, M.S.: Search-based refactoring: Towards
semantics preservation. In: Software Maintenance (ICSM), 2012 28th IEEE Interna-
tional Conference on, pp. 347–356. IEEE (2012)

12. Ouni, A., Kessentini, M., Sahraoui, H., Inoue, K., Hamdi, M.S.: Improving multi-
objective code-smells correction using development history. Journal of Systems and
Software 105(0), 18 – 39 (2015)

13. Ramanujan, S.: Notebooks (2 volumes). Tata Institute of Fundamental Research, Bom-
bay 27, 96,816–3236 (1957)

14. van Rompaey, B., Du Bois, B., Demeyer, S., Pleunis, J., Putman, R., Meijfroidt, K.,
Dueas, J.C., Garcia, B.: Serious: Software evolution, refactoring, improvement of oper-
ational and usable systems. In: Software Maintenance and Reengineering, 2009. CSMR
’09. 13th European Conf. On, pp. 277–280 (2009)

