
Do Design Patterns Impact Software Quality Positively?

Foutse Khomh∗ and Yann-Gaël Guéhéneuc
Ptidej Team, GEODES, DIRO, University of Montreal,

C.P. 6128 succursale Centre Ville Montréal, Quebec, H3C 3J7, Canada

E-mail: {foutsekh,guehene}@iro.umontreal.ca

Abstract

We study the impact of design patterns on qual-
ity attributes in the context of software maintenance
and evolution. We show that, contrary to popular be-
liefs, design patterns in practice impact negatively sev-
eral quality attributes, thus providing concrete evidence
against common lore. We then study design patterns
and object-oriented best practices by formulating a sec-
ond hypothesis on the impact of these principles on
quality. We show that results for some design patterns
cannot be explained and conclude on the need for fur-
ther studies. Thus, we bring further evidence that de-
sign patterns should be used with caution during devel-
opment because they may actually impede maintenance
and evolution.

1. Introduction

Many studies in the literature (including some by
these authors) have for premise that design patterns
[2] improve the quality of object-oriented software sys-
tems, because design patterns are supposed to improve
the quality of systems, for example [2, page xiii] or [10].

Yet, some studies, e.g., [11], suggest that the use of
design patterns do not always result in “good” designs.
For example, a tangled implementation of patterns im-
pacts negatively quality [8]. Also, patterns generally
ease future enhancement at the expense of simplicity.

There is little empirical evidence to support the
claims of improved reusability1, expandability and un-
derstandability as put forward in [2] when applying
design patterns.

Therefore, we carry an empirical study of the im-
pact of design patterns on the quality of systems as
perceived by software engineers in the context of main-
tenance and evolution. Our hypothesis verifies software

1Although reusability in [2] may refer to the reusability of the
solutions of the design patterns, we consider reusability as the
reusability of the piece of code in which a pattern is implemented.

engineering lore: design patterns impact software qual-
ity positively. Our objective is to provide evidence to
confirm or refute the hypothesis. We perform the study
by asking respondents their evaluations of the impact
of design patterns on quality after their use.

We present detailed results for three design pat-
terns: Abstract Factory, Composite, Flyweight and
three quality attributes: reusability, understandabil-
ity, and expandability. Results for other patterns and
quality attributes can be found in [5]. We show that,
contrary to popular beliefs, patterns in practice do not
always improve quality attributes, thus providing ev-
idence against common lore. We attempt to explain
these results using object-oriented best practices. We
conclude on the need for further studies and that pat-
terns should be used with caution because they may
actually impede maintenance and evolution.

Section 2 presents related work and their limita-
tions. Section 3 states the hypothesis and objective
of the study and presents our data collection and pro-
cessing. Section 4 describes our quantification method
and presents the results of our survey. Section 5 con-
tains a discussion of the results. Section 6 concludes
our research, discusses the threats to the validity of our
study and introduces future work.

2. Related Work

Since their introduction by Gamma et al. [2] in 1994,
there has been a growing interest on the use of design
patterns. We present here some lines of work on the
impact of patterns on quality.

Lange and Nakamura demonstrated [6] that design
patterns can serve as guide in program exploration and
thus make the process of program understanding more
efficient. However this study was limited to a single
quality attribute and to a little number of patterns.

Wydaeghe et al. [12] presented a study on the con-
crete use of six design patterns. They discussed the
impact of these patterns on reusability, modularity,

1



flexibility, and understandability, and the difficulty to
concretely implement these patterns. They concluded
that not all patterns have a positive impact on quality
attributes. Yet, this study was limited to the authors’
own experience and it can hardly been generalized to
other contexts of development.

Wendorff [11] evaluated the use of design patterns
in large commercial systems and concluded that pat-
terns do not necessarily improve their design. Indeed,
a design can be over-engineered [4] and the cost of re-
moving patterns is high. He did not perform a study
on the impact of patterns on quality and provided only
qualitative arguments.

3. Objective and Data Collection

The hypothesis of this study is that design patterns
impact quality positively. Our objective is to quan-
tify and qualify this impact on the overall quality of
systems to confirm or refute the hypothesis.

We chose to carry an empirical study using a ques-
tionnaire because development and maintenance are
manual activities performed by engineers. Thus, the
engineers’ evaluation is important. The reported re-
sults are representative of the engineers’ experience and
provide an accurate evaluation of the impact of pat-
terns on the quality of systems.

3.1. Definition of the Questionnaire
Following our previous work [3] and the work done

in [1, 2], we chose the following set of quality attributes,
based on their relevance to design patterns.

• Attributes related to design:
− Expandability: The degree to which the de-

sign of a system can be extended.
− Simplicity: The degree to which the design

of a system can be understood easily.
− Reusability: The degree to which a piece of

design can be reused in another design.

• Attributes related to implementation:
− Learnability: The degree to which the code

source of a system is easy to learn.
− Understandability: The degree to which

the code source can be understood easily.
− Modularity: The degree to which the im-

plementation of the functions of a system are
independent from one another.

• Attributes related to runtime:
− Generality: The degree to which a system

provides a wide range of functions at runtime.
− Modularity at runtime: The degree to

which the functions of a system are indepen-
dent from one another at runtime.

− Scalability: The degree to which the sys-
tem can cope with large amount of data and
computation at runtime.

− Robustness: The degree to which a system
continues to function properly under abnor-
mal conditions or circumstances.

Each quality attribute was evaluated using a
six-point Likert scale: A - Very positive, B -
Positive, C - Not significant, D - Negative, E -
Very Negative, and F - Not applicable. The sixth
value allowed respondents not to answer a question if
they did not know or were not sure about the impact
of a design pattern on a quality attribute.

For every design pattern in [2] and for every quality
attribute from our set, the respondents were asked to
assess the impact of the pattern on the quality of a sys-
tem in which the pattern would be used appropriately,
as they would during a technical review [9] or possibly
while performing a program comprehension-related ac-
tivity during maintenance and evolution.

The questionnaire is available on the Internet at
http://www.ptidej.net/downloads/.

3.2. Data Collection and Processing
We collected respondents’ evaluations during the pe-

riod of January to April 2007 by posting our ques-
tionnaire on three mailing lists, refactoring, patterns-
discussion, and gang-of-4-patterns.

Among the many answers that we received, we se-
lected the questionnaires of 20 software engineers with
a verifiable experience in the use of design patterns in
software development and maintenance.

This number of collected evaluations is larger than
in previous work. Due to the variations between an-
swers, we felt that the differences between Positive
and Very Positive answers were due to some respon-
dents being less strict than others and thus, that their
Very Positive evaluations were not directly relevant.
This fact has been confirmed in discussions with the
respondents. For example, for Builder and expandabil-
ity, we had 19% of respondents considering the pattern
Very Positive while 63% considered it Positive and
18% considered it Neutral. Therefore, we chose to ag-
gregate answers A and B and answers D and E: Positive
= A and B, Neutral = C, and Negative = D and E.

Using the previous three-point Likert scale, we com-
puted the frequencies of the answers on each quality
attribute: Positive, Neutral, and Negative and we
carried out a Null hypothesis test to assess the per-
ceived impact of the patterns on the quality attributes.

Answers F were not considered because they repre-
sented situations where the respondents did not know
or did not want to evaluate the impact.

2



Attributes
Composite A.Factory Flyweight
E R(%) E R(%) E R(%)

Expendability + 0.00 + 0.00 − 1.76
Simplicity + 5.92 + 30.36 − 0.00
Reusability + 15.09 + 50.00 − 15.09

Learnability + 1.76 − 15.09 − 0.00
Understandability + 5.92 − 15.09 − 0.00
Modularity + 5.92 + 0.37 − 5.92

Generality + 1.76 + 1.76 − 0.15
Mod. at Runtime + 30.36 − 30.36 − 0.15
Scalability − 30.36 − 1.76 + 1.76
Robustness − 0.15 − 0.00 − 1.76

8 + / 2 − 5 + / 5 − 1 + / 9 −

Table 1. Estimation of the impact of the three
design patterns on quality attributes.

4. Analyses

We now present the detailed results of a quantita-
tive and a qualitative analyses for three design pat-
terns: Abstract Factory, Composite, and Flyweight,
and the three quality attributes mentioned by the GoF
[2, page xiii]: reusability, expandability, and under-
standability.

We choose the following three design patterns to il-
lustrate our respondents’ assessments first because of
their popularity—they are among the most commonly
used patterns and thus we felt that their evaluation
would be more accurate—and second because they ap-
pear to be considered as globally positive, globally neu-
tral, and globally negative.

4.1. Quantitative Analysis
Using the results collected from the questionnaires

and presented in details elsewhere [5], we carried out
Null hypothesis tests to quantify the impact of the de-
sign patterns on the quality attributes and then con-
firm or refute the hypothesis that design patterns im-
pact software quality positively.

The Null hypothesis test yields the results summa-
rized in Tables 1, 2. Full results for all the patterns
from [2] and details on the test can be found in [5]. In
these tables, the sign + means that, with our Null hy-
pothesis test, the impact of the pattern on the quality
attribute is positive else the sign is − (it can be nega-
tive or neutral). The number next to a sign represents
the risk of making this decision.

We computed this risk using the cumulative density
of the Bernoulli distribution. All the details are avail-
able in [5].

4.2. Qualitative Analysis
Composite. By analysing Table 1, it appears that
the Composite pattern is mostly perceived as having a

positive impact on the quality of systems. All quality
attributes are impacted positively but for scalability
and robustness, which are consider neutral. Given the
purpose of the Composite pattern, having a neutral
impact on scalability is rather surprising.

Abstract Factory. Table 1 shows that half the qual-
ity attributes is considered as positively impacted while
the other half is not. It is not surprising that the pat-
tern is overall judged as neutral given its purpose and
complexity. It is striking that learnability and under-
standability are felt negatively impacted.

Flyweight. Table 1 reports that this pattern is per-
ceived as impacting negatively all quality attributes
but scalability. Given the purpose of the pattern, it is
not surprising that its impact on scalability is judged
positively. The negative perception could be explained
by the less frequent use of Flyweight in comparison
with Composite and Abstract Factory.

We choose the following three quality attributes be-
cause it is claimed in [2, 10] that they are improved by
the use of design patterns.

Expandability. Table 2 presents the analysis of the
respondents’ evaluations of the impact of the design
patterns on expendability. All respondents felt that
expandability is improved when using patterns, in con-
formance with the claims made in [2].

Reusability. Table 2 shows that reusability is felt
as being slightly more negatively impacted by design
patterns, with 13 neutral or negative patterns and 10
positive patterns. This is rather surprising as the use
of patterns is claimed to improve reusability.

Understandability. Table 2 presents the analysis of
understandability. Similarly to reusability, respondents
felt that understandability was rather slightly nega-
tively impacted by the use of patterns.

5. Discussion of the Results

The analysis of the results of our study reveal that,
in contrary to common lore, design patterns do not
always impact quality attributes positively. Our re-
spondents consider that, although patterns are useful
to solve design problems, they do not always improve
the quality of the systems in which they are applied.
In particular, a large number of respondents considered
that they sensibly decrease simplicity, learnability, and
understandability. Some patterns, like Flyweight, are
considered as impacting most attributes negatively.

3



Design Patterns
Expendability(%) Understandability(%) Reusability(%)
E R(%) E R(%) E R(%)

A.Factory + 0.00 − 15.09 + 50.00
Builder + 0.15 + 0.37 − 15.09
F.Method + 1.76 − 30.36 + 15.09
Prototype + 30.36 + 30.36 + 30.36
Singleton − 0.15 + 0.15 − 0.37
Adapter + 30.36 − 30.36 + 5.92
Bridge + 0.37 + 50.00 − 30.36
Composite + 0.00 + 5.92 + 15.09
Decorator + 0.15 − 30.36 − 5.92
Facade + 30.36 + 1.76 − 5.92
Flyweight − 1.76 − 0.00 − 15.09
Proxy − 30.36 − 5.92 + 50.00
Ch.Of.Resp + 0.15 − 5.92 + 30.36
Command + 5.92 − 5.92 − 5.92
Interpreter + 5.92 + 5.92 + 30.36
Iterator + 0.15 + 50.00 + 5.92
Mediator + 30.36 + 30.36 − 1.76
Memento − 5.92 − 30.36 − 15.09
Observer + 0.15 − 30.36 + 50.00
State + 5.92 + 30.36 − 1.76
Strategy + 1.76 + 15.09 − 30.36
T.Method + 0.37 − 15.09 + 30.36
Visitor + 5.92 − 1.76 − 1.76

19 + / 4 − 11 + / 12 − 11 + / 12 −

Table 2. Estimation of the impact of design patterns on the three quality attributes

We now attempt to explain these results by study-
ing design patterns from the point of view of object-
oriented software practices. We focus on some “fa-
mous” patterns as we consider their evaluations by the
respondents more accurate. By “famous”, we mean
that all selected respondents fill the entire evaluations
of these patterns.

We make the hypothesis that the principles help in
improving the quality and thus should explain the re-
sults found on the impact of design patterns on quality.

We discuss here the results of the three design pat-
terns, shown in Tables 1 and 2, with respect to object-
oriented principles presented in [7].

Discussion for the other patterns from [2] are pre-
sented in [5].

Composite. The Composite pattern allows an in-
stance of a class to be treated in the same way as a
group of objects. It makes it easy to add new kinds of
objects. It makes clients simpler, because they do not
have to know if they are dealing with a leaf or a com-
posite object. Thus its use in a system impacts pos-
itively the expandability and the simplicity, which is
in accordance with the evaluations of our respondents.
However, the Composite pattern makes it harder to re-
strict the type of objects in a composite and may lead
to large amount of objects being instantiated and refer-
enced, thus possibly explaining the neutral evaluations
of its impact on robustness and scalability.

Abstract Factory. The intent of the Abstract Fac-
tory pattern is to separate the creation of objects from
their uses. It allows for new derived types to be intro-
duced with no change to the code that uses the base
objects. This pattern thus respects the Open Close
Principle and improves the expandability, the simplic-
ity, and the generality of systems. Also, it makes it
possible to interchange concrete classes without chang-
ing the code that uses them, even at runtime, thus im-
proving modularity and reusability, in accordance with
the our respondents’ evaluations.

However, due to the flexibility of interchanging con-
crete classes at runtime, the pattern should improve
the modularity at runtime and the scalability of sys-
tems in which it is used, a position which contradicts
our respondents’ results. We believe that this unex-
pected results can be explain by the difficulty of writ-
ing optimal implementations of this pattern. The use
of this pattern, as with similar design patterns, induces
the risk of unnecessary complexity and extra work in
the initial design and implementation, thus decreasing
understandability and learnability.

Flyweight. The Flyweight pattern is considered by
our respondents as impacting negatively most quality
attributes. The Flyweight pattern is tied to a very spe-
cific problem and thus is not expandable. Yet, it allows
thousands of objects to work together improving thus
scalability. It is not simple and not generalizable, it

4



decreases learnability, understandability, and reusabil-
ity, as software engineers must know the specific solved
problem to be able to understand the implementation.
This pattern violates the Open Close Principle as en-
gineers cannot extend the piece of code in which it is
used without almost rewriting it all.

From this study and an extended study [5], we re-
mark that most design patterns respect the principles
of object-oriented programming.

Hence, according to our hypothesis that object-
oriented best practices help producing systems with
good quality, it is surprising that their use seems to
decrease quality. A possible explanation could be that,
for a pattern, many implementations are possible and
that the concrete implementations may not be con-
form to the principles of object-oriented programming.
Among the 23 patterns from the GOF, some are not
frequently used in systems. Thus, the negative evalu-
ations may be just an a priori on the pattern because
our respondents considered the pattern to be not suit-
able and then their evaluation may not reflect the real
impact of the implementation of the pattern on quality.

It may also be that these best practices are necessary
but not sufficient to build systems with good quality.
In addition, we notice that, for the studied design pat-
terns, several principles do not seem to apply or explain
the results of the study, thus calling for further studies
on the impact of these principles on quality.

6. Conclusion and Threats to Validity

With this study, we show that design patterns do not
always improve the quality of systems. Some patterns
are reported to decrease some quality attributes and
to not necessarily promote reusability, expandability,
and understandability. Therefore, we bring further ev-
idence that design patterns should be used with caution
during development because they may actually impede
maintenance and evolution. This study also reveals
that object-oriented principles may not be so “good”
as they may not necessarily result in systems with good
quality. Thus, there is a need for studies to assess the
impact of these principles on the quality of systems.

There is no threat to the validity of the conclusion of
this study as there is a direct relationship between the
design of a system and its quality. The design of a sys-
tem directly impacts the quality attributes presented
in Section 3.1 thus we can say that there is no threat
to the construct and internal validities of our study.
However, the results of our study may not be fully
generalisable to any software engineers, patterns, and
systems. For future work we plan to continue collect-
ing evaluations to improve the accuracy of our results
and to generalise our conclusions to different software

context. The questionnaire is available on the Inter-
net at http://www.ptidej.net/downloads/ (it may
take some minutes to load as it weighs 4 MB). We are
looking forward receiving more evaluations.

Acknowledgments

We are grateful to Kim Mens for the fruitful discus-
sions. We would like to thank all the respondents for
their evaluations and comments. This work has been
partially funded by NSERC and the VINCI program
of University of Montreal.

References

[1] J. Bansiya and C. G. Davis. A hierarchical model for object-
oriented design quality assessment. In IEEE Transactions on
Software Engineering, 28:4–17, January 2002.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1st edition, 1994.

[3] Y.-G. Guéhéneuc, J.-Y. Guyomarc’h, K. Khosravi, and
H. Sahraoui. Design patterns as laws of quality. University
of Montreal, 2005.

[4] J. Kerievsky. Refactoring to Patterns. Addison-Wesley, 1st
edition, August 2004.

[5] F. Khomh and Y.-G. Guéhéneuc. An empirical study
of design patterns and software quality. Technical Re-
port 1315, University of Montréal, january 2008. http:
//www.iro.umontreal.ca/~ptidej/Publications/~Documents/
Research+report+DP+Quality+January08.doc.pdf.

[6] D. B. Lange and Y. Nakamura. Interactive visualization of
design patterns can help in framework understanding. In Pro-
ceedings of the 10th annual conference on Object-oriented
programming systems, languages, and applications, pages 342
– 357. ACM Press, 1995.

[7] R. C. Martin. Agile Software Development, Principles, Pat-
terns, and Practices. 2002.

[8] W. B. McNatt and J. M. Bieman. Coupling of design patterns:
Common practices and their benefits. In Proceedings of the
25th Computer Software and Applications Conference, pages
574–579. IEEE Computer Society Press, October 2001.

[9] R. S. Pressman. Software Engineering – A Practitioner’s Ap-

proach. McGraw-Hill Higher Education, 5th edition, November
2001.

[10] B. Venners. How to use design patterns – A conversation
with Erich Gamma, part I, May 2005. http://www.artima.com/
lejava/articles/gammadp.html.

[11] P. Wendorff. Assessment of design patterns during soft-
ware reengineering: Lessons learned from a large commercial
project. In Proceedings of 5th Conference on Software Main-
tenance and Reengineering, pages 77–84. IEEE Computer So-
ciety Press, March 2001.

[12] B. Wydaeghe, K. Verschaeve, B. Michiels, B. V. Damme,
E. Arckens, and V. Jonckers. Building an OMT-editor using
design patterns: An experience report. 1998.

5


