
An Empirical Study of Sentiments in Code Reviews

Ikram El Asri, Noureddine Kerzazi, Gias Uddin, Foutse Khomh, M. A.
Janati Idrissi

Mohammed V University in Rabat, Morocco, ENSIAS.
Polytechnique Montreal, Canada.

Abstract

Context: Modern code reviews are supported by tools to enhance devel-
opers’ interactions allowing contributors to submit their opinions for each
committed change in form of comments. Although the comments are aimed
at discussing potential technical issues, the text might enclose harmful sen-
timents that could erode the benefits of suggested changes.
Objective: In this paper, we study empirically the impact of sentiment em-
bodied within developers’ comments on the time and outcome of the code
review process.
Method: Based on historical data of four long-lived Open Source Software
(OSS) projects from a code review system we investigate whether perceived
sentiments have any impact on the interval time of code changes acceptance.
Results: We found that (1) contributors frequently express positive and
negative sentiments during code review activities; (2) the expressed senti-
ments differ among the contributors depending on their position within the
social network of the reviewers (e.g., core vs peripheral contributors); (3)
the sentiments expressed by contributors tend to be neutral as they progress
from the status of newcomer in an OSS project to the status of core team
contributors; (4) the reviews with negative comments on average took more
time to complete than the reviews with positive/neutral comments, and (5)
the reviews with controversial comments took significantly longer time in one
project.
Conclusion: Through this work, we provide evidences that text-based sen-
timents have an impact on the duration of the code review process as well
as the acceptance or rejection of the suggested changes.

Keywords: Empirical Software Engineering, Code review, Sentiment
Analysis, Opinion Mining, Affective Analysis, Propensity Score Matching.

Preprint submitted to Journal IST June 3, 2019

1. Introduction1

Peer code review is the practice where a developer submits a piece of2

code (i.e., code changes) to peers to judge its eligibility to be integrated into3

the main project code-base [1]. It aims to assess the quality of source code4

changes made by contributors before they are integrated into the mainstream.5

Beyond technical information, the textual comments of reviews could contain6

either positive or negative sentiments, which might alter the perception of7

their benefits. Past studies have shown that mailing lists of virtual commu-8

nities include not only useful information such as ideas for improvements,9

but also contributor opinions, and feelings about the introduced changes [2].10

There are also evidences that developers’ opinions play a key role in the11

decision-making process of source code reviews [3, 4, 5]. However, little is12

known about the impact of the expressed sentiments on the effectiveness of13

the review process.14

Previously, Baysal et al. [6] have explored the impact of technical and15

non-technical factors on the duration of source code reviews. They observed16

that non-technical factors, such as reviewer experience can significantly im-17

pact code review outcomes. An empirical understanding of the impact of18

sentiments in code review process can add a novel dimension to the find-19

ings of Baysal et al. [6] – notably to guide the design of better code review20

approaches and tools to facilitate improved productivity.21

With a view to understand the prevalence and impact of sentiments in22

modern code reviews, we empirically studied the code reviews of four long-23

lived software projects. In particular, we answer four research questions:24

RQ1: What is the performance of Sentiment Detectors When Ap-25

plied on Code Reviews?26

Recent studies [7, 8, 9] have raised uncertainties related to the unsuc-27

cessful application of sentiment analysis tools for software engineering.28

Indeed, existing tools might require customization to satisfy needs of a29

specific usage context such as technical software engineering. Following30

Novielli et al. [10], we carried out a benchmark-based study of three31

sentiment detection tools that are widely used in software engineering32

research (Senti4SD [11], SentiCR [12], and Sentistrength SE [13]). We33

found that Senti4SD tool provides the best performance (F1 79) when34

2

applied to our code review samples datasets. We used Senti4SD [11] in35

our subsequent analysis.36

RQ2: How Prevalent are Sentiments in Code Reviews?37

We found that contributors express sentiments in their review com-38

ments (13.94% of comments were positive, 2.24% negative, and39

83.81% were identified as neutral). We observed that both core40

and peripheral contributors do express sentiments in the code reviews.41

Core members are those developers that contribute intensively and con-42

sistently to the OSS project, and thus, lead the community, while pe-43

ripheral ones are occasional contributors with less frequent commits.44

We built Social Network Graphs of reviewers to segregate Core and45

Peripheral contributors. Our analysis reveals that the sentiments of46

Core contributors tend to become more neutral over time.47

RQ3: How do the presence of sentiments in code reviews correlate48

with the outcome of the reviews?49

We examined the effect of sentiments on the outcome of code reviews.50

We observed that reviews with negative comments on average take51

longer time to complete. In contrast, the reviews with positive senti-52

ments had a lower duration. Reviews that contain positive sentiments53

required, on average, 1.32 day less time to be closed than those with54

negative sentiments. Moreover, we found that 91.81% of successful re-55

views were identified with positive sentiments, and 64.44% of aborted56

reviews contained negative sentiments.57

Contributions. This paper makes the following contributions:58

1. We provide empirical evidence on the effect of expressed sentiments59

on the outcome of code reviews. Providing stakeholders with a bet-60

ter understanding of the impact of contributors’ sentiments on team61

dynamics and their productivity;62

2. We investigate whether the core (i.e., experienced) developers and the63

peripheral (i.e., newcomers) developers express different types of sen-64

timents and the effect of these sentiments on the efficiency of code65

reviews;66

3

3. We monitor the evolvement of sentiments of the top 5% contributors67

across time, for four OSS projects, as they progress and gain more68

experience, aiming at understanding the correlation between notoriety69

(i.e., experience) and the trend of sentiments expressed in text-based70

interactions.71

Paper organization. Section 2 provides background information on sen-72

timent analysis, the code review process, and the social network analyses73

conducted in this paper. Section 3 discusses the related literature. Section 474

describes the methodology of our case study. Section 5 reports our findings.75

Section 6 discusses our results. Section 7 highlights threats to the validity76

of our study and Section 8 concludes the paper and outlines directions for77

future work.78

2. Background79

This section provides background information about sentiment analysis,80

code review, and social network analysis.81

2.1. What Does Sentiment Analysis Stand for?82

Emotion and sentiment are terms relating to human subjectivity [14] un-83

derstood in the same way and used interchangeably in different domains even84

if they are not synonymous. Sentiment detection focuses on the detection85

of subjectivity in a given input (e.g., a sentence). A subjectivity can be of86

three types: (1) Positive, (2) Negative, and (3) Neutral. Emotion detection87

focuses on a finer-grained detection of the underlying expressions carried over88

by the sentiments, such as, anger, frustration. Gerrod Parrott identified six89

prominent emotions in social psychology [15]: (1) Joy, (2) Love, (3) Surprise,90

(4) Anger, (5) Sadness, and (6) Fear. This paper focuses on the analysis of91

sentiments in code reviews, because sentiment detection is predominantly92

used in other domains (e.g., cars, movies) to mine and summarize opinions93

about entities [16]. Although, analyzing sentiments and emotions in text94

data similarly related to one another, actually the granularity is quite dif-95

ferent. For example, ”this new feature wasn’t what I expected” and ”I hate96

using this API with buggy source code” are both negative sentiments. While97

a Sentiment Analysis seeks to catch the general feel or impression people get98

from consuming a piece of content, Emotion Analysis stresses the specific99

articulate emotions such as happy, angry, sad, etc.100

4

Sentiment analysis can be performed typically at one of the three levels:101

document level, sentence level, feature level [17]. In this study, we perform102

a document level analysis.103

2.2. Modern Code Review Practice104

Code change review is a well-established practice to improve code quality105

in software engineering. Developers read and assess each other’s code change106

before it is integrated into the mainstream line of code towards a release.107

Gerrit1 is one of the tools providing infrastructure for online reviews as a108

substitute to face-to-face meetings or mailing lists. It is an online tool that109

supports the traceability of the code review process by explicitly linking110

changes to a software system recorded in a Version Control System (VCS)111

to their respective code review discussions.112

Figure 1 illustrates the overall process underpinning the code review flow113

into Gerrit tool. There are three roles into Gerrit: Author, Reviewer, and114

Verifier as shown in Figure 1. Authors commit code changes into VCS and re-115

quest a review. Reviewers are responsible for passing throughout the changes116

and then proposing and discussing adjustments within comments. In other117

words, reviewers might spot potential defects that authors are not consciously118

aware of. Then, the author addresses the comments and produces a new code119

revision. Verifiers are responsible for executing tests to ensure that proposed120

changes are bug-free and do not cause any regression of the system. They121

can also leave comments to describe verification issues that they might en-122

counter during testing. Once the criteria for a review are satisfied, changes123

are integrated into the mainstream repository and flagged as “Merged”. This124

lifecycle may have another different transition “Abandoned” when the review125

has not passed the evaluation and is no longer active.126

2.3. Code Review Factors127

One of the main concern of developers when submitting patches for code128

review is maximizing the chances of their patches being examined in the129

shortest possible time. However, the outcome and duration of the code re-130

view process can be affected by a variety of technical factors. These influ-131

encing factors might introduce some bias when analyzing the real effect of132

contributor’s sentiments on review fixing time and review outcome.133

1https://www.gerritcodereview.com/

5

Figure 1: Code Review Flow

The most intuitive factor is patch size (Churn); previous studies have134

found that smaller patches are more likely to receive faster responses [18, 19]135

since larger patches would be more difficult to review, and hence require136

more time. Another important factor is how many times a developer had137

to resubmit his patch for an additional review (Count Patches); a patch138

requiring multiple revisions and re-submission(s) before being accepted con-139

sumes more time. Moreover, the more wide-spread a change is across files140

(Edited Files), the more concepts it touches in a system which often results141

in more rework [20]. Based on a survey of 88 open source core developers,142

Kononenko et al. [21] confirmed the important influence of these technical143

factors on reviews process and outcome. Authors report that the length of144

the discussion (count comments) and the amount of people involved in the145

discussion (Distinct involved Contributors) were judged as influencing factors146

by the interviewed contributors.147

For our study, we select these widely used technical metrics to charac-148

terize reviewed patches. Then, we use the propensity score matching (PSM)149

technique (see Section 4.3) to ensure that our analysis is not biased by dif-150

ferent technical characteristics. PSM [22] is a statistical matching technique151

that allows us to create groups of reviews that share similar characteristics.152

The technical characteristics considered in our study are:153

• Count Comments : The number of comments posted on each code154

6

review request (i.e., about the proposed code change).155

• Count Patches : The number of patches submitted before the proposed156

code change is accepted or rejected.157

• Edited Files (discrete count) : The number of files modified by the158

proposed code change.159

• Distinct involved Contributors : The number of developers that par-160

ticipated in the review of the proposed code change.161

• Code Churn (Cumulative count) : The number of added and deleted162

lines that are performed in the reviewed code changes.163

2.4. Social Network Analysis164

Social Network Analysis (SNA) is the process of investigating social struc-165

tures through the use of networks and graph theory [23]. A Network is166

typically modeled using a graph structure consisting of vertices and edges.167

Vertices represent individuals or organizations. An edge connecting two ver-168

tices represents some type of relationships between the two individuals or169

organizations. Social network analysis focuses on studying social network170

graphs to understand the patterns of interactions and the relative positions171

of individuals in a social setting [24]. SNA provides various global or node-172

specific computed metrics for a network, that are useful for making general173

statements about specific nodes or classes of nodes. Examples of such metrics174

are betweenness, diameter, distance, density, betweenness centrality, degree175

centrality, or eigenvector centrality [23].176

SNA is being widely used by researchers to model the social structure of177

OSS communities and barely used in analyzing Open Source Software Peer178

Review [25]. Previous studies using SNA in OSS generally indicated a few179

central persons being responsible for most of the interactions in the network180

(Core) and a less connected large group of contributors (Peripheral) [26].181

Through sentiment analysis, we aim to get insights about contributor’s pos-182

itivity/negativity in relation to their position in code review interactions183

networks.184

3. Related Works185

Several works have focused the attention of the research community on186

sentiments analysis. These works span many fields ranging from happiness at187

7

workplaces [27] to emotions in social networks’ messages such as Yahoo and188

Twitter [4, 28] and online Q&A such as Stack Overflow posts [29]. Guillory189

et al. [30] went a step further and examined the spread of negative emotions190

into online communities. Their analyses suggest that contagion of negative191

emotions can occur in groups of people and impact their performance.192

Guzman and Bruegge [31] presented a position paper that describes emo-193

tional awareness in software development teams. The paper was motivated194

by the same concerns that have motivated our approach. Their approach195

investigates the collective emotional awareness of developers in distributed196

teams. It extracts emotional state from a 1,000 of collaboration artifacts aim-197

ing to summarize emotions expressed in those artifacts by extracting topics198

and assigning them an average emotion score. Authors presented the emotion199

average fluctuation to the project leaders, whom confirmed the correlation of200

positive and negative emotion peaks with team performance, motivation and201

important deadlines. Our work improves and expands their idea by using202

propensity score to allow for more accurate comparisons, and apply them on203

comments related to code reviews instead of comments from commits.204

Sinha et al. [32] analyzed developers commits logs for a large set of Github205

projects and found that the majority of the sentiment expressed by developers206

is neutral. They also found that negative comments are more present than207

positive ones (respectively 18.05% vs. 7.17%). Similarly, Guzman et al. [33]208

examined the sentiments expressed by developers in comments related to209

commits from 29 open source projects and found an approximately equal210

distribution of positive, negative and neutral sentiments. Paul et al. [34]211

explored the difference of expressed sentiments between men and women212

during various software engineering tasks including the code review practice.213

The authors report that women are less likely to express their sentiment than214

men and that sentiment words, emoticons, and expletives vary cross-gender.215

However, their study did not investigate the effect of expressed sentiment216

on the prodctivity of the code review activity according to the duration and217

results.218

Khan et al. [35] conducted two studies to explore the impact of senti-219

ments on developer’s performance. They found that programmers’ moods220

influence positively some programming tasks such as debugging. Similarly,221

Ortu et al. [36] studied the impact of developers’ affectiveness on produc-222

tivity focusing on the correlation between emotional states and productivity223

in terms of issues fixing time. They report that the happier developers are,224

i.e., expressing emotions such as joy and love in their comments, the shorter225

8

Table 1: Existing Sentiment Analysis Tools.

Tool Purpose Technique Trained on Ref.

Sentistrength General Rule-based Twitter [28]

Sentistrength SE Focused Rule-based Jira [13]

Senti4SD Focused Lexical Features Stack Overflow [11]

SentiCR Focused Lexical Features Code Reviews [12]

the issue fixing time is likely to be. They also report that emotions such226

as sadness are linked to longer issue fixing time. Also, Destefanis et al. [37]227

investigated social aspects among developers working on software projects228

and explored whether the politeness of comments affected the time required229

to fix any given issue. Their results showed that the level of politeness in the230

communication process among developers does have an effect on the time re-231

quired to fix issues and, more specifically the more polite the developers were,232

the less time it took to fix an issue. We complement existing work on the233

impact of sentiment on productivity by studying the influence of text-based234

expressed sentiment on the duration and outcome of code reviews.235

Recent studies have investigated factors affecting the effectiveness of code236

review comments. Rahman et al. [38] extracted a number of features from237

the text of the review comments attempting to predict the usefulness of code238

review comments using textual features. However, their empirical study was239

limited to structural characteristics of the text without considering emo-240

tions/sentiments expressed in them. Efstathiou and Spinellis [7] studied the241

language of code review comments and report that language does matters.242

In this paper, we continue this line of work by investigating the role of sen-243

timents expressed in code review comments on the outcome of code review.244

Since Lin et al. [8] recently highlighted issues with the accuracy of existing245

sentiment analysis tools from the literature, we have choose the most pow-246

erful sentiment analysis tool based on a benchmarking of several sentiment247

analysis tools. In Table 1, we present a summary of existing sentiment anal-248

ysis tools that are designed and tested using data from software artifacts.249

4. Empirical Study Design250

Our overall goal is to understand the influence of expressed sentiment,251

throughout comments, on time and outcomes of code reviews. Figure 2252

9

Figure 2: Overview of Our Empirical Study.

presents an overview of the steps of our study and how they relate to our253

research questions. In the remainder of this section, we describe each step in254

details.255

4.1. Data Collection256

We conduct our empirical study based on publicly available code re-257

view data, mined from Gerrit system and organized in a portable database258

dump [39]. We selected this data set because it contains a substantial259

volume of data from well-known open source projects organized in a rela-260

tional database2 as depicted in Figure 3. In our study we used data of four261

well-known open-source systems, OpenStack3, Eclipse4, Android5 and Libre-262

Office6. OpenStack is a software platform for cloud computing, controlling263

large pools of computing, storage, and networking resources throughout a264

data center. Eclipse is an integrated development environment (IDE) used265

in computer programming. Android is a free software stack for a wide range266

2 http://kin-y.github.io/miningReviewRepo/
3http://openstack.org
4https://eclipse.org/
5https://source.android.com/
6https://www.libreoffice.org/

10

Figure 3: Simplified database schema of Gerrit data.

of mobile devices led by Google. LibreOffice is a fork from the OpenOffice.org267

project. We selected these projects because they have been actively devel-268

oped for more than five years and hence provide a rich data set of reviews.269

Also, they are from different domains, are written in different programming270

languages, and have been quite studied in other research domains.271

The original dataset7 is stored in a relational database (335,626 reviews272

and contains over 5 million comments) under the schema depicted in Figure 3.273

In general, a contributor (i.e., personId, name, email) requests a review274

characterized by a reviewId, the creation time (createdAt), the last time275

modified (updatedAt), related project and the source code branch. A review276

includes a set of patches when the author repeatedly update the change by277

committing new resubmissions with the same review request ID and a list278

of edited files. The history of launched discussion over proposed changes is279

recorded in the table ‘Comment ’.280

We retrieved and exported required data into separate csv files to ease281

our data pre-processing. Table 2 shows descriptive statistics regarding the282

studied projects.283

7http://kin-y.github.io/miningReviewRepo/

11

Table 2: A statistical summary for each studied system

Projects #Reviews #Comments #Contributors

Openstack 228,099 5,021,264 8,088
Eclipse 15,887 153,176 1,082
Android 63,610 355,765 3,334
LibreOffice 28,030 174,181 634

4.2. Data Preprocessing284

In order to improve the quality of our dataset with respect to our main285

goal which is studying the human sentiments expressed in code review com-286

ments, we performed three pre-processing steps on the raw data:287

1. We discarded comments generated automatically such as those gener-288

ated by build automation and continuous integration services. Those289

comments contain key-words such as: ‘Jenkins’, ‘Hudson’, ‘Bot’, or290

‘CI Servers’ (about 29% of the total comments were excluded). Using291

regular expressions, we excluded automatic expressions (e.g., Build suc-292

ceed, Build failed, etc.). In addition, we removed reviews with status293

= “New” since their final status remains unknown (∼ 5% of total re-294

views). We limited our analysis to closed reviews (i.e., reviews marked295

as ”Merged” or ”Abandoned”) that contain at least one comment. The296

remaining data set contains 4,426,451 comments belonging to 317,373297

reviews.298

2. For each review, we gathered key information such as timestamp of299

opening and closing of the review, count of edited files, count of patches,300

and number of added and deleted lines. Clustering reviews based on301

these metrics help us to make unbiased comparisons later on.302

4.3. Data Analysis303

We use the propensity score matching (PSM)8 [22] method to regroup304

reviews homogeneously according to some characteristics (e.g., size of the305

review, code churn, number of comments, etc.). Previous works report that306

code reviews are affected by a variety of technical factors such as the size307

8https://en.wikipedia.org/wiki/Propensity score matching

12

of the source code [6]. Using PSM allows us to be able to compare reviews308

that are logically comparable in terms of these known affecting factors. PSM309

is a statistical matching technique widely used to compress covariates to a310

variable (i.e., compare technical factors and generate a propensity score).311

PSM is proposed to treat the effects of confounding factors. [40] presents an312

evaluation of the efficiency of PSM in mitigating confounding factors.313

In this work, we used the R package called Matchit to carry out the first two314

steps enumerated bellow, while step 3 required a manual verification. The315

three steps are described as follows:316

1. A logistic regression model is built based on a high-dimensional set317

of characteristics. The revision sentiment (Positive or Negative) is set318

as the dependent variable, and reviews technical characteristics: (i)319

amount of comments for the review; (ii) count of patchSets, (iii) num-320

ber of edited files, (iv) distinct involved Contributors, and (v) churn are321

set as its independent variables. The output of the logistic regression322

model is a fitted value (a probability value) called propensity score.323

2. The propensity scores are used to match pairs of data points. Each pair324

has different values of the dependent variable. Similar values of the325

propensity score imply a similarity of reviews technical characteristics.326

For our purpose we used the Genetic matching algorithm to match327

appropriate pairs of reviews. Then matched pairs are combined into a328

new dataset.329

3. The final step is to verify the balance of covariate characteristics. To do330

that, we manually compared the means differences for each covariate331

variable across matched reviews.332

The output of PSM is two groups : one for positive reviews and the other333

one for negative reviews. Although the final step of PSM is to verify the334

balance of covariate characteristics, we carried out a manual validation of335

confounding bias on PSM outputs as shown in Table 3. For instance, the336

mean difference of total comments for positive and negative reviews shift337

respectively from (9.96, 12.6) to (6.2, 6.2), which means more homogeneous338

groups. One can also notice greater p-values9 with matched reviews; meaning339

9The p-values are calculated using Mann-Whitney U test [41]

13

an equivalent distribution regarding technical characteristics.340

Table 3: Mean differences of technical characteristics before and after Propensity Score
Matching (Eclipse Project).

Befor PSM After PSM

Positive
reviews

Negative
reviews

p-value
Positive
reviews

Negative
reviews

p-value

Comments 9.96 12.60 9.07e-06 6.20 6.20 0.09
Patchesets 2.60 2.63 2e-03 1.51 1.51 0.06
Edited files 13.25 14.22 0.33 1.66 1.66 0.37
Churn 4993.70 8431.20 0.06 51.49 42.29 0.34
Distinct contrib 2.94 3.27 1.60e-7 2.66 2.66 2e-4

341

The new balanced dataset, used later in answering RQ3.1, contains (2,393342

positive vs 876 negative reviews) for Openstack, (811 positive vs 155 negative343

reviews) for Eclipse, (11,831 positive vs 2,373 negative reviews) for Android,344

and (9,002 positive vs 498 negative reviews) for LibreOffice.345

5. Findings346

We now present the findings of the sentiment analysis conducted on four347

OSS projects. For each of our four research questions, we present our moti-348

vation, the approach, and results.349

RQ1. What is the performance of Sentiment Detectors When Ap-350

plied on Code Reviews?351

• Motivation. To investigate whether the negative and positive sentiments352

expressed in developers’ text-based review interactions affect the code re-353

view process, we need a tool capable of detecting sentiments in code review354

comments accurately. So far three different sentiment detection engines have355

been proposed in the software engineering literature [13, 11, 12], but not356

trained specifically on comments of code reviews. However, these previous357

attempts to analyze text-based sentiments for software engineering have been358

either incomplete nor reusable for other domains [8, 7]. A major reason of359

this inadequacy is that software engineering encompasses vocabulary from360

diverse sub-domains [7]. Therefore, a tool trained and successfully tested in361

14

one sub-domain (e.g., Q&R Stack Overflow) may not be useful enough for an-362

other sub-domain (i.e., comments within Jira issues system). Consequently,363

we were more cautious on how to choose our tools.364

• Approach. We compared the performance of three sentiment detec-365

tion tools: SentistrengthSE [13], Senti4SD [11], and SentiCR [12] aiming366

to choose the most adequate tool for the domain of source code reviews.367

These three tools have been trained previously to detect sentiments in soft-368

ware engineering using specific datasets (see Table 1). In order to com-369

pare cautiously the performance of the three tools, we carried out a manual370

annotation (by four raters) on a subset of comments. To strengthen our371

sampling, we built an over-sampling approach in which the minority class372

(i.e., negative sentiments) is equally represented. Concretely, following the373

approach used by Novieli et al. [42], we built four sub-datasets by perform-374

ing opportunistic sampling. The first sample is created based on the out-375

put of SentiStrength SE, it contains 1,200 comments equally distributed (for376

each project we have 100 Positive, 100 Negtive and 100 Neutral, making377

300X4 = 1, 200). The second and the third samples retrieved respectively378

from Senti4SD and SentiCR contain 360 comments each. The final sample379

contains 300 random comments. Then each review comment was manually380

annotated (positive, negative, neutral) by the first author and one of the381

other authors to ensure a stable annotation. The same approach was pre-382

viously used by Lin et al. [8] to produce their sentiment benchmark. The383

agreement between the two coders, measured using Cohen’s kappa, ranged384

from 81% to 95% (83% for Senti4SD sample, 95% for SentiCR sample, 81%385

for SentiStrengthSE and 91% for Random sample).To resolve the disagree-386

ments between raters, the annotations were discussed and the guideline of387

annotation was updated by the first author. For instance, an example of a388

disagreement between two annotators happened fir the following sentence:389

”Patch Set 2: Fails Merges in public tree, but does not build. Please fix and390

reupload. Thanks!”. The first annotator classified this comment as Positive,391

while the second one classified it as Negative. Through mutual consent we392

decided to tag this typical comment as Positive since the commenter was393

very polite and used ”Please” and ”Thanks” in his text.394

Our sub-datasets as well as the original dataset (5 millions comments)395

are available in the companion on line appendix [43] for the purpose of repli-396

cation.397

398

• Results. Table 4 reports the performance obtained in terms of recall,399

15

precision, and F1-measure, for each polarity classes (Positive, Negative, and400

Neutral) as well as the overall performance, for the three tools when applied401

to our data samples. We highlight the best values for each metric. Sur-402

prisingly, when expecting a good performance from SentiCR tool, Senti4SD403

shows a slightly better overall performance than the other tools (F1 = 0.7910).404

Again, Lin et al [8] pointed out that sentiment analysis tools should always405

be carefully evaluated in the specific context of usage. We double check our406

results by performing McNemar11 statistical test [45] in order to compare407

the classification results of the three tools. The performance differences be-408

tween Senti4SD and other classifiers were found to be statistically significant409

(p value ≺ 0.05 and z scores = 11.49 � 0) indicating that Senti4SD performs410

better than SentiCR. Moreover, when comparing this result with our manual411

tagging, we noticed that 472 comments were correctly classified by Senti4SD412

and misclassified by SentiCR while only 178 comments correctly classified by413

SentiCR and misclassified by Senti4SD.414

415

RQ1 What is the performance of Sentiment Detectors When Applied
on Code Reviews?

On average Senti4SD led to the best performance (Precision 79%, F1
79%) when applied to our code review data samples.

416

RQ2. How Prevalent are Sentiments in Code Reviews?417

• Motivation. Sentiments are ubiquitous in human activity: There is an418

old saying “Feeling Good-Doing Good” [46]. OSS contributors may under-419

perform if they do not feel safe and happy [35]. Negative emotions like anger420

can make people less motivated and thus less creative [36]; two key fac-421

tors to ensure productivity within modern software organizations [27]. For422

instance, Linus Torvalds sent out an email12 to the Linux developers’ com-423

munity admitting his verbal abuse in communications [”My flippant attacks424

10We used the F1-measure to determine the best performing classifiers, following stan-
dard practices in Information Retrieval [44]

11https://stat.ethz.ch/R-manual/R-devel/library/stats/html/mcnemar.test.html
12https://gizmodo.com/linux-founder-takes-some-time-off-to-learn-how-to-stop-

1829105667

16

Table 4: Performance of Sentiment Detectors in Code Review samples (P = Precision, R
= Recall, F1 = F1-Measure)

Dataset Class
Sentistrength SE Senti4SD SentiCR
P R F1 P R F1 P R F1

SentistrengthSE based

Positive 0.86 0.85 0.83 0.81 0.84 0.82 0.59 0.89 0.71
Negative 0.91 0.61 0.73 0.66 0.68 0.67 0.59 0.66 0.62
Neutral 0.7 0.98 0.81 0.83 0.81 0.82 0.88 0.69 0.77
Micro-avg. 0.8 0.8 0.8 0.79 0.79 0.79 0.72 0.72 0.72
Macro-avg. 0.82 0.8 0.79 0.77 0.77 0.77 0.69 0.75 0.7

Senti4SD based

Positive 0.83 0.92 0.87 0.91 0.91 0.91 0.3 0.81 0.43
Negative 0.57 0.8 0.67 1 0.78 0.87 0.42 0.8 0.55
Neutral 0.89 0.7 0.78 0.79 0.96 0.87 0.93 0.51 0.66
Micro-avg. 0.78 0.78 0.78 0.88 0.88 0.88 0.59 0.59 0.59
Macro-avg. 0.76 0.81 0.77 0.9 0.88 0.88 0.55 0.71 0.55

SentiCR based

Positive 0.6 0.82 0.7 0.74 0.72 0.73 0.73 0.7 0.72
Negative 0.52 0.4 0.45 0.67 0.46 0.55 0.91 0.25 0.4
Neutral 0.82 0.76 0.79 0.76 0.83 0.79 0.53 0.93 0.67
Micro-avg. 0.73 0.73 0.73 0.75 0.75 0.75 0.63 0.63 0.63
Macro-avg. 0.65 0.66 0.64 0.72 0.67 0.69 0.72 0.63 0.6

Random

Positive 0.27 0.95 0.42 0.83 0.89 0.86 0.05 0.44 0.09
Negative 0.11 0.15 0.13 0.58 0.76 0.66 0.05 0.14 0.08
Neutral 0.95 0.75 0.84 0.97 0.93 0.95 0.96 0.71 0.81
Micro-avg. 0.74 0.74 0.74 0.92 0.92 0.92 0.69 0.69 0.69
Macro-avg. 0.44 0.62 0.46 0.8 0.86 0.82 0.35 0.43 0.33

Overall Micro-avg. 0.76 0.76 0.76 0.83 0.83 0.83 0.65 0.65 0.65
Overall Macro-avg. 0.66 0.72 0.66 0.79 0.79 0.79 0.57 0.63 0.54

in emails have been both unprofessional and uncalled for,”]. Torvalds stepped425

down because people where complaining about his lack of care sentiments in426

his communications which has hurt some contributors and may have driven427

some away from working in kernel development altogether [” I’m going to428

take time off and get some assistance on how to understand people’s emotions429

and respond appropriately”.]. Empirical evidence of the effect of expressed430

sentiments contained into comments on code reviews could help developers431

pay more attention to the way they comment on other’s work, especially in a432

context of virtual communities such as Github characterized by multicultural433

contributors.434

We are also interested in understanding how the expressed sentiments of435

contributors evolve over time as they gain in seniority within a project. There436

has been research examining OSS contributors’ involvement over time [26], in437

particular, researchers pointed out that empirical analyses that mix the two438

groups will likely yield invalid results. Surprisingly little research has exam-439

ined the evolution of text-based sentiments when contributors gain reputation440

17

(i.e., belong to the core team leading the project). Reviewer’s sentiment may441

wax and wane as project progresses. We thus derive the following research442

question.443

444

• RQ2.1: How are positive and negative sentiments expressed445

in code reviews?446

Previous research [2, 33, 36] that observed significant presence of senti-447

ments and emotions in code reviews and issue comments . Therefore, before448

analyzing the relationship between sentiments expressed in code reviews and449

code review outcomes, it is important to learn whether sentiments are also450

prevalent in our dataset of code review comments. Given that developers451

can express as well as seek opinions in diverse development scenarios [47, 48],452

their expression of opinions in code review comments may be influenced by453

diverse development needs and situations. Therefore, it is necessary to learn454

how developers expressed those sentiments and what could have triggered455

the developers to express those opinions.456

• RQ2.2: How do the prevalence of Expressed Sentiments of457

Reviewers Evolve Over Time?458

We are interested in analyzing potential differences in expressed senti-459

ments between core and peripheral contributors. Core members are those460

developers that contribute intensively and sustainably to the OSS project,461

and thus, lead the community, while peripheral ones are occasional contribu-462

tors with less frequent commits. Our main purpose is to study the correlation463

between a gain of contributors reputation and the nature of sentiments they464

express within reviews comments. We hypothesize that newcomers try to465

imitate contributors with a certain reputation, which might affect the cul-466

ture of commenting. Hence, we formulate the following research questions:467

468

• RQ2.3: Do Core and Peripheral Contributors Express Dif-469

ferent types of Sentiment According to their Position in a470

Collaborative Social Network Graph?471

RQ2.1: How are positive and negative sentiments expressed in code reviews?472

• Approach: Our dataset contains more than 4.4 million comments on code473

reviews regarding four long-lived and well known OSS projects: Openstack,474

18

Eclipse, Android, and LibreOffice. The distribution of comments is shown in475

Table 5. Next, we conducted a sentiment analysis on comments using natural476

language processing techniques. We used Senti4SD tool, a fully-automated477

algorithm, to compute the sentiment score for each comment on each review.478

To determine whether sentiment scores are consistent in the projects, we cal-479

culate the skewness and kurtosis of the sentiment scores. The skewness of480

a distribution captures the level of symmetry in terms of mean and median.481

For instance, a negative skew means that the overall reviews are towards482

negativity, while a positive skew means that the reviewers overall express483

more positivity. Kurtosis explains the shape of the distribution (univariate484

normal distribution is 3). A kurtosis lower than 3 means that the reviewers485

have a strong consensus, while a kurtosis greater than 3 means a divergence.486

In order to investigate further the type of sentiments expressed within code487

review comments, we manually tagged positive (666) and negative (443) com-488

ments from the dataset used to answer RQ1. To do so, we leveraged on489

categorization provided by Tourani et al. [49], which categorized positive490

sentiments into six categories and negative ones into four categories as de-491

scribed in Table 6. Each comment was manually categorized by two raters,492

the agreement between the two coders, measured using Cohen’s kappa, was493

61% for positive comments and 65% for negative comments.494

• Results: 8.31% of comments were reported as positive (score =495

1) in the Eclipse project. While 89.92% of comments were neutral496

(score = 0) and 1.77% were negative sentiments (score = -1). Table 5497

summarizes the results of sentiment computation for the studied projects and498

provide some descriptive statistics, i.e., the mean, standard deviation, kurto-499

sis, and skewness. We noticed relatively similar distributions concerning the500

proportion of expressed sentiment within comments across the four projects.501

Neutral comments are the most present (83.81%) which confirms the re-502

sults of previous studies [32]. The large amount of neutral sentiments can be503

mainly explained by the presence of technical vocabulary within comments.504

For instance, in Eclipse project, over 153 thousand comments, 89.92% was505

reported as neutral.506

We found that 13.94% of comments related to all projects were positive507

(e.g., “Thanks for the most excellent review. :)”), while around 2.24% of508

comments were identified as negative (e.g.,“Horrible :(”).509

Eclipse is the only project with a Kurtosis value greater than 3 which510

suggests that sentiment are diverse among the contributors while Openstack,511

Android, and LibreOffice have a Kurtosis slightly less than 3, meaning that512

19

Table 5: Distributions of Sentiments in Reviews

Project Positive Neutral Negative Mean SD Kurtosis Skewness

Openstack 16.27 % 81.04 % 2.68 % 0.13 0.41 1.63 0.89
Eclipse 8.31 % 89.92 % 1.77 % 0.06 0.31 6.25 1.53
Android 14.06 % 84.09 % 1.86 % 0.12 0.37 2.43 1.22
LibreOffice 17.14 % 80.21 % 2.65 % 0.14 0.42 1.39 0.87

reviewers have a strong consensus on sentiment expression in source code513

reviews.514

Overall, results reveal that the distribution is highly positively skewed for515

Eclipse and Android while moderately skewed for Openstack and LibreOffice.516

Manual annotation revealed that ‘Friendly Interaction’ is the most preva-517

lent category of positive sentiments with a proportion of 37.1% as reported518

in Table 6. This means that, to a large extent, 37.1% of positive interactions519

between the community’ members are guided with respect and positive at-520

titudes. ‘Satisfactory Opinion’ and ‘Announcement’ count respectively for521

19.6% and 15.5%. While the most common category of negative sentiment522

is ‘Uncomfortable Situation’ with a percentage of 62.30%. This means that523

62.30% of negative comments express strong pressures such as time con-524

straints that could overwhelm them, confusion about inexplicable behavior525

of the software system, or concerns about risks and fears. ‘Unsatisfied Opin-526

ion’, ‘Aggression’, and ‘Sadness’ count respectively for 16.03%, 15.35% and527

6.32%.528

As stated by [49], well-mannered interactions with a positive undertone529

might lead to a higher productivity. Our RQ3 will investigate the impact of530

expressed sentiments into comments on the duration and the outcome of a531

source code reviews.532

20

Table 6: Categorization of sentiments within code review comments.
Sentiment Category Example Total ratio

Positive
Sentiment

Satisfactory Opinion
Thank you Andrey!I really appreciate that you took the time to
check that, and I’m glad to hear that performance is now okay :)

130 19.6%

Friendly Interaction Works fine no issues 247 37.1%
Explicit Signals Restored I’ll revive this, it makes the debug info analysis much more pleasant. 82 12.3%
Announcement I’m sure you see how having all your patches in one chain helps for sanity 103 15.5%
Socializing My pleasure :). 59 8.9%
Curiosity Before the change, the tests were working fine on the command line. 44 6;6%

Negative
Sentiment

Unsatisfied Opinion Forgot to publish these. Sorry! 71 16.03%
Aggression PS. I hate this change and this API. 68 15.35%
Uncomfortable Situation I’m sorry but your approach looks like overkill to me. 276 62.30%

Sadness
I really dislike this patch and ”I would prefer that you didn’t submit
this” but I don’t know if it’s a valid reason to -1 it.

28 6.32%

Neutral
Sentiment

- - 1111

RQ2.1 How are positive and negative sentiments expressed in code
reviews?

Open source software developers do express sentiments when they are
reviewing each other source code. A percentage of 13.94% of comments
related to all projects were positive, while around 2.24% of comments
were identified as negative. Also, ’Friendly Interaction’ is the most
prevalent category of positive sentiments with a proportion of 37.1%,
‘Uncomfortable Situation’ is the most common category of negative
sentiment with a percentage of 62.30%.

533

RQ2.2: How do the prevalence of Expressed Sentiments of Reviewers Evolve534

Over Time?535

• Approach: To answer this research question, we proceeded as follows.536

First, we examined the sentiment evolution of top 5% contributors for each537

project during the complete time period under study. We pick the top 5% to538

ensure that we have the most active contributors without any discontinuity539

in the review activity. In total, over the four studied projects, we analyzed540

the evolution of expressed sentiments of the top 5% (484 out of 9680 contrib-541

utors) who have created 1,493,224 comments (33.73% of total comments).542

After zooming on this group of contributors, we explored manually in details543

the time series of the top five contributors for one project, which produced544

7,184 comments (0.16% of the total comments) to ground sentiment evolu-545

tion patterns. We focused only on 5 members because of the high cost of the546

analysis.547

21

• Results: We observed a trend toward neutral sentiments correlated with548

the progression of contributors toward the core team. The more a con-549

tributor gains reputation, the more he is likely to express neutral550

sentiments. Figure 4 shows the average of sentiment evolution per month551

of top 5% contributors (i.e., reviewers). However, we cannot conjecture that552

this trend towards neutral sentiments is due to a gain of reputation by con-553

tributors. It could also be simply due to cultural changes in the studied554

projects. Further analysis are necessary to better understand the evolution555

of developers’ sentiments in OSS projects.556

Figure 4: Average Sentiment Evolution per Month of the Top 5% Contributors.

In order to get more insights on sentiment average evolution, we monitor557

the top 5 core contributors for the Eclipse project. We choose the Eclipse558

project because it is intensively studied in the literature. As one can see in559

Figure 5, the sentiment averages vary significantly over years, decreasing from560

positive towards neutral. The sentiments of the top 5 reviewers in Eclipse561

decreased to neutral over time. As mentioned earlier, an interesting future562

qualitative research would be surveying the behavior of the most productive563

contributors.564

565

22

Figure 5: Evolution of the sentiment average (per year) for the top 5 core contributors of
the Eclipse project.

RQ2.2 How do the prevalence of Expressed Sentiments of Reviewers
Evolve Over Time?

Sentiments expressed by code review contributors tend to be neutral
as they progress from the status of newcomer in an OSS project to the
status of core team contributor.

566

RQ2.3: Do Core and Peripheral Contributors Express Different Types of Sen-567

timent According to their Position in a Collaborative Social Network Graph?568

• Approach. To answer RQ2 and the sub research questions we need to569

build Social Networks for each project in order to detect Core and Periph-570

eral contributors. To do so, we calculated the number of interactions between571

each pair of developers in each project. Then, we generated our social net-572

work graphs as undirected, weighted graphs where nodes represent developers573

and edge weights represent the amount of co-edited files by those contribu-574

tors. Finally, to locate core and peripheral members we followed the same575

approach described in [50]. We used the Kmeans clustering method based576

23

on SNA centrality measures. Centrality measures used for this approach are577

: Degree centrality, Betweenness centrality, Closeness centrality, Eigenvector578

centrality, Eccentricity and PageRank. Each metric calculates centrality in579

a different way and has a different interpretation of a central node [24].580

Concretely, we used the Python package NetworkX to calculate the six581

centrality measures for each node in each graph. Then, we used the R im-582

plementation of the Kmeans clustering algorithm to partition the nodes into583

core and peripheral groups based on the six centrality scores. K-means groups584

the project contributors into two mutually exclusive clusters in which each585

contributor belongs to the cluster with the nearest mean (measured using586

different centrality measures). K-means treats each contributor as an object587

having a location in space. It finds a partition in which objects within each588

cluster are as close to each other as possible and as far from objects in other589

clusters as possible. We used the kmeans()13 function within R with default590

configuration options to identify core and peripheral contributors. Table 7591

provides a description of the core-periphery partitions obtained for the four592

projects in this study, alongside with the goodness which is the between SS /593

total SS values provided as a result when using kmeans() of the classification.594

Table 7: Core-Periphery distribution in studied Projects

Projects Size of the Core Size of the Periphery Goodness (%)

Openstack 1,081 4,921 82.6
Eclipse 121 628 82.3
Android 189 2,295 84.2
LibreOffice 45 437 85.3

Figure 6 shows the social network structure of the Openstack project as595

generated by Cytoscape14, a tool for networks’ visualization. Core develop-596

ers (shown in yellow) represents a small set of contributors (between 4.55%597

and 12.14%, for the studied projects) who have generally been involved with598

the OSS project for a relatively long time and are making significant contri-599

butions to guide the development and evolution of the project. Peripheral600

developers (shown in red) are a larger set of contributors whom occasionally601

contribute to the project, mostly interacting with core developers, and rarely602

interacting with each other. To enhance readability of OpenStack graph, we603

13https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html
14http://www.cytoscape.org/

24

http://www.cytoscape.org/

removed the low-weight degrees (weight ≺ 5) and isolated nodes.604

Figure 6: Code Review Social Network Diagram of Eclipse

After segregating core and peripheral contributors, a sentiment score av-605

erage for each contributor has been calculated based on the sentiment score of606

all the comments he made. Next, using Mann-Whitney U test [41], we com-607

pared the distributions of sentiment averages between groups of core and608

peripheral contributors. The test is applied following the commonly used609

confidence level of 95% (i.e., α ≺0.05). Since we performed more than one610

comparison on the same dataset, to mitigate the risks of obtaining false pos-611

itive results, we use Bonferroni correction [41] to control the familywise error612

rate. Concretely, we calculated the adjusted p-value, which is multiplied by613

the number of comparisons. Whenever we obtained statistically significant614

differences between groups, we computed the Cliff’s Delta effect size [41] to615

measure the magnitude of this difference.616

• Result. Figure 7 shows the comparison of averages of sentiments between617

core and peripheral contributors. For the four studied projects, the distribu-618

tion of sentiment averages ranges between [-1, 1]. The Mann-Whitney test619

revealed a significant difference in the distribution of sentiment average of620

core and peripheral contributors. However, the effect size is small, except for621

the LibreOffice project where it is medium, as reported in Table 8.622

623

Surprisingly, we observed that the peripheral contributors in all four624

projects have clearly more outliers - i.e., both positive and negative- com-625

25

Table 8: Mann-Whitney U test results

Project U p-value Effect Size

Openstack 4,115,100 2.2e-16 small (0.26)
Eclipse 47,683 1.0e-06 small (0.26)
Android 536,920 2.2e-16 small (0.27)
LibreOffice 22,700 8.48e-12 medium (0.47)

pared to core ones whom sentiments remain concentrated around Neutral626

emotions (i.e., value equal to zero). We hypothesize that the outliers seg-627

ment are people participating by a single or a small amount of comments,628

which impacts the values of averages, whereas Core developers remain neutral629

while they comment on the source code revisions.630

RQ2.3 Do Core and Peripheral Contributors Express Different Types
of Sentiments According to their position in the review network?

Open source contributors do express different sentiments depending
on the position within the peer review collaborative social network.
Peripheral contributors in the four projects clearly have more outliers
in expressing positive and negative sentiments, while Core developers
remain neutral when commenting on source code revisions.

631

RQ3. How do the presence of sentiments in code reviews correlate632

with the outcome of the reviews?633

Motivation. Code review is an essential practice to ensure the long-term634

quality of the code base. This modern practice could be influenced by ex-635

pressed sentiment within contributors’ comments. Intuitively, positive sen-636

timents may improve the contributors mood, while negative ones may prove637

detrimental to their morale. Such change in morale can then impact both638

the time taken and the outcome of the review process. In particular, it is639

important to know how expressed sentiments can impact code review prac-640

tices along the following two dimensions: (1) Code Review Time, and (2)641

Code Review Outcome. The duration of a source code review is an important642

factor for a software organization productivity [51]. We pose the following643

question:644

• RQ3.1 How do the sentiments expressed in the reviews corre-645

late with the duration and the outcome of a review compared646

26

Figure 7: Comparing Sentiments Between Core and Peripheral Contributors.

to the reviews with no sentiments?647

When a code review takes much longer than expected, the release of the648

software and the team productivity can suffer. A number of factors can con-649

tribute to such longer time, such as the absence or leave of the core developer650

responsible for the particular module related to the review or the change in651

priority. Another mitigating factor could be the presence of controversy in652

the review comments. Intuitively, a feature may be controversial if its code653

review attracts positive and negative comments almost equally. An empirical654

understanding of the extent to which such controversies can impact the code655

review outcome can offer a gain of awareness regarding positive/negative im-656

pact of code review practices. As a practical implication, we can motivate657

a new feature within Gerrit to proactively warn contributors involved in a658

review team about a risk of delaying the review due to controversies. We659

thus derive the following research question.660

• RQ3.2. Does the presence of controversies in the code reviews661

27

offers valuable insights into the outcome of those code reviews662

compared to the reviews with non-controversial comments?663

We are investigating outlier reviews (that took a very long time) in or-664

der to determine whether the presence of controversial sentiments in their665

comments could be the root cause of increased review time.666

• RQ3.3. Do sentiments expressed by core contributors impact667

the review outcome differently than those expressed by pe-668

ripheral contributors?669

In RQ2, we observed that core and peripheral contributors express dif-670

ferent types of sentiments. Since the contribution of core and peripheral671

contributors in reviews activities are likely different, i.e., core contributors672

are expected to be involved more closely than peripheral contributors in673

code reviews. We are interested in examining whether sentiments expressed674

by these two groups of contributors also affect the review process differently.675

In the following we answer three sub questions.676

RQ3.1 How do the sentiments expressed in the reviews correlate with the677

duration and the outcome of a review compared to the reviews with no senti-678

ments?679

• Approach. An overview of review time distribution in studied projects,680

pointed out that the slowest review took hundreds of days whereas the median681

review was less than one day. To avoid bias due to skewed distributions, we682

used Tukey’s outliers detection methods [52]. A review time is considered as683

outlier if it is above an Upper limit. Tukey’s define this limit based on the684

Lower and Upper quartiles [Q1, Q3] (i.e., respectively the 25th and the 75th685

percentiles of data distribution) such as:686

Upper limit = Q3 + 1.5 ∗ IQR (1)

Where inter-quartile range (IQR) is the interval between Q1 and Q3.687

Tukey’s method applied on review time distribution detected a distinct Upper688

limit days for each project (13.86 for Eclipse, 10.02 for Android, 11.04 for689

Openstack and 6.52 for LibreOffice). The new dataset contains a total of690

114,546 reviews.691

To assess the influence of positive or negative sentiments on the dura-692

tion of a code review, we used the Propensity Score Matching (PSM)693

28

Figure 8: Box-plot of the Duration of Reviews (* : mean).

method [22], as described in Section 4.3. For practical applications, we com-694

pare only the reviews that are logically comparable in terms of technical695

characteristics: (1) amount of comments for the review; (2) count of patch-696

Sets, (3) number of edited files,(4) Distinct involved Contributors, (5) and697

churn (i.e., sum of inserted and deleted lines of code to measure how large698

the change is). Also, to assess the influence of sentiments on the reviews’699

outcome, we mapped the sentiment summary of each review (Positive or700

Negative) with its final status (Merged or Abandoned).701

702

• Results. Comparing a homogeneous group of reviews (obtained through703

PSM) reveals that positive reviews took less time to be closed than negative704

ones, as depicted in Figure 8. Negative reviews required a supplemen-705

tary time of 1.32 day on average to be closed than positive ones.706

In other words, the average of durations for positive reviews is less than the707

average for negative reviews.708

Also, as shown in Figure 8, positive reviews not only have the minimum709

median review time, but also, they have the lowest maximum number of710

days needed to be closed, compared to negative reviews. For instance, in the711

Eclipse project, positive reviews last a maximum of 2.89 days, while reviews712

containing negative comments took approximately 5 days of review. Also,713

the Mann-Whitney test revealed a significant difference in the distribution714

of reviews fixing times between positives and negatives reviews with a small715

29

Table 9: The p-value and the effect size of review times in positive vs negative reviews

Project p-value Effect Size

Openstack 1.6e-4 small (0.02)
Eclipse 0.2e-4 small (0.09)
LibreOffice 2.8e-11 small (0.17)
Android 1.6e-4 small (0.08)

effect size15) for all studied projects (seeTable 9).716

Figure 9 shows mapping results of reviews types (Positive or Negative)717

with the final status of the review (Merged or Abandoned). For each project,718

the ratio values presents the distribution percentage of positive and negative719

reviews within merged review (first bar) and abandoned ones (second bar).720

Results show that, not only does the sentiment expressed by developers affect721

the duration of code review, but it also affects the outcome. For instance,722

in Eclipse project, over 93% of successfully merged reviews were tagged as723

positive, while 55% out of all abandoned reviews have negative sentiments724

into their comments.725

RQ3.1 How do the sentiments expressed in the reviews correlate with
the duration and the outcome of a review compared to the reviews
with no sentiments?

The presence of positive sentiments in comments related to source code
reviews seems to contribute to reducing the review time by an average
of 0.4 day. It also seems to affect code reviews outcomes.

726

RQ3.2. Does the presence of controversies in the code reviews offers valuable727

insights into the outcome of those code reviews compared to the reviews with728

non-controversial comments?729

• Approach. In the previews questions, we analyzed only reviews that took730

less than the Upper limit before being accepted or abandoned. In this re-731

search question, we examine reviews that took a very long time; i.e., more732

than identified threshold. Our goal is to investigate whether the presence of733

15p-value and effect size are measured using Mann-Whitney U test and the Cliff’s Delta
effect size as explained in RQ2.2

30

Figure 9: Ratio of Positive vs. Negative Reviews Regarding Reviews’ Outcome.

controversy in reviews discussion is the root cause of the long delays. The734

Merriam-Webster Dictionary defines controversy as a “strong disagreement735

about something among a large group of people”. In our context, we classify736

a review as controversial if the discussions about the submitted source code737

contain controversial comments. We compute the degree of controversy us-738

ing controversialMix [53], which is a score that estimates how many mixed739

positive and negative comments are in a review discussion.740

ControversialMix =
(Min((|Pos|, |Neg|)))
(Max((|Pos|, |Neg|)))

(|Pos|+ |Neg|)
(|Neu|+ |Pos|,+|Neg|)

(2)

Where Pos, Neg and Neu are the sets of comments with positive, negative741

and neutral polarity.742

ControversialMix takes in consideration the amount of positive, negative743

and neutral comments in order to capture the diversity on expressed senti-744

ments within the same review. Before computing controversialMix we did745

31

Table 10: Distribution of Controversial and Non Controversial comments within outliers
reviews (Yes =controversial, No= Not controversial)

Project Controversial #Reviews
Avg review
time(days)

P value

Android
No 780 108.48

0.37
Yes 31 120.38

Eclipse
No 185 126.95

0.7
Yes 4 132.46

LibreOffice
No 442 44.18

0.01
Yes 34 50.51

Openstack
No 10,201 61.82

0.17
Yes 95 67.30

some data prepossessing by discarding : reviews with only one comment;746

reviews where all comments have the same tag (negative, positive, neutral)747

and reviews threads that have only positive or negative comments. Finally,748

a review is tagged as controversial if controversialMix ≥ 0.5.749

• Results. Table 10 shows the distribution of controversial reviews and the750

average review time needed to fix controversial and non controversial reviews.751

Wilcoxon test applied on controversial and non-controversial reviews re-752

veals that results about average review time (days) were significant for only753

one project: LibreOffice with a p-value = 0.01. For this particular project,754

one can see that controversial reviews required in average more days to be755

closed (+6.33 days). However, the limited amount of controversy identified756

for Eclipse, Android, Openstack respectively (4, 31, 95) compared to the757

amount of controversial reviews found in LibreOffice as shown in Table 10,758

could explain the non significant result obtained from the wilcoxon test on759

these projects. Consequently, we were not able to confirm this finding due760

to the lack of data.761

32

RQ3.2. Does the presence of controversies in the code reviews offers
valuable insights into the outcome of those code reviews compared to
the reviews with non-controversial comments?

Controversy significantly increased the time taken to review code in
the LibreOffice project (44.18 to 50.51). Unfortunately, we did not
have enough controversial reviews in the other projects to confirm our
finding.

762

RQ3.3 How do the sentiments expressed by the core vs the peripheral contrib-763

utors correlate with the outcomes of the code reviews?764

• Approach. We create two buckets for each project, one for each type765

of contributors (i.e., core and peripheral). For each class of contributors,766

we create three polarity buckets, labeled as positive, negative, and neutral.767

For instance, the positive bucket contains all the review times (in days) of768

positive reviews. The negative bucket contains all the review times (in days)769

of negative reviews. The neutral bucket contains all the review times (in days)770

of neutral reviews. In each of these buckets we excluded: (1) reviews that771

took less than one day, (2) reviews that took more than the thresholds for772

each project that we determined using Tukey’s outliers detection algorithm773

(see RQ3.1). Intuitively, from a productivity perspective, it is useless to774

analyze the impact of sentiments for a review that took less than a day775

(because it is already an impressive performance).776

We then divide each bucket into two further buckets: (1) Mixed. We777

put a review in this bucket if it has sentiments expressed by both core and778

peripheral contributors. (2) Exclusive. We put a review in this bucket, if779

it has sentiments expressed by either the core or the peripheral contributors,780

but not by both in the same review. We compare the opinion impact of core781

versus peripheral contributors for the reviews in the ‘Exclusive’ bucket for782

each project.783

• Results. In Table 11, we show the summary statistics of the review784

time (in days) taken when the core or peripheral contributors offered posi-785

tive or negative reviews. The ‘Neutral’ column under each contributor type786

shows the time taken when the contributor offered neutral comments. For787

all projects, the average review time increased when the peripheral contribu-788

tors provided negative comments. For all project, the average review time is789

larger when the contributors provided negative comments than when the core790

33

Table 11: The impact of sentiments expressed by the core vs peripheral contributors on
the code review elapsed time (in days)

Review Time for Overall Sentiment Type

Project Reviewer Type Time Metric Positive Negative Neutral

Eclipse

Core
Average 4.8 5.1 4.8
Std 3.3 3.2 3.3
Median 4.0 4.9 3.9

Peripheral
Average 4.6 4.8 4.8
Std 3.2 3.4 3.3
Median 3.7 3.9 3.7

Android

Core
Average 4.1 4.3 4.0
Std 2.4 2.4 2.4
Median 3.8 4.1 3.3

Peripheral
Average 4.1 4.9 4.0
Std 2.5 2.3 2.4
Median 3.2 3.5 3.5

Libreoffice

Core
Average 3.1 3.3 3.1
Std 1.6 1.7 1.6
Median 2.9 3.0 2.8

Peripheral
Average 3.1 4.1 3.2
Std 1.6 1.6 1.6
Median 2.9 3.2 2.8

Openstack

Core
Average 4.2 4.7 4.2
Std 2.6 2.8 2.6
Median 3.9 4.5 3.5

Peripheral
Average 4.3 4.9 4.2
Std 2.7 2.3 2.6
Median 3.5 3.5 3.7

34

Table 12: The p-value and effect size of review times in the neutral vs non-neutral com-
ments by the core and peripheral contributors

Core Peripheral

Project Review Time p-value δ p-value δ

Eclipse Positive vs Neutral 0.40 0.009 0.17 N/A
Negative vs Neutral 0.0002 0.27 0.48 0.151

Android Positive vs Neutral 2.18E-07 0.18 1.61E-07 0.17
Negative vs Neutral 2.28E-04 0.31 0.002 0.27

Libreoffice Positive vs Neutral 9.67E-05 0.23 6.79E-05 0.24
Negative vs Neutral 3.11E-01 0.38 8.52E-08 0.46

Openstack Positive vs Neutral 7.82E-09 023 3.57E-03 0.27
Negative vs Neutral 9.20E-04 0.42 6.39E-07 0.31

contributors provided neutral comments in the reviews. This trend is similar791

between the core and peripheral contributors, i.e., negative comments from792

any contributors tend to increase the review time. Except for Eclipse, the793

increase in average time taken due to the negative comments is statistically794

significant (see Table 1216). However, we do not see such impact for posi-795

tive comments. For peripheral contributors, the impact is more prominent.796

For only one projects (Eclipse), the review time is less when the peripheral797

contributors provided positive comments.798

Both the core and peripheral contributors seem to equally impact the799

review time when they provide positive comments in two projects (Android800

and Libreoffice).801

For one project (Eclipse), the positive comments from core contributors802

seem to impact the review time more than the negative comments from pe-803

ripheral contributors. For Openstack, the situation is reversed, i.e., the neg-804

ative comments from the peripheral contributors seem to impact the average805

review time more than the core contributors.806

On average, the review time is much less in the reviews where the pe-807

ripheral contributors provided positive comments. This finding corroborates808

16p-value and effect size are measured using Mann-Whitney U test and the Cliff’s Delta
effect size as explained in RQ3.1

35

our previous finding that peripheral contributors offer more sentiments in809

the code reviews, because the core contributors tend to become more neutral810

over time. Therefore, the happiness of the peripheral contributors seem to811

be important to reduce the code review time.812

RQ3.3 How do the sentiments expressed by the core vs the peripheral
contributors correlate with the outcomes of the code reviews?

In all projects except Eclipse, the review times are impacted more by
the negative comments from peripheral contributors than the nega-
tive comments from the core contributors. In all projects, the review
times are longer when the peripheral contributors provided negative
comments.

813

6. Future Possibilities814

In all of our studied projects, the reviews with negative sentiments took815

more time to complete. This observation leads to the question of how we can816

leverage sentiment analysis to improve productivity in a code review process,817

if the contributors participating in the code reviews can be both the provider818

and receiver of such negative sentiments. One potential solution would be to819

design automated sentiment-based monitors that can offer guidance to the820

contributors. Although such solutions lack authoritativeness, they may nev-821

ertheless prove useful to guide the contributors through the different phases822

of a code review process by mitigating negativity in the review comments.823

With a view to improve code review outcome and time based on sentiment824

analysis, we offer the following recommendations by taking cues from our825

three research questions:826

1. Sentiment analysis can be applied to find communities or sub-communities827

within a project that may be affected by negative comments.828

2. Harmful contributors, such as bullies can be detected to ensure that829

they do not impact the review process negatively.830

3. Controversial reviews can be identified to warn the project leaders831

about potential controversial features or communities in a project.832

4. Software Bots can be designed to warn the contributors participating833

in a review when negativity in a review increases.834

36

We now discuss the recommendations below.835

6.1. Community-Based Analysis836

In RQ3, we built social networks of contributors and observed two major837

streams of contributors, core and peripheral. Compared to the peripheral838

contributors, core members tend to remain with a project for longer time. A839

deeper understanding of the interactions between the contributors based on840

social network analysis can offer insights into whether intrinsic or dynamic841

sub-communities do exist in modern Gerrit-based code review systems. The842

identification of such communities can offer several benefits, such as promot-843

ing a high-performance community to others, offering guidance to a commu-844

nity that is exchanging negative sentiments but is not productive enough, for845

examples.846

6.2. Bullies Among Contributors847

In all the four studied projects, the reviews with negative sentiments848

took longer time to get accepted. One possible explanation is that a patch849

with bugs is likely to be viewed negatively and thus will not be accepted or850

will be iterated until fixed. However, it is not easily explainable why the851

negative comments from peripheral contributors impacted the review time852

more than the core contributors. One potential reason could be that the853

peripheral contributors are mostly novices to the system compared to the854

core contributors. Therefore, they would have expressed frustrations due to855

their lack of understanding of the system.856

Another possible reason is that there could be bullies among the contrib-857

utors, who try to influence system design and code review outcome using858

negative comments. Such negative comments can also impact the contrib-859

utors. Indeed, Mȧntylȧ et al. [54] observed that emotions expressed in Jira860

issues can be correlated to the burnouts of the developers. Ortu et al. [36]861

observed in Jira issues that despite being negative, bullies are not necessarily862

more productive than other developers. An understanding of the role of po-863

tential bullies in code reviews can offer benefits, such as their impact on the864

code review outcome and productivity. Measures can be taken to detect the865

bullies among the contributors and to remove them from the review process.866

6.3. Impact of Controversies867

As we observed in RQ4, regarding reviews taking a long time, the presence868

of controversy can increase the review time even more. The analysis of con-869

troversy has proved useful in social media, such as to detect fake news [55]. A870

37

deeper analysis of the controversial code review comments can offer insights871

into the specific reasons behind the comments. For example, it may happen872

that the product feature (for which the patch is provided) may not be well873

designed, such that the contributors debate during the review process. It874

may also happen that the feature is not well-received, such that the contrib-875

utors have different viewpoints on how to improve it. Therefore, measures876

can be taken to mitigate the controversies and thus improve the code review877

outcomes.878

6.4. Review Sentiment Bot879

Bots have been developed to assist in numerous software development ac-880

tivities, such as automatically suggesting an answer from Stack Overflow881

given a query [56], answering questions about an API from documenta-882

tion [57], or warning developers in a GitHub project if they post negative883

comments [58]. We can develop similar bots to automatically warn the con-884

tributors in a code review system with the automated detection of negative885

comments, their prevalence in the controversies and their proliferation by the886

bullies. As a first step, we can start with the adaptation of Github sentiment887

bot [58] for code reviews.888

6.5. Gender and cultural aspects889

We have investigated gender and cultural aspects bias concerns by defin-890

ing the following null hypothesis:891

H0: There is no significant difference in text-based sentiment between male892

and female contributors.893

H1: There is no significant difference in text-based sentiment between con-894

tributors from different countries, which have different language and cultures.895

896

Difference between genders - Female and Male - may reveal897

interesting facts under appropriate analysis. Indeed, recent studies898

discussed gender bias regarding productivity, in terms of commits, in OSS899

projects [59, 60]. Moreover, Terrell et al. [61] reported that when new fe-900

male contributors are identifiable, they have 12% lower chance of getting901

their pull request accepted than other females whose gender was not iden-902

tifiable from their profiles. Hence, we are interested in this work to know if903

there is an association between developers’ genders and their expressed senti-904

ments. More specifically, we formulate the following research questions: Are905

females’ contributors more likely to be positive/neutral/negative906

38

Figure 10: Distribution of Sentiments According to Gender.

than males? Is the proportion of females that express negative907

sentiments the same as the proportion of males? To answer these908

questions, we segregated contributors according to their gender. We used909

the NamSor17 API to classify contributors into binary gender given personal910

names, country of origin, and ethnicity. This API infers gender from the911

combination of first name, surname, and information of the country. We912

found that 6.8% of Eclipse contributors were females and 88.9% were male,913

and 4.4% unknown. LibreOffice respectively (9.4% ; 86.5% ; 4.1%) ; and914

OpenStack(10.9% ; 79.6% ; 9.5%). Unfortunately, we were not able to resolve915

genders for the Android project because of (encrypted name and email). Fig-916

ure 10 shows the distribution of sentiments across gender for three projects.917

One first observation is that women and men seem to exhibit the same918

distribution of sentiments. We performed further statistical analysis to verify919

how genders differed in their expressed sentiments. Given that the variables920

do not exhibit a normal distribution, we performed a (non-parametric) Mann-921

Whitney-Wilcoxon test, with a confidence level of α =0.05. We found that,922

overall for the three projects, the tests are statistically significant (p ≺ 0.05, Z923

statistic of -1.018) and thus we reject our null hypothesis H0. We claim that924

there is a significant difference in the distribution of text-based sentiment925

between male and female contributing to OSS projects. This result confirms926

previous findings by Paul et al. [34].927

We also investigated the impact of the country origin for the top 5% core928

contributors within the three projects aiming to investigate the impact of929

the first language and cultural aspects of these contributors on code reviews.930

Figure 11 shows the geographical distribution of the top 5% contributors.931

We performed a Kruskal-Wallis statistical test to verify whether samples932

(i.e., different countries) have the same distribution of expressed sentiments.933

17https://www.namsor.com/

39

Figure 11: Countries distribution for top 5% contributors.

Kruskal-Wallis test results reveal that distribution differences are statisti-934

cally significant (p value ≺ 2.2e-16), we reject our null hypothesis H1 and935

state that there is a statisticaly significant difference in expressed sentiments936

according to the country of origin.937

However, studying the effect of gender cultural aspects on code reviews938

are beyond the scope of this study. We will address this concern in future939

work.940

7. Threats to Validity941

Threats to construct validity are mainly related to the accuracy of the tool942

used for sentiment analysis. We strengthen our sampling approach for manual943

annotation by using opportunistic sampling. The authors manually examined944

2,220 comments. In general, we observed that the sentiments expressed in945

code reviews are easy to analyze due to the unambiguous nature of text-based946

sentiments expressed in the code reviews comments, which were understood947

by both coders with relative ease.948

Threats to internal validity concern factors internal to our study that949

may affect our findings. The primary threat to internal validity in this950

study relates to project selection. One possible threat is that the retrieved951

dataset is too small and somehow is not representative enough. We were952

cautious to choose OSS projects with the following characteristics: (1) long-953

lived projects with dynamic communities around; (2) the community uses954

the review tools Gerrit to carry out code reviews activities. We also paid955

attention not to violate assumptions of the statistical tests, for example we956

40

applied non-parametric tests that do not require making assumptions on the957

normality of our data set.958

In addition, we used propensity score matching [62] to eliminate the bias959

that could be introduced by technical characteristics. We compared the960

distribution of estimated propensity score between Positive and Negative961

reviews in the matched sample and obtained an average of 96% of overlap,962

which means that we are dealing with a homogeneous data set of reviews963

based on the observed covariate values. This provides confidence that the964

observed results are not due to structural differences in the patches (i.e., we965

are not comparing large patches with small patches, etc.). However other966

technical characteristics can be considered such as the number of sentences967

in the comments and code complexity.968

Threats to external validity concern the generalization of our findings. In969

the context of RQ1 we performed 2,220 manual classifications. We are aware970

that the quality and size of the annotated set may impact the sentiment971

classification accuracy. While the human raters are knowledgeable in mining972

software repositories, sentiment analysis and empirical analysis, their judge-973

ment may be impacted by the absence of related in-depth information of the974

studied systems in the dataset, e.g., whether the reviewers in those studied975

systems exhibited any latent communities as reported by Bird et al. [63].976

Furthermore, our study involves only four projects. Thus, we should recog-977

nize that our conclusions may not be generalizable to other systems. We are978

also aware that the context of each project including the technical complexity979

and organization are important factors that can limit generalization. How-980

ever, these projects are among the most studied projects in the literature and981

the system’s data are publicly available. We also have the opportunity to982

perform a longitudinal study over more than five years, which mitigates the983

risks related to cultural aspects. Yet, replication of our work on other open984

and close source systems is desirable in order to generalize our conclusions.985

Threats to reliability validity refers to the degree to which the same data986

would lead to the same results when the study’s design is replicated. Our987

research aims at investigating expressed sentiment by developers on reviews.988

Our methodology for data analysis and results are well documented in this989

paper. The tools are available [39] and our datasets are publicly available990

online [43]. Also, all the participants of the manual tagging have a back-991

ground in computer science; we are confident that reviews comments have992

been interpreted according to the perspective of software engineers. We did993

not involve raters with a different background, because they may overlook994

41

or misinterpret the terms used by developers. However, RQ2.1 reveals that995

most comments in the dataset have neutral sentiments, while only less than996

3% of the comments are negative which may have an impact on our analysis997

and results. In RQ3.2, we assessed whether reviews with sentiments took a998

shorter/longer time than the reviews with neutral sentiments. We noticed999

a low number of negative sentiments, similarly observed in previous studies1000

that used datasets from Stack Overflow (e.g., the Stack Overflow dataset by1001

Lin et al. [8] has around 75% neutral comments). Therefore, although the low1002

number of negative comments may introduce a threat to the generalizability1003

of our results across other systems, our analysis remains applicable to other1004

systems. In addition, we assessed the impact of sentiments on code review1005

outcomes in RQ3.3 by comparing the time taken for reviews with positive1006

comments vs the reviews with negative comments. We found on average1007

13.94% positive and 2.24% negative comments in the four studied systems.1008

8. Conclusions1009

We have analyzed developers’ comments on reviews using historical data1010

from four open source projects. We aimed at investigating the influence of1011

text-based expressed sentiments on the code review duration and its outcome.1012

Using the best performing sentiment detection tool, we found that contrib-1013

utors do express sentiments when they are reviewing and commenting each1014

other’s code. Also, we investigated the influence of expressed sentiments1015

within developers’ comments on the time and outcome of the code review1016

process. We found that expressing positive sentiment when reviewing source1017

code have an influence on reviews duration time; in average it could save1018

1.32 days on the review completion time. Moreover, our findings indicate1019

that negative comments are likely to increase the proportion of unsuccessful1020

reviews.1021

From a social network perspective, we used a K-means clustering ap-1022

proach based on SNA centrality measures to discern between core and pe-1023

ripheral contributors. We found that different contributors within the peer1024

review collaboration social network express different sentiments, with core1025

contributors expressing mostly neutral sentiments.1026

Our work contributes theoretically and empirically to the body of OSS1027

research and has practical implications on sentiment awareness within OSS.1028

We hope that our work will inspire more studies on developing efficient tools1029

to help OSS contributors improve their productivity. As future work, we plan1030

42

to complement this quantitative study with a qualitative exploration aiming1031

at gaining more understanding of the influence of expressed sentiments on1032

code revision workflow. Also, we plan to investigate the effect of developers’1033

expressed sentiment on contributor’s engagement and–or turnover.1034

References1035

[1] A. Bosu, J. C. Carver, Impact of peer code review on peer impression1036

formation: A survey, in: Empirical Software Engineering and Mea-1037

surement, 2013 ACM/IEEE International Symposium on, IEEE, pp.1038

133–142.1039

[2] A. Murgia, P. Tourani, B. Adams, M. Ortu, Do developers feel emotions?1040

an exploratory analysis of emotions in software artifacts, in: Proceedings1041

of the 11th International Conference on Mining Software Repositories,1042

MSR’14, pp. 262–271.1043

[3] B. Pang, L. Lee, Opinion mining and sentiment analysis, Foundations1044

and Trends in Information Retrieval 2 (2008) 1–135.1045

[4] O. Kucuktunc, B. B. Cambazoglu, I. Weber, H. Ferhatosmanoglu, A1046

large-scale sentiment analysis for yahoo! answers, in: Proceedings of1047

the Fifth International Conference on Web Search and Data Mining,1048

WSDM ’12, pp. 633–642.1049

[5] D. Garcia, M. S. Zanetti, F. Schweitzer, The role of emotions in contrib-1050

utors activity: A case study on the gentoo community, in: Cloud and1051

green computing (CGC), 2013 third international conference on, IEEE,1052

pp. 410–417.1053

[6] O. Baysal, O. Kononenko, R. Holmes, M. Godfrey, The influence of non-1054

technical factors on code review, in: proceedings of the 20th Working1055

Conference on Reverse Engineering, pp. 122–131.1056

[7] V. Efstathiou, D. Spinellis, Code review comments: Language mat-1057

ters, in: Proceedings of the 40th International Conference on Software1058

Engineering (ICSE’18), p. 4.1059

[8] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, R. Oliveto,1060

Sentiment analysis for software engineering: How far can we go?, in:1061

43

Proceedings of the 40th International Conference on Software Engineer-1062

ing (ICSE’18), p. 11.1063

[9] N. Imtiaz, J. Middleton, P. Girouard, E. Murphy-Hill, Sentiment and1064

politeness analysis tools on developer discussions are unreliable, but1065

so are people, in: Proceedings of the 3rd International Workshop on1066

Emotion Awareness in Software Engineering SEmotion’18, pp. 55–61.1067

[10] N. Novielli, D. Girardi, F. Lanubile, A benchmark study on sentiment1068

analysis for software engineering research, in: Proceedings of the 15th1069

International Conference on Mining Software Repositories, p. 12.1070

[11] F. Calefato, F. Lanubile, F. Maiorano, N. Novielli, Sentiment polarity1071

detection for software development, Empirical Software Engineering1072

(2017) 31.1073

[12] T. Ahmed, A. Bosu, A. Iqbal, S. Rahimi, Senticr: A customized senti-1074

ment analysis tool for code review interactions, in: Proceedings of the1075

32nd International Conference on Automated Software Engineering, pp.1076

106–111.1077

[13] M. R. Islam, M. F. Zibran, Leveraging automated sentiment analy-1078

sis in software engineering, in: Proceedings of the 14th International1079

Conference on Mining Software Repositories, MSR ’17, pp. 203–214.1080

[14] M. D. Munezero, C. S. Montero, E. Sutinen, J. Pajunen, Are they1081

different? affect, feeling, emotion, sentiment, and opinion detection in1082

text, IEEE transactions on affective computing 5 (2014) 101–111.1083

[15] W. G. Parrott, Emotions in Social Psychology, Psychology Press, 2001.1084

[16] B. Pang, L. Lee, S. Vaithyanathan, Thumbs up? sentiment classifica-1085

tion using machine learning techniques, in: Conference on Empirical1086

Methods in Natural Language Processing, pp. 79–86.1087

[17] B. Liu, Sentiment Analysis and Opinion Mining, Morgan & Claypool1088

Publishers, 2012.1089

[18] P. Weissgerber, D. Neu, S. Diehl, Small patches get in!, in: Proceed-1090

ings of the 2008 International Working Conference on Mining Software1091

Repositories, MSR ’08, pp. 67–76.1092

44

[19] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, M. Godfrey, Investi-1093

gating code review quality: Do people and participation matter?, in:1094

Proceedings on the International Conference on Software Maintenance1095

and Evolution (ICSME’15), pp. 111–120.1096

[20] M. Beller, A. Bacchelli, A. Zaidman, E. Juergens, Modern code reviews1097

in open-source projects: Which problems do they fix?, in: Proceedings1098

of the 11th Working Conference on Mining Software Repositories, MSR1099

2014, pp. 202–211.1100

[21] O. Kononenko, O. Baysal, M. W. Godfrey, Code review quality: How1101

developers see it, in: Proceedings of the 38th International Conference1102

on Software Engineering, ICSE ’16, pp. 1028–1038.1103

[22] A. Thavaneswaran, Propensity score matching in observational studies,1104

Manitoba Center for Health Policy. (2008).1105

[23] M. E. Newman, The structure and function of complex networks, SIAM1106

review 45 (2003) 167–256.1107

[24] L. C. Freeman, The development of social network analysis–with an em-1108

phasis on recent events, The SAGE handbook of social network analysis1109

21 (2011) 26–39.1110

[25] X. Yang, Social network analysis in open source software peer review,1111

in: Proceedings of the 22Nd ACM SIGSOFT International Symposium1112

on Foundations of Software Engineering, FSE’14, pp. 820–822.1113

[26] K. Crowston, K. Wei, Q. Li, J. Howison, Core and periphery in free/libre1114

and open source software team communications, in: Proceedings of the1115

39th International Conference on System Sciences, pp. 118.1–.1116

[27] I. Robertson, C. Cooper, Well-being: Productivity and happiness at1117

work, Springer, 2011.1118

[28] M. Thelwall, K. Buckley, G. Paltoglou, Sentiment strength detection for1119

the social web, Journal of the American Society for Information Science1120

and Technology 61 (2012) 2544–2558.1121

[29] R. Jongeling, S. Datta, A. Serebrenik, Choosing your weapons: On1122

sentiment analysis tools for software engineering research, in: Software1123

45

maintenance and evolution (ICSME), 2015 IEEE international confer-1124

ence on, IEEE, pp. 531–535.1125

[30] J. Guillory, J. Spiegel, M. Drislane, B. Weiss, W. Donner, J. Hancock,1126

Upset now?: Emotion contagion in distributed groups, in: Proceedings1127

of the SIGCHI Conference on Human Factors in Computing Systems,1128

CHI ’11, pp. 745–748.1129

[31] E. Guzman, B. Bruegge, Towards emotional awareness in software de-1130

velopment teams, in: Proceedings of the 2013 9th Joint Meeting on1131

Foundations of Software Engineering, ESEC/FSE 2013, pp. 671–674.1132

[32] V. Sinha, A. Lazar, B. Sharif, Analyzing developer sentiment in commit1133

logs, in: Proceedings of the 13th International Conference on Mining1134

Software Repositories, MSR ’16, pp. 520–523.1135

[33] E. Guzman, D. Azócar, Y. Li, Sentiment analysis of commit comments1136

in github: An empirical study, in: Proceedings of the 11th Working1137

Conference on Mining Software Repositories, MSR’14, pp. 352–355.1138

[34] R. Paul, A. Bosu, K. Z. Sultana, Expressions of sentiments during code1139

reviews: Male vs. female, in: Proceedings of the 16th International Con-1140

ference on Software Analysis, Evolution and Reengineering SANER’19,1141

pp. 15–26.1142

[35] I. A. Khan, W.-P. Brinkman, R. M. Hierons, Do moods affect program-1143

mers’ debug performance?, Cognition, Technology & Work 13 (2011)1144

245–258.1145

[36] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, R. Tonelli,1146

Are bullies more productive?: Empirical study of affectiveness vs. issue1147

fixing time, in: Proceedings of the 12th Working Conference on Mining1148

Software Repositories, MSR’15, pp. 303–313.1149

[37] G. Destefanis, M. Ortu, S. Counsell, S. Swift, M. Marchesi, R. Tonelli,1150

Software development: do good manners matter?, PeerJ Computer Sci-1151

ence 2 (2016) e73.1152

[38] M. M. Rahman, C. K. Roy, R. G. Kula, Predicting usefulness of code1153

review comments using textual features and developer experience, in:1154

46

Proceedings of the 14th International Conference on Mining Software1155

Repositories, MSR ’17, pp. 215–226.1156

[39] X. Yang, R. G. Kula, N. Yoshida, H. Iida, Mining the modern code1157

review repositories: A dataset of people, process and product, in: Pro-1158

ceedings of the 13th International Conference on Mining Software Repos-1159

itories, ACM, pp. 460–463.1160

[40] L. Guo, P. Qu, R. Zhang, D. Zhao, H. Wang, R. Liu, B. Mi, H. Yan,1161

S. Dang, Propensity score-matched analysis on the association between1162

pregnancy infections and adverse birth outcomes in rural northwestern1163

china, Scientific reports 8 (2018) 5154.1164

[41] A. Dmitrienko, G. Molenberghs, C. Chuang-Stein, W. W. Offen, Anal-1165

ysis of clinical trials using SAS: A practical guide, SAS Institute, 2005.1166

[42] N. Novielli, F. Calefato, F. Lanubile, A gold standard for emotion an-1167

notation in stack overflow, in: Proceedings of the 15th International1168

Conference on Mining Software Repositories, MSR ’18, pp. 14–17.1169

[43] I. E. Asri, N. Kerzazi, G. Uddin, F. Khomh, An Empirical Study of Sen-1170

timents in Code Reviews (online appendix), https://https://github.1171

com/ikramElasri/SentiAnalysis_CodeReview, October 2018 (last ac-1172

cessed).1173

[44] D. M. Christopher, R. Prabhakar, S. Hinrich, Introduction to infor-1174

mation retrieval, An Introduction To Information Retrieval 151 (2008)1175

5.1176

[45] B. Bostanci, E. Bostanci, An evaluation of classification algorithms using1177

mc nemar’s test, in: Proceedings of Seventh International Conference1178

on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012),1179

Springer, pp. 15–26.1180

[46] J. M. George, A. P. Brief, Feeling good-doing good: a conceptual anal-1181

ysis of the mood at work-organizational spontaneity relationship., Psy-1182

chological bulletin 112 (1992) 310.1183

[47] G. Uddin, F. Khomh, Mining API Aspects in API Reviews, Tech-1184

nical Report, Technical Report. 10 pages. http://swat. polymtl.1185

ca/data/opinionvalue , 2017.1186

47

https://https://github.com/ikramElasri/SentiAnalysis_CodeReview
https://https://github.com/ikramElasri/SentiAnalysis_CodeReview
https://https://github.com/ikramElasri/SentiAnalysis_CodeReview

[48] G. Uddin, O. Baysal, L. Guerrouj, F. Khomh, Understanding how and1187

why developers seek and analyze api-related opinions, IEEE Transac-1188

tions on Software Engineering (2019).1189

[49] P. Tourani, Y. Jiang, B. Adams, Monitoring sentiment in open source1190

mailing lists: Exploratory study on the apache ecosystem, in: Proceed-1191

ings of 24th Annual International Conference on Computer Science and1192

Software Engineering, CASCON ’14, IBM Corp., Riverton, NJ, USA,1193

2014, pp. 34–44.1194

[50] A. Bosu, J. C. Carver, Impact of developer reputation on code review1195

outcomes in oss projects: An empirical investigation, in: Proceedings1196

of the 8th International Symposium on Empirical Software Engineering1197

and Measurement, ESEM ’14, pp. 33:1–33:10.1198

[51] G. P. Sudhakar, A. Farooq, S. Patnaik, Measuring productivity of soft-1199

ware development teams, Journal of Management 7 (2012) 65–75.1200

[52] J. W. Tukey, Exploratory data analysis, volume 2, 1977.1201

[53] A.-M. Popescu, M. Pennacchiotti, Detecting controversial events from1202

twitter, in: Proceedings of the 19th ACM International Conference on1203

Information and Knowledge Management, CIKM ’10, pp. 1873–1876.1204

[54] M. Mäntylä, B. Adams, G. Destefanis, D. Graziotin, M. Ortu, Mining1205

valence, arousal, and dominance – possibilities for detecting burnout1206

and productivity?, in: Proceedings of the 13th Working Conference on1207

Mining Software Repositories, pp. 247–258.1208

[55] K. Garimella, G. D. F. Morales, A. Gionis, M. Mathioudakis, Quanti-1209

fying controversy on social media, Transactions on Social Computing 11210

(2018) Article no. 3.1211

[56] S. Zamanirad, B. Benatallah, M. C. Barukh, F. Casati, Programming1212

bots by synthesizing natural language expressions into api invocations,1213

in: Proceedings of the 32nd International Conference on Automated1214

Software Engineering, pp. 832–837.1215

[57] Y. Tian, F. Thung, A. Sharma, D. Lo, Apibot: question answering1216

bot for api documentation, in: Proceedings of the 32nd International1217

Conference on Automated Software Engineering, pp. 153–158.1218

48

[58] GitHub, Sentiment Bot, https://github.com/apps/sentiment-bot,1219

18 May 2018 (last accessed).1220

[59] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Serebrenik,1221

P. Devanbu, V. Filkov, Gender and tenure diversity in github teams,1222

in: Proceedings of the 33rd Annual ACM Conference on Human Factors1223

in Computing Systems, CHI ’15, ACM, New York, NY, USA, 2015, pp.1224

3789–3798.1225

[60] C. Mendez, H. S. Padala, Z. Steine-Hanson, C. Hilderbrand, A. Horvath,1226

C. Hill, L. Simpson, N. Patil, A. Sarma, M. Burnett, Open source1227

barriers to entry, revisited: A sociotechnical perspective, in: Proceedings1228

of the 40th International Conference on Software Engineering, ICSE ’18,1229

ACM, New York, NY, USA, 2018, pp. 1004–1015.1230

[61] J. Terrell, A. Kofink, J. Middleton, C. Rainear, E. Murphy-Hill,1231

C. Parnin, J. Stallings, Gender differences and bias in open source:1232

pull request acceptance of women versus men, PeerJ Computer Science1233

3 (2017) e111.1234

[62] Z. Luo, J. C. Gardiner, C. J. Bradley, Applying propensity score meth-1235

ods in medical research: pitfalls and prospects, Medical Care Research1236

and Review 67 (2010) 528–554.1237

[63] C. Bird, D. Pattison, R. D’Souza, V. Filkov, P. Devanbu, Latent social1238

structure in open source projects, in: Proceedings of the 26th ACM1239

SIGSOFT International Symposium on Foundations of software engi-1240

neering, ACM, pp. 24–35.1241

49

https://github.com/apps/sentiment-bot

