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ABSTRACT
Access control mechanisms based on roles and privileges restrict the

access of users to security sensitive resources in a multi-user soft-

ware system. Unintentional privilege protection changes may occur

during the evolution of a system, which may introduce security

vulnerabilities; threatening user’s confidential data, and causing

other severe problems. In this paper, we use the Pattern Traversal

Flow Analysis technique to identify definite protection differences

in WordPress and MediaWiki systems. We analyse the evolution

of privilege protections across 211 and 193 releases from respec-

tively WordPress and Mediawiki, and observe that around 60% of

commits affect privileges protections in both projects. We refer

to these commits as protection-impacting change (PIC) commits.

To help developers identify PIC commits just-in-time, we extract

a series of metrics from commit logs and source code, and build

statistical models. The evaluation of these models revealed that

they can achieve a precision up to 73.8% and a recall up to 98.8% in

WordPress and for MediaWiki, a precision up to 77.2% and recall up

to 97.8%. Among the metrics examined, commit churn, bug fixing,

author experiences and code complexity between two releases are

the most important predictors in the models. We performed a quali-

tative analysis of false positives and false negatives and observe that

PIC commits detectors should ignore documentation-only commits

and process code changes without the comments.

Software organizations can use our proposed approach and mod-

els, to identify unintentional privilege protection changes as soon

as they are introduced, in order to prevent the introduction of

vulnerabilities in their systems.

KEYWORDS
Protection Impacting changes, Privilege protection changes, Secu-

rity vulnerabilities, Reliability.
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1 INTRODUCTION
Access control, also known as authorization, is a key security mech-

anism used in software applications. Access control mediates access

to resources and functions on the basis of identity and according to

a predefined policy. In the case of role-based access control (RBAC),

specific roles and privileges are assigned to users of the applica-

tions and checks are implemented in the application to ensure that

all access conforms to the application’s policy. Although simple

in appearance, this mechanism is difficult to enforce efficiently in

practice. Pinto and Stuttard [23] tested hundreds of applications

between 2007 and 2011, and report that 71% of web applications

suffer from broken access controls. An example of broken access

control is a Fintech application checking that a user is allowed to

transfer money from a Paypal account, without validating that this

PayPal account belongs to the user.

During the evolution of an application, developers modify the

code enforcing access control checks as they add more functions

and resources. However, unintentional changes to roles and privi-

leges can also occur, inducing security vulnerabilities in the appli-

cation. The consequences of unintentional protection changes can

be devastating. An attacker can exploit vulnerabilities on privilege

protections to view, change or delete sensitive content; execute

unauthorized functions; or even take control of the administration

of the application. It is therefore utterly important to scrutinize code

changes that affect privilege protections in an application. In this

paper, we propose a just-in-time analysis of protection-impacting

change (PIC) commits, which are commits that affect privilege pro-

tections in an application. We build statistical models to classify

the commits as they are submitted to the source code repository.

A just-in-time detection of PICs is very desirable for many rea-

sons. First and foremost, it allows corrections in an earlier stage of

the software development process, when the cost of correction is

lower. Second, it facilitates the identification of the root cause of the

issue. In comparison, the accumulation of many weeks or months of

code changes may result in tangled protection-impacting changes.



This would make identification of the root cause and corrections

much harder. Thirdly, an analysis based on statistical models is

likely to be faster. Previous studies on definite protection differ-

ences used an automated Pattern-Traversal Flow Analysis (PTFA)

static analysis and operated at a release granularity [17–19]. These

analyses required about 10 and 17 minutes on average per release

pair, respectively for WordPress and MediaWiki.

In this paper, we use an oracle of protection-impacting changes

computed using Pattern Traversal Flow Analysis [13] in 211 release

pairs of WordPress and 193 release pairs of MediaWiki. We build

machine learning models on commits changes that affect the at-

tribution of privileges in the code, then we perform a qualitative

analysis to determine the characteristics of misclassified commits.

We answer the following research questions:

RQ1: What is the proportion of protection-impacting changes in
Wordpress and MediaWiki?

We analyse protection-impacting changes in two repositories Word-

Press and MediaWiki. We used RBAC approach to determine PIC

lines in different releases. We found that privilege protections were

impacted by changes in 58% (123 / 211) of WordPress studied re-

leases pairs and 77% (149 / 193) of MediaWiki studied releases pairs.

We performed an empirical study to identify PIC commits occur-

rences from the source code repositories of the studied systems.

We found that PIC commits account for 62% and 59% of commits in

WordPress and MediaWiki, respectively.

RQ2: What are the characteristics of protection-impacting changes?

By examining the characteristics of PIC commits and other com-

mits (i.e., commits that did not affect privilege protections), we

observed that in general, PIC commits are submitted by developers

with higher experience. Developers are likely to change less files,

there are less inserted and deleted lines in PIC commits. They tend

to implement more complex source code in PIC commits with high

number of functions, more number of declarative statements, high

nested level of control functions, more cyclomatic complexity of

nested functions and more comment ratio. Developers also tend to

make more faults in PIC commits.

RQ3: To which extent can we predict protection-impacting changes?

We used GLM, Naive Bayes, C5.0, and Random Forest algorithms

to predict whether or not a commit is a PIC. Our predictive models

can reach a precision of 73.8% and a recall up to 98.3% in Word-

Press. In MediaWiki, we obtain a precision of 77.2% and a recall of

97.8%. Software organizations can apply our proposed techniques

to identify PIC early on (i.e., as soon as they are introduced in the

code repository) before they can be exploited by malicious users.

RQ4: Why do automatic machine learning models misclassify some
protection-impacting changes?

After a qualitative analysis, we observed that false positive

and false negative PICs are due to commits related to documen-

tation or commits that changed a version field (for WordPress, in

version.php and in DefaultSettings.php for MediaWiki). Some

other wrongly classified commits featured changes in the embedded

HTML, JavaScript or CSS code.

Paper Organization. The rest of the paper is organized as follows.
In Section 2, we present background information about Pattern

Traversal Flow Analysis and the detection of protection-impacting

changes. In Section 3, we present the design of our case study. We

answer our research questions in Section 4 and discuss the threats

to validity of our study in Section 5. Section 6 discusses the related

literature. We conclude the paper in Section 7.

2 PATTERN TRAVERSAL FLOW ANALYSIS
AND PRIVILEGE PROTECTION CHANGE
DETECTION

In this section, we provide background information about Pattern

Traversal Flow Analysis and explain how we detect definite protec-

tion differences in this work.

2.1 Pattern Traversal Flow Analysis
Pattern Traversal Flow Analysis (PTFA) [11, 13, 21] is an automated

whole-program static analysis for Boolean properties. Thus, PTFA

verifies the property satisfaction that a predicate is true on all paths

reaching a statement s . In our case, we use PTFA for code patterns

pertaining to the verification of privilege priv ∈ Privileдes . PTFA
verifies the property satisfaction over the application’s Control

Flow Graph (CFG) CFG = (V ,E), where V is the set of vertices and

E is the set of edges.

A PTFA engine creates model checking automata from the CFG

and computes the graph reachability from the starting node v0.
PTFA automata are predicate-context-sensitive, meaning that se-

curity contexts are distinguished in the interprocedural analysis,

and that equivalent contexts are merged. PTFA models have up

to four states for each CFG vertex and privilege. These states en-

code the property satisfaction of the local and calling contexts and

may be understood as being either protected or unprotected states,

with regards to privilege priv . The PTFA model construction algo-

rithm builds a model with many unreachable states and transitions.

We simplify these models by retaining only reachable states and

transitions, which we call the reachable PTFA model.

2.2 Definite Protection Differences
When a privilege priv is verified on all paths leading to CFG vertex

v , v is definitely protected for priv . We can determine definite pro-

tection using the existence of states in reachable PTFA models. If v
is definitely protected for privilege priv , then at least one protected

state for v and no unprotected state for vi exists in the model for

priv . If an unprotected state for v is reachable in the automaton for

priv , then priv is not verified in at least one path to v .
Definite Protection Differences. When comparing two versions

of an application (Vera and Verb), Definite Protection Differences

(DPD) may occur for code that is shared by the two versions [17].

When a statement s is common to releases Vera and Verb, a DPD
occurs when the definite privilege protection for s differs between
Vera and Verb .

Statement s is loss-affected when s is definitely protected by

privilege priv in Vera, but is no longer so in Verb – meaning that

there exists at least one unprotected path to s in Verb . Conversely, s
is gain-affected when s is not definitely protected by privilege priv
in Vera, but is so in Verb . We use the term security-affected to refer

to vertices that are either gain-affected or loss-affected.



2.3 Protection-Impacting Changes
Protection-Impacting Changes (PIC) [19] depend on code changes

and graph reachability in reachable PTFA models (Equation 1).

Code changes are reflected in PTFA models as added and deleted

edges. deletedEdдes is the set of deleted transitions in the reachable
PTFA model for Vera . Similarly, addedEdдes is the set of added

transitions in the reachable PTFA model for Verb . Each set contains

all transitions which either connect one or more deleted or added

state. It also contains all transitions for which no corresponding

edge is present in the PTFA model of the other version.

These equations depend on the following symbols. Qi is the

set of states in the reachable PTFA model for version Veri . Ti is
the set of transitions in the PTFA model for version Veri . PTFA
states are represented as qi, j,k , where i is the CFG vertex identifier,

j is the property satisfaction flag in the calling context, and k is

the property satisfaction flag in the local context. The predicate

deletedState(qi, j,k ) (Equation 1) is true whenever the state qi, j,k ∈

Vera has no corresponding state in Verb . Likewise, the predicate
addedState (Figure 1) is true whenever the state qi, j,k ∈ Verb has

no corresponding state in Vera . This correspondence depends on
the injective function vertexMap, which associates vertices in Vera
to their corresponding vertices in Verb. The function bMap is its

reverse function. The symbols dom and imaдe correspond to the

function’s domain and image, respectively.

In addition, protection-impacting changes belong to paths be-

tween the start of the program and security-affected vertices, on

appropriately protected paths. For loss-affected code, the protection-

impacting changes are the deleted edges belonging to positively-

protected paths to va and the added edges belonging to negatively-

protected paths tovb . For gain-affected code, the protection-impact-

ing changes are similar, but with the protectedness reversed. For

the sake of simplicity, and due to space constraints, we combine the

definitions of protection-impacting changes for all security-affected

code into the definition of PIC (Equation 1. In this figure,

ReachachableEdдes(qi, j,k ) is a function returning all edges between
the initial state and the state qi, j,k in the reachable PTFA model.

The partialPIC function combines changed edges (i.e. addedEdдes
or deletedEdдes) with reachable edges for either Vera or Verb. Fi-
nally, the vertices va and vb respectively belong to the CFG of Vera
and Verb and correspond to each other (i.e. vb = vertexMap(va ).

2.4 Reporting Protection-Impacting Lines
Because it would be non-trivial tomine a software system in relation

to edges in a control flow graph, we project our results over source

code lines. This projection would also be easier to understand by

end-users.

The results of a naive projection are likely to be problematic

for end-users. Edges in addedEdдes and deletedEdдes may connect

states belonging to unchanged lines of code. Users are likely to clas-

sify these as false positives, which would hurt psychological accept-

ability. As such, we map PIC edges to source code locations, and re-

tain only the locations that belong to changed code. To simplify the

equations, we treat all code changes as either added or deleted code,

similar to the git output. We define our line-projection functions in

Equation 2. Function PICl,a returns all protection-impacting code

in Vera (i.e. deleted code). And PICl,b does the same for version

Verb (i.e. for added code). The line-projection functions rely on the

projection functions π1(x) and π2(x), which respectively return the

first and second index of the ordered pair x .

2.5 Choice of pair releases and changes
identification

Both of chosen projects are using a Software ConfigurationManage-

ment (SCM). One of the key features of modern SCM is the support

of parallel lines of development known as branches. A branch is

a virtual workspace forked from a particular state of the source

code. It provides isolation from other changes where a developer

or team of developers can make changes to the code in the branch

without affecting others working outside the branch. There are

conventional models of SCM development chosen by developers

to fix their strategy of releases generation in a successive baseline

[33]. Our strategy of choosing pairs is to avoid comparing branches

in parallel, that are wildly different in their point of development

interest. Using git repository graph, we compare new major and

minor versions with the nearest releases to the points of bifurca-

tion where a forked branch was created. We chose also a series

of releases in the same branch where developers test quality and

fix bugs to prepare for a production release [33]. We prepare all

chosen versions, then determine protection-impacting lines of code

as illustrated in Figure 1. First, we compute the interprocedural

control flow graphs from the PHP source code of each version using

a PHP front end. Then, we compute the PTFA models and obtain

definite privilege protections. Afterwards, we compare the source

code of the releases using GNU Diff. Using these code differences

and the aforementioned information, we obtain the definite pro-

tection differences and protection-impacting changes. Please note

that GNU Diff does not consider file renames. Instead, it reports

these as being fully deleted and fully added.

3 CASE STUDY DESIGN
In this section, we describe the design of our case study which aims

to answer the following research questions:

• What is the proportion of protection-impacting changes in

Wordpress and MediaWiki?

• What are the characteristics of protection-impacting changes?

• Towhich extent canwe predict protection-impacting changes?

• Why do automatic machine learning models misclassify

some protection-impacting changes?

3.1 Collecting Data
Our study was performed on two open source projects: WordPress

and MediaWiki. The analysis encompassed 211 release pairs of

WordPress, from 2.0 to 4.7.3 and 193 release pairs of MediaWiki,

from 1.5.0 to 1.29.2. We included all releases between the mentioned

pairs. The full list of the studied release pairs are available in our

data repository
1
.

WordPress is a popular web-based content management system

mainly implemented in PHP. It is a mature open source system with

a long release history and its RBAC implementation and configura-

tion are relatively simple. In terms of physical lines of code (LOC),

1
https://github.com/amino33/PIC_WordPress



deletedState(qi, j,k ) � i < dom(vertexMap) ∨ qver texMap(i), j,k < Qb

addedState(qi, j,k ) � i < imaдe(vertexMap) ∨ qbMap(i), j,k < Qa

deletedEdдes �

{(
qi1, j1,k1 , qi2, j2,k2

)
∈ Ta

����� deletedState(qi1, j1,k1 ) ∨ deletedState(qi2, j2,k2 ) ∨(
qver texMap(i1), j1,k1 ,qver texMap(i2), j2,k2

)
< Tb

}
addedEdдes �

{(
qi1, j1,k1 , qi2, j2,k2

)
∈ Tb

����� addedState(qi1, j1,k1 ) ∨ addedState(qi2, j2,k2 ) ∨(
qbMap(i1), j1,k1 , qbMap(i2), j2,k2

)
< Ta

}
partialPIC(chanдes, i,k) � chanдes ∩

(
ReachableEdдes(qi,0,k ) ∪ ReachableEdдes(qi,1,k )

)
PIC(va ,vb ) �

(
partialPIC(deletedEdдes,va , 1) ∪ partialPIC(deletedEdдes,va , 0) ,
partialPIC(addedEdдes,vb , 0) ∪ partialPIC(addedEdдes,vb , 1)

)
Equation 1: Equations for Protection-Impacting Changes – Adapted from [19]

PICl,a (va ,vb ) �
©­«

⋃
(q1, q2)∈π1(P IC(va,vb ))

{srcLoc(q1), srcLoc(q2)}
ª®¬ ∩ deleted

PICl,b (va ,vb ) �
©­«

⋃
(q1, q2)∈π2(P IC(va,vb ))

{srcLoc(q1), srcLoc(q2)}
ª®¬ ∩ added

Equation 2: Per-Privilege Projection of Protection-Impacting Changes to Lines of Code

PHP Front End PTFA Analyzer

Code
Differencing

Source
Code

Code
Differences

DPD
Classifier

Classification

CFGs

Definite 
Protection

Version
Pairs

PTFA
Models

PIC Analyzer PICs

Figure 1: Processing Steps for Detecting Protection-Impacting Lines of Code Using PTFA

WordPress’s PHP code ranges from roughly 35 KLOC in release 2.0

to 340 KLOC in release 4.7.3. For the same releases, the combined

HTML, JavaScript and CSS code amounted to roughly 13 KLOC

and 179 KLOC, respectively.

MediaWiki is a content management system from theMediaWiki

Foundation. It is well-known thanks to its flagship user, Wikipedia.

This application’s PHP code ranges from roughly 149 KLOC to a

peak of 1.35 MLOC. The combined HTML, JavaScript and CSS code

is roughly between 4.5 KLOC and 188 KLOC.

Please note that, in this work, we only take into account the code

changes written in PHP.

WordPress andMediaWiki maintains multiple releases in parallel

and patches vulnerabilities for multiple versions simultaneously. As

such, we organize release pairs in a tree according to their semantic

versioning [24] and release date information. Each edge of that tree

is a release pair. This approach was used previous RBAC evolution

surveys [17–19]. In total, we found protection-impacting changes

in 123 (58%) out of the 211 subject release pairs of WordPress and

149 (77%) out of the 193 subject release pairs of MediaWiki.

Since users typically deploy official releases, we performed the

static code analysis on these releases only. We downloaded all

subject releases from the official website of WordPress
2
. Since we

2
https://wordpress.org/download/release-archive/

https://wordpress.org/download/release-archive/


downloaded the release archives, we have analyzed them as-is.

There were two releases that were not published by WordPress

on their site. In those cases, we extracted a path from their SVN

repository and applied it on the previous release.

To ease the analysis, we performed our data mining against git

repositories of both systems. For WordPress, we used a Git-ified

clone of the official WordPress SVN repository, hosted by GitHub
3
.

For MediaWiki, we used the official git repository
4
.

Please note that there are discrepancies between the repository

and the releases, as there are additional files in the release (e.g.

extensions). As such, we ignored protection-impacting changes in

these additional files.

3.2 Identifying Protection-Impacting Commits
Definite protection differences are due to code changes. These code

changes are inserted through commits in the version control system.

Our oracle is derived from the PICs reported by the PTFA-based

tool. Protection-impacting lines of code can either be deleted or

added code.

We identify protection-impacting commits as follows. Our PIC

detection tool provides a list of protection-impacting lines of code

for each release pair. These PICs are organized by file, line, and the

type of definite protection difference (loss or gain).

If the tool detects a series of protection-impacting changes be-

tween a pair of releases (VN and VN ′ ), it will output the following

information for each of them:

N N’ gain/loss F L
where F denotes the name of the file in which the privilege pro-

tection change occurred, while L denotes the specific line of the

change and B the bifurcation point between VN and VN ′ .

Between VN and VN ′ , there often exist multiple commits. To

find out the corresponding commit in which a privilege protection

change occurred (either added or removed), we assume that the

most recent commit before VN ′ commit that modified line L in the

file F is the commit that introduced this privilege protection change.

If the first commit inVN ′ isC ′
, we apply the following command to

identify the commit(s) that contains privilege protection changes:

git blame -L B..C’ -- F
Otherwise, we assume that a removed privilege protection line

is based on the VN version, we apply the following command to

report commit that deleted a line:

git blame --reverse -L B..C’ -- F
As our analysis dataset, we consider only commits responsible

for the reported lines that were modified in files between VN and

VN ′ which include Protection Impacting commits.

3.3 Computing Metrics
To capture the characteristics of protection-impacting changes, we

compute the 16 metrics described in Table 1. We group the metrics

in the two following categories:

3.3.1 Commit log metrics. We extract the following commit-

related metrics to capture the structure of committed code. First,

metrics related to date (i.e., week day, month day and month), be-

cause protection-impacting changes may occur at specific dates [6].

3
https://github.com/WordPress/WordPress

4
https://gerrit.wikimedia.org/r/p/mediawiki/core.git

Second, we compute author experience to examine how commits

or changes merged by less experienced developers impact privilege

protections. Third, metrics related to commits size (i.e., number of

changed files, number of added and deleted lines), because Walden

et al. [32] found that there is usually a correlation between code

change size and security issues. Fourth, we computed message size

metrics, as Alali et al. [1] found that commit message size is an

indicator for maintenance activities.

We also identify commits related to bug fixing changes following

the heuristic proposed by Sliwerski et al. [30]. Using this informa-

tion we compute the Boolean metric Is bug fix for each commit.

3.3.2 Code complexity metrics. For each studied commit, we use

the Mercurial git log command to extract all of its changed PHP

files. Then, we apply the source code analysis tool Understand from

[28] in order to collect complexity metrics. Understand provides a

command line tool that helps to create a large number of project to

analyse and to automate processing commits and metrics genera-

tion. We create a bash script to automate the extraction. We obtain

seven code complexity metrics from Understand for the files in each

subject commit, similar to An and Khomh [2]. These metrics are

lines of code (LOC), Cyclomatic complexity (also known as McCabe

Cyclomatic complexity) which captures the occurrence of decision

points in the code, number of functions, maximum nesting which is

the level of controlling constructs in a function, number of declara-

tive statements, number of blank lines, and ratio of comment lines

over all lines in a file. For each commit (containing multiple files),

we took the average of the metric values obtained for each file.

4 STUDY RESULTS
In this section, we report and discuss answers to our research

questions. For each research question, we present the motivation,

our approach to answer the question, and our results.

RQ1: What is the proportion of
protection-impacting changes in Wordpress and
MediaWiki?
Motivation. This question is preliminary to the remaining ques-

tions. It aims to examine the distribution of PICs in Wordpress

and MediaWiki. The result of this question will help software web

managers to realize the prevalence of PIC in projects. Allowing

them to adjust their interventions when modifying the code that

introduced security protection-impacting changes.

Approach. To compute the proportion of protection-impacting

changes in the studied projects we conducted the PTFA analysis of

PIC on releases pairs as described in Section 3.2. We identified the

modified PIC lines and then searched for the commit that introduced

the line. Finally, we computed the proportion of commits containing

a PIC and the proportion of commits that do not contain any PIC.

Finding. Among the modifications of PHP files that occurred over

211 and 193 pair releases of WordPress and MediaWiki, we found

25069 commits in WordPress and 35864 commits in MediaWiki.

Through our analysis of protection-impacting change detection

(described in Section 3.2) we identified 62% (15700 / 25069) of PICs

commits in WordPress and 59% (21335 / 35864) of PICs commits

https://github.com/WordPress/WordPress
https://gerrit.wikimedia.org/r/p/mediawiki/core.git


Table 1: Metrics used to compare characteristics

Attribute Explanation and Rationale
Commit Log Metrics

Week day Day of week (fromMon to Sun). Code committed on certain week days

may be less carefully written (e.g., Friday) [4, 30].
Month day Day in month (1-31). Code performed on certain days could be less del-

icately written (i.e., end of months, before and during public holidays).

Month Month of year (1-12). Code performed in some seasons may be less

delicately written (i.e., Christmas holidays, summer).

Message size Words in a commit message. In RQ2, we found that PIC commits are

correlated with longer commit messages.

Author experience The number of prior submitted commits. In RQ2, we found that PIC

commits tend to be submitted by less experienced developers.

Number of changed

files
*

Number of changed files in a commit. In RQ2, we found that commits

with more changed files tend to have PIC apparition.

Number of added lines Number of inserted lines in a commit. In RQ2, we found that commits

with more added lines tend to have PIC apparition.

Number of deleted

lines

Number of deleted lines in a commit. In RQ2, we found that commits

with more deleted lines tend to have PIC apparition.

Is bug fix Whether a commit aimed to fix a bug. In RQ2, we found that PIC com-

mits are correlated with bug fixing code.

Code Complexity Metrics
LOC Mean number of lines of code in all PHP files of a commit. In RQ2, we

found that PIC commits have higher code churn (i.e., added/deleted

lines).

Number of functions Mean number of functions of all files in a commit. In RQ2 we found

that big functions may be difficult to understand or modify, and lead

to PIC.

Cyclomatic complexity Mean cyclomatic complexity of the functions in the all files of a commit.

In RQ2 we found Complex code is hard to maintain and may cause

crashes.

Max nesting Mean maximum level of nested functions in all files in a commit. In

RQ2 we found that highest nested functions correlate with PIC, even

a high level of nesting increases complexity.

Number of declarative

statements

Mean Number of declarative statements in a commit. InRQ2we found
that highest declarative statements correlate with PIC

Number of blank lines
*

Mean number of blank PHP lines of all files in a commit. In RQ2 we

found that, the more blank lines, the highest it leads to PIC commits

Comment ratio Mean ratio of comment lines to code lines of all files in a commit. Codes

with lower ratio of comments may be hard to understand, and may

result in PIC

Figure 2: Proportion of Protection-Impacting changes com-
mits in WordPress and MediaWiki

in MediaWiki. Figure 2 illustrates the proportion of protection-

impacting changes commits and other commits.

Finding a PIC in a commit does not mean that all changed lines

inside the commit represent a protection impacting changes.�
�

�
�

Protection impacting change commits account for 62% in Word-
Press and 59% on MediaWiki of the studied releases.

Nearly half of commits are likely to contain PICs, which are at

risk of introducing vulnerabilities [34]. Therefore, software devel-

opers should strive to catch PIC commits as soon as possible, e.g.,

when they are submitted into the version control system.

In the rest of this section, we will investigate the characteristics

of commits that change privileges (i.e., PIC) and examine how to

effectively predict them early.

RQ2: What are the characteristics of
protection-impacting changes?
Motivation. In RQ1, we found that almost one in two commits

contain protection-impacting changes. If developers fail to detect

such changes and ensure the safety of the commit before integra-

tion into the code base, users risk suffering from security vulner-

abilities. In this research question, we set out to investigate the

characteristics of protection-impacting changes. The answer to

this research question can help software practitioners to better

differentiate protection-impacting changes from other changes.

Approach.We use the metrics shown in Tables 1 and statistically

compare the 12 numerical variables in the following order: message

size, authors experience, number of changed files, number of added

lines, number of deleted lines, line of code, number of functions,

cyclomatic complexity, maximum nesting, number of declarative

statement, number of blank lines and comment ratio. We do so

while partitioning the commits between PICs and non-PICs. If a

commit contains more than one changed file, we compute the mean

value of each metric on these files. For each of the 12 metrics (mi ),

we formulate the following null hypothesis:H0

i : there is no difference
between the values ofmi for the commits that contain at least one
PIC and those that do not contain any, where i ∈ {1, . . . , 12}.

We use the Mann-Whitney U test [14] to accept or reject the

12 null hypotheses. This is a non-parametric statistical test, which

measures whether two independent distributions have equally large

values. We use a 95% confidence level (i.e., α = 0.05) to accept or

reject these hypotheses. Since we perform more than one compari-

son on the same dataset, to control the familywise error rate, we

use the Bonferroni correction [9]. Concretely, we divide our α by

the number of tests, i.e., α = 0.05/12 = 0.004.

Whenever we obtain a statistically significant difference between

the metric values, we compute the Cliff’s Delta effect size [7], which

measures the magnitude of the difference while controlling for the

confounding factor of sample size [8]. We assess the magnitude

using the threshold provided in [27], i.e.,, |d | < 0.147 “negligi-

ble"(N), |d | < 0.33 “small"(S), |d | < 0.474 “medium"(M), otherwise

“large"(L).

In addition to these metrics, we investigate the distribution of the

bug fixes commits and the weekend churn (Saturday and Sunday)

according to the partitioning of PIC and non-PIC dataset.

Finding. Table 2 and 3 summarise differences between the charac-

teristics of commits corresponding to the projects WordPress and

MediaWiki, that introduced protection-impacting changes and oth-

ers i.e., commits that did not alter protection privileges. We show

the median value of PIC and non-PIC for each metric, as well as the

p-value of the Mann Whitney U test and the Cliff’s Delta effect size.

We observe that the commit message size of PICs is significantly

longer than non-PICs commits messages sizes in both projects. It

is possible that PICs commits are more complex and consequently

developers need extended comments to describe these changes.

According to the results of both projects, PICs are submitted by

developers with more experience. This result could be explained



Table 2: Median value of the characteristics of PICs and non-
PICs as well as p-value of Mann-Whitney U test and effect
size for WordPress project

Metric PIC non-PIC P-value Effect size
Message Size 19.66 15.61 <2.2e-16 0.144 (N)

Author experience 1531.98 1343.94 0.033 0.016 (N)

Number of changed files 3.18 2.60 <2.2e-16 0.127 (N)

Number of inserted lines 71.03 86.19 <2.2e-16 0.205 (S)

Number of removed lines 47.961 75.66 <2.2e-16 0.197 (S)

LOC 666.21 591.15 <2.2e-16 0.092 (N)

Number of functions 28.91 26.20 <2.2e-16 0.067 (N)

Cyclomatic complexity 9.93 7.97 <2.2e-16 0.054 (N)

Max nesting 3.65 3.46 <6.3e-15 0.057 (N)

Number of declarative state-

ments

42.13 37.73 <2.2e-16 0.069 (N)

Number of blank lines 160.13 139.25 <2.2e-16 0.105 (N)

Comment ratio 0.915 0.964 0.002 0.023 (N)

Is bug fix 58.7% 57.6% − −

Weekend churn 20% 21.7% − −

Table 3: Median value of the characteristics of PICs and non-
PICs as well as p-value of Mann-Whitney U test and effect
size for MediaWiki project

Metric PIC non-PIC P-value Effect size
Message Size 27.06 18.10 <2.2e-16 0.255 (S)

Author experience 1378.77 1012.47 <2.2e-16 0.093 (N)

Number of changed files 3.505 9.014 <2.2e-16 -0.055 (N)

Number of inserted lines 83.18 293.13 2.5*10e-4 -0.022 (N)

Number of removed lines 59.588 220.842 2.5*10e-3 -0.018 (N)

LOC 739.87 1399.06 <2.2e-16 -0.26 (S)

Number of functions 37.17 18.69 <2.2e-16 0.47 (M)

Cyclomatic complexity 2.47 2.23 <2.2e-16 0.056 (N)

Max nesting 3.31 1.66 <2.2e-16 0.48 (L)

Number of declarative state-

ments

57.37 27.80 <2.2e-16 0.48 (L)

Number of blank lines 130.49 166.63 <2.2e-16 -0.134 (S)

Comment ratio 0.528 0.503 <2.2e-16 0.284 (S)

Is bug fix 29.4% 23.4% − −

Weekend churn 18.5% 17.3% − −

by the fact that not all programmers have the ability to change

sensitive code areas containing privilege protection lines. Another

interesting finding is the fact that PICs tend to have higher code

complexity in terms of number of functions, cyclomatic complexity,

maximum nesting, number of declarative statements and comment

ratio. These results are reinforced by the obtainedmedium and large

effect sizes. Finally, most of our studied PICs commits are bug fixing

operations; which means that privileges are often inadvertently

modified during bug fixing, which may result in vulnerabilities.

Woodraska et al.[34] found that bugs can turn into severe security

vulnerabilities which is consistent with our results.

In light of results from Table 2 we reject all the null hypotheses

H0

i . In other words, for all metrics listed in Table 2, there exist statis-

tically significant differences between PICs and non-PICs commits

in varying proportions.�




�

	
Overall, we found significant differences between PIC and the
non-PIC commits on all studied characteristics. PICs commits
are submitted by experienced developers. They contain longer
commit messages and make complex changes in files.

RQ3: To which extent can we predict
protection-impacting changes?
Motivation. On the one hand, leaving unintentional privilege pro-

tection changes in the source code may lead to security vulnerabili-

ties that severely affect end users. On the other hand, identifying

unintentional privilege protection changes from each new code

change is a non-trivial task. Although the PTFA-based analysis can

scan a PHP system quickly (about 10 and 17 minutes on average per

release pair, respectively for WordPress and MediaWiki), it is still

impractical to perform such analysis for each of the code changes

because developers may submit hundreds of code changes daily

for a large-scale system. One feasible way to remind developers

a security warning in a real-time manner is to build just-in-time

prediction models. In our case, such models can be trained using

historical data and predict whether a new code change (such as

a commit or a changed file) contains PIC(s) or not. Previous stud-

ies, including [12, 16], showed that just-in-time prediction models

can help software practitioners better focus their efforts on debug-

ging fault-inducing changes, which can reduce code reviewing and

testing efforts as well as prevent from delivering defects to end

users. In this research question, we examine the possibility of using

just-in-time prediction models to identify unintentional privilege

protection changes in real-time.

Approach. We use the metrics from Table 1 as independent vari-

ables to build statistical models. All of these metrics are extracted

at commit level as it is required for a just-in-time prediction model.

Our prediction target (i.e., dependent variable) is whether a new
commit contains at least one PIC or not. We apply four different

machine learning algorithms: logistic regression, Naive Bayes, de-

cision tree, and Random Forest. Logistic regression extends linear

regression and enables the analysis of a binary classification prob-

lem, i.e., in our case, whether a commit contains PIC(s). Although

this algorithm is extensively used in classification analyses, it may

not achieve a good fitness when there is no smooth linear decision

boundary in the dataset. In this work, we use this algorithm as the

baseline to assess the effectiveness of other models. Naive Bayes are

a set of logistic regression algorithms based on the Bayes’ theorem

[31] with strong independence assumptions between the features.

This algorithm often obtains, in practice, a good classification result

[25]. Compared to logistic regression, decision tree does not assume

a linear relationship between variables and it can also implicitly

perform variable screening or feature selection. Thus, decision tree

is expected to obtain a high prediction accuracy. To further mit-

igate the biases and variance from the decision tree model, Leo

Breiman and Adele Cutler introduced Random Forest [5], which

takes a majority voting of decision trees to generate classification

(predicting often binary class labels) or regression (predicting nu-

merical values) results. In previous just-in-time prediction studies,

e.g., [3], Random Forest achieved the best prediction accuracy. In

this study, we build 1,000 trees, each of which is with 5 randomly

selected metrics.

To reduce the multicollinearity from the dataset, we use the Vari-

ance Inflation Factor (VIF) technique to remove correlated metrics

before building the models. As recommended by Rogerson [26], we

remove the metrics whose VIF values are greater than or equal to 5.

In Tables 1, the removed metrics are marked with *.



Table 4: Accuracy, precision, recall and F-measure (in %)
obtained from GLM, Naive Bayes, C5.0, and Random For-
est when predicting protection-impacting changes in Word-
Press repository

Metric GLM Bayes C5.0 Random Forest
Fitting models using WordPress repository

Accuracy 64.2% 62.0% 68.8% 72.5%

PIC precision 64.8% 62.6% 71.0% 73.8%

PIC recall 94.1% 98.3 % 84.7% 87.6%

PIC F-measure 76.8% 76.4% 77.4% 79.8%

Fitting models using MediaWiki repository
Accuracy 74.3% 62.7% 78.6% 80.9%

PIC precision 73.7% 61.7% 71.0% 77.2%

PIC recall 88.3% 97.8 % 84.7% 96.0%

PIC F-measure 80.3% 76.4% 83.9% 85.6%

We apply ten-fold cross validation [10] to measure the fitness of

the models. We will report respectively the general accuracy, as well

as the precision, recall, and F-measure on the commits or change

files that contain PIC(s) for each model. In the cross validation, we

randomly split the subject commits into ten disjoint sets. Nine of

them are used as training data and the remaining one as testing

data. We repeat this process for ten times and report mean results

for accuracy, precision, recall, and F-measure. In the dataset, the

commits containing PICs account for 62% and 59% corresponding to

WordPress and Wikimeda, which can lead to biases and inaccuracy

in the results [15]. To deal with this, we perform a combination of

over- and under-sampling using the R ovun.sample package. In

the training sets, instances in the majority category (i.e., commit

or changed file without PICs) will be randomly deleted and the

minority category (i.e., commit or changed file with PICs) will also

be randomly boosted, until the number of the instances in both

categories achieve the same level. In addition to reporting the fitness

of the models, we will rank the impact of the independent variables

to identify the top predictors of the algorithm that obtains the best

prediction results.

Finding. Table 4 shows the median accuracy, precision, recall, and

F-measure for the four algorithms used to predict whether a com-

mit contains protection-impacting changes in WordPress and Me-

diaWiki systems. According to the results, our models can predict

PIC commits in WordPress system with a precision up to 73.8% and

a recall up to 98.3%. In MediaWiki, we achieve a precision of 77.2%

and a recall of 97.8%. Random Forest achieves the best F-measure

when predicting PICs commits.�

�

�

�

Our predictive models can achieve a precision of 73.8%, and a
recall of 97.3% in Wordpress. In MediaWiki, models achieve a
precision of 77.2%, and a recall of 97.8%. The Random Forest
algorithm achieves the best prediction performance in both
projects. Closeness is ranked as the best predictor in this algo-
rithm. Software organizations can use the proposed predictive
models to catch protection impacting change commits just in
time as soon as they are submitted for integration in the repos-
itory, e.g., during code review.

RQ4: Why do automatic machine learning
models misclassify some protection-impacting
changes?
Motivation. In the previous research question, even though the

models achieved a good performance, there is still a percentage of

the clean commits (respectively changed files) that were classified

by our models as commits (respectively changed files) with PICs,

which we refer to as false positives. In addition, certain commits

(respectively changed files) with PICs were wrongly classified as

clean commits (respectively changed files); we refer to them as to

false negatives. In this research question, we want to understand

the reasons behind these false positives and negatives. The answer

of this question may help us to discover further hidden factors that

are related to unintentional protection impacting changes and to

improve our current predictive models.

Approach.We performed a qualitative analysis of false positives

and false negatives to search for the main causes of the wrong

classification of the predictive model. In WordPress, using Random

Forest, 509 commits were false negatives, and 239 commits were

false positives. In MediaWiki, We obtained 580 false negative com-

mits and 110 false positives commits with Random Forest (our best

performing classifier).

To understand the characteristics of the misclassified commits,

we randomly took a sample of them with a margin error of 10% and

a confidence level of 95%.

For WordPress, our sample was of 83 / 509 false negatives and

69 / 239 false positives.

Finding.We summarize our observations in Table 5. Overall, we

observed that many wrongly classified commits changed a version

field (forWordPress, in version.php and in DefaultSettings.php
for MediaWiki). If we leave out changes to version fields, some

commits had only documentation changes. Some other commits

featured changes in the embedded HTML, JavaScript or CSS code.

While these changes were withing a .php file, they are not PHP

code per se. Changes to non-PHP code or to documentation cannot

be protection-impacting by definition. We also observed that a mi-

nority of wrongly classified commits added control flow branches

(conditions or loops), which may in turn have affected some of

the observed metrics. Some commits were merge commits due to

their strategy of continuous integration development, others were

the addition of profiling information, and a few were clearly re-

lated to the RBAC implementation. There is 18 / 19 in WordPress

and 19 in MediaWiki that were only about documentation or con-

tained whitespaces only; these commits are clearly non-PIC but

were predicted as PIC.

These observations lead us to methodological improvements

to consider in future research. For example we could use island

parsing to ignore/minimise non-PHP code changes, which would

likely reduce these misclassifications.



Table 5: Qualitative Observations Over Wrongly Classified Commits

Observation WordPress MediaWiki
Samples FP (69 / 239) FN (83 / 509) FP (52 / 109) FN (84 / 579)

Modified a version field 23 13 1 0

Documentation or whitespace only 1 18 0 19

Changes to embedded HTML/JS/CSS 4 6 0 0

Branches added or deleted 13 20 8 17

Similar in/out 50 44 31 33

Merge commits 0 0 6 4

Profiling 0 0 2 0

RBAC-Related 0 0 2 0�

�

�

�

First, per-project rules defining code changes to ignore should be
added. For instance, all changes to version.php in WordPress
should be ignored. Future research in repository mining for
PICs should ignore documentation-only commits altogether,
and possibly strip comments from the code changes analyzed,
for example using island parsing. In addition, a per-project
whitelist of internal APIs known to have no impact on privilege
protection (e.g. profiling calls) could be used to filter out changes
further.

5 THREATS TO VALIDITY
We now discuss the threats to the validity of our study following

the guidelines for case study research [35].

Threats to internal validity are factors that may influence our

independent variables and that were not taken into account. Our

results depend on the accuracy of the PTFA engine that we used.

This engine relies on sound but conservative approximations for dy-

namic features common to PHP applications. These approximations

may lead to spurious paths and thus spurious protection-impacting

changes. The reported spurious path rate for PTFA is 10.96 ± 3.18%

(95% confidence level) [18].

Our results also depend on the source differencing tools we

used. We used GNU diff to extract line-level differences between

releases. This causes some imprecision in the vertex mapping be-

tween releases, and some vertices may be inaccurately considered

changed. However, this should not affect much our results, since

the output of the security-impacting change detection tool, and

the rest of the analysis is also at the line granularity. To validate

the detected protection-impacting changes, we randomly sampled

100 commits that are considered as PICs. We analyzed the corre-

sponding changed lines in these commits and observed that many

commits are exact protection-impacting changes, which provides

us confidence on the accuracy of our detection results.

Threats to conclusion validity are concerned with the relationship

between the treatments and the outcome. We paid attention to not

violate the assumptions when performing statistical analyses. In

RQ2, we only used non-parametric tests (including Mann-Whitney

U test and Cliff’s Delta effect size) that do not require making

assumptions on the distribution of our dataset. To mitigate the

familywise error rate in our null hypotheses, we used the Bonfer-

roni correction to calculate an adjusted p-value for each subject

characteristic. When building statistical models, we applied vari-

ance inflation factor (VIF) to remove multicollinearity among the

independent variables.

Threats to external validity affect the generalizability of our re-

sults. Despite the fact that our approach may leverage vulnerability

oracle, we did not have access to one for our study. Consequently,

we cannot study protection-impacting changes specifically for vul-

nerabilities and tune a model specifically for them. To counter this

issue, studies using a vulnerability oracle (e.g. a testbench with

known vulnerabilities) should be performed.

Another threat to generalizability is that our study is conducted

on two open source content management systems implemented in

PHP WordPress and MediaWiki. We may obtain different results

when studying other systems. We may also obtain different results

for systems in other languages. Our approach itself is reproducible

and language-independent, although the PTFA engine we used only

handles PHP at the moment. Consequently, our conclusions depend

on the change history of this single system. To counter this issue,

studies that include other systems, and systems in other languages,

should be performed.

6 RELATEDWORK
In this section, we discuss related studies on protection-impacting

analysis and just-in-time prediction.

6.1 Protection-Impacting Analysis
There were few studies on privilege protection changes. They all

used PTFA static analysis, and were conducted by comparing re-

leases. Letarte et al. [20] conducted a longitudinal study of privilege

protection over 31 phpBB releases. This application only used a

binary distinction between administrator and unprivileged users.

Laverdière and Merlo [17, 18] defined definite protection differ-

ences (previously named privilege protection changes) for richer

protection schemes than Letarte et al. They conducted longitudi-

nal studies over 147 release pairs of WordPress on the presence

of privilege protection changes, and their classification. They also

showed how to compute counter-examples for privilege protection

losses. These counter-examples are paths that do not integrate code

change information. Laverdière and Merlo [19] defined protection-

impacting changes using PTFA. They conducted a survey of 210

release pairs of WordPress. Their static analysis operated at the

granularity of release pairs and takes many minutes to complete.



In our paper, we built predictive models for security-impacting

changes that operate to commit granularities.

Protection-impacting change analysis is conceptually similar to

approaches that identify the cause of bugs during evolution, such as

Bugginings [29]. This tool identifies bug-introducing code changes.

It computes differences dependence graphs and may investigate

multiple versions. However, a major difference is that these tools

rely on an external oracle (e.g., bug reports), whereas our approach

is predictive.

6.2 Just-in-time Prediction
Traditional defect prediction techniques often use metrics from bug

reports to identify fault-prone modules or severity of bugs. Though

such defect prediction techniques can help software organizations

prevent defects to some extent, they don’t help developers handle

defects as soon as they are introduced in the system. In other words,

before a defect is definitely resolved, users have to suffer from

frustrations, such as bad user experience, data loss, and–or privacy

threats.

Just-in-Time defect prediction techniques are designed to predict

defects at commit level; helping developers to locate and address

defects right after a commit is submitted for integration in a version

control system. In a previous work, Kamei et al. [16] extracted a va-

riety of source code metrics at commit level to predict defect-prone

commits from six open-source systems and five commercial sys-

tems. Using just-in-Time defect prediction techniques, Fukushima

et al. [12] performed cross-project defect predictions. They observed

that the cross-project approach can be used for projects that possess

little historical data. Misirli et al. [22] extracted a series of code

and process factors at commit level and built statistical models to

predict high impact fix-inducing changes.

As far as we know, this is the first study of just-in-time prediction

techniques to identify protection-impacting changes.

7 CONCLUSIONS AND FUTUREWORK
In this paper, in order to enable just-in-time identification of com-

mits that cause privilege protection changes, we conducted an

analysis of protection-impacting changes across 211 release pairs

of WordPress and 193 release pairs of MediaWiki. We observe that

around 60% of commits submitted into the code repositories of these

systems affected privileges protections. To help developers identify

these changes early on before they are integrated in the code, we

extracted a series of metrics from commit logs and source code, and

build statistical models. The evaluation of these models showed

that they can achieve a precision up to 73.8% and a recall up to

98.8% in WordPress and for MediaWiki, a precision up to 77.2% and

recall up to 97.8%. Among the metrics that we examined; commit

churn, bug fixing, author experiences and code complexity between

two releases were the most important predictors in the models.

A qualitative analysis of the false positives and false negatives of

the models revealed that they are mostly due to documentation-

only commits. A minority of wrongly classified commits added

control flow branches (conditions or loops), which may in turn

have affected some of the observed metrics.

Our approach does not replace security reviews nor does it re-

move the need to use a PTFA-based protection-impacting change

detector. However, it may complement these approaches in a syn-

ergic manner and greatly reduce the number of code changes that

need to be reviewed for protection impacts at a later stage of the

software development process.

In future work, we would like to expand our study to more

systems, written in both PHP and other languages. We also plan to

conduct usability studies with professional developers to further

assess the usefulness of our proposed method. We would like to

quantify the savings in terms of review effort.
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