
Is it a Bug or an Enhancement? A Text-based Approach to

Classify Change Requests

Giuliano Antoniol and Kamel Ayari1 Massimiliano Di Penta2

Foutse Khomh and Yann-Gaël Guéhéneuc3

1 SOCCER Lab. – DGIGL, École Polytechnique de Montréal, Québec, Canada
2 RCOST, University of Sannio, I-82100 Benevento, Italy

3 Ptidej Team – GEODES, DIRO, Université de Montréal, Québec, Canada

E-mails: {giuliano.antoniol,kamel.ayari}@polymtl.ca,
dipenta@unisannio.it, {foutsekh,guehene}@iro.umontreal.ca

Abstract

Bug tracking systems are valuable assets for
managing maintenance activities. They are
widely used in open-source projects as well as
in the software industry. They collect many dif-
ferent kinds of issues: requests for defect fixing,
enhancements, refactoring/restructuring activ-
ities and organizational issues. These differ-
ent kinds of issues are simply labeled as “bug”
for lack of a better classification support or of
knowledge about the possible kinds.

This paper investigates whether the text of
the issues posted in bug tracking systems is
enough to classify them into corrective main-
tenance and other kinds of activities.

We show that alternating decision trees,
naive Bayes classifiers, and logistic regression
can be used to accurately distinguish bugs from
other kinds of issues. Results from empiri-
cal studies performed on issues for Mozilla,
Eclipse, and JBoss indicate that issues can be
classified with between 77% and 82% of correct
decisions.

Copyright c© 2008 Giuliano Antoniol, Kamel Ayari,
Massimiliano Di Penta, Foutse Khomh, and Yann-Gaël
Guéhéneuc. Permission to copy is hereby granted pro-
vided the original copyright notice is reproduced in
copies made.

This work has been partly funded by NSERC
Canada Research Chair Tier I in Software Change and
Evolution and a NSERC Discovery grant.

1 Introduction

Open-source as well as closed-source projects
manage issues1 using Bug Tracking Systems
(BTS). BTS should be used mostly to manage
issues related to corrective maintenance, i.e.,
bugs. Yet, they often contain entries concern-
ing other software activities, such as perfec-
tive or preventive maintenance; request for new
features; legal and licensing issues; discussions
about architectural changes and restructuring.

The mixing of different kinds of issues in BTS
can be easily observed by skimming through
the titles of the issues submitted. For exam-
ple, in Mozilla BTS under the category “Hot
Bugs”. As of the 14th of May 2008, “Hot
Bugs”2 include bugs such as “Arrow keys stop
working after going back one page” (issue num-
ber 430723) and other kinds of issues such as
“Bring back the advanced search options from
v2 to Remora” (request for enhancement, issue
number 372841) and “disc” should be “disk”
(translation problem, issue number 273267).

Therefore, BTS are used as centralized black-
boards where developers and users discuss and
record decisions about various issues and doc-

1Such issues are commonly called “bug reports” or
“bugs” but we avoid using these terms because issues
are not always bugs, as we will see in the following.

2Mozilla “Hot bugs” are available at https:

//bugzilla.mozilla.org/duplicates.cgi?sortby=

delta&reverse=1&maxrows=100&changedsince=30.

ument corrective maintenance as well as other
activities. In the following, we refer to a correc-
tive maintenance request as a bug while other
BTS issues, such as perfective and adaptive
maintenance, refactoring, discussions, requests
for help, and so on, are referred to as non bug.

This paper tackles the problem of classify-
ing issues into two classes: bugs and non bugs,
with the goal of building automatic classifi-
cation systems. Such automatic classification
systems, or classifiers, can be used for assign-
ing bugs to developers, building error proneness
models, and effectively scheduling other activ-
ities such as enhancement or restructuring.

We choose to use alternating decision trees
(an extension of classification trees), naive
Bayes classifiers, and logistic regression to build
classifiers. Our choice is motivated by the
observation that these machine learning tech-
niques produce classifiers more easily inter-
pretable at the price of training the classi-
fiers on a set of pre-labeled data. Five soft-
ware engineers manually classified BTS en-
tries randomly extracted from resolved issues
of Mozilla, Eclipse, and JBoss. On the manu-
ally tagged corpus, we built classifiers and eval-
uated their accuracy (precision and recall) via
cross validation.

The contribution of this paper is three-fold:

1. We report our experience in classifying
manually 1,800 issues extracted from the
BTS of Mozilla, Eclipse, and JBoss using
simple majority voting.

2. Using the previous manual classification,
we answer three research questions:

• RQ1: Issue classification. To what
extent the information contained in
issues posted on bug tracking sys-
tems can be used to classify such is-
sues, distinguishing bugs (i.e., cor-
rective maintenance) from other ac-
tivities (e.g., enhancement, refactor-
ing. . .)?

• RQ2: Discriminating terms. What
are the terms/fields that machine
learning techniques use to discern
bugs from other issues?

• RQ3: Comparison with grep. Do
machine learning techniques perform

better than grep and regular expres-
sion matching in general, techniques
often used to analyze Concurrent
Versions Systems(CVS)/SubVersioN
(SVN) logs and classify commits be-
tween bugs and other activities?

3. While answering the previous research
questions, we build classifiers for BTS is-
sues with between 77% and 82% of correct
decisions. We also provide evidence that
a large number of issues stored in BTS is
not related to corrective maintenance and
thus to bugs, putting in perspective previ-
ous work on BTS and defect estimation.

The remainder of this paper is organized as
follows: Section 2 discusses related work. Sec-
tion 3 summarizes background notions on the
BTS and machine learning techniques. Section
4 describes our research questions, the objects
of our study, and the process applied to build-
ing the Oracle. Section 5 reports the results
of the study and the answers to our questions.
Finally, Section 6 concludes the paper and in-
troduces future work.

2 Related Work

Project and source code metrics, architectural
and design features are used as independent
variables in models explaining or predicting de-
fects. The prediction can be performed at dif-
ferent levels of granularity, i.e., can be related
to units such as components, classes, files, func-
tions, or methods; the number of defects con-
tained in the unit or the probability that the
unit contains at least one defect is almost al-
ways the dependent variable [15, 17, 21, 23, 25].
The underpinning assumption is that an accu-
rate defect prediction can profitably direct ver-
ification and validation activities to the subset
of artifacts with a higher error proneness.

As previously shown by Basili et al. [5] and
Gyimothy et al. [15], multivariate logistic re-
gression [1] represents an effective technique to
study the relationship between the fault prone-
ness of classes and source code metrics.

In recent years, the literature reported con-
tributions on merging data from CVS and bug
reports to identify whether CVS changes are

related to bug fixes, to detect co-changes and
to study evolution patterns.

Fischer et al. [11] discussed their experi-
ence in populating a relational database with
data from Mozilla CVS and bug report repos-
itories. To trace CVS changes to bug reports,
they used a pattern matching approach to iden-
tify CVS messages related to bug fixing. They
investigated the impact of qualified release his-
tory data on different source code model enti-
ties [10], also using runtime data to build the
source code model. They concluded on the pos-
sibility of reconstructing information about the
evolution of systems but underscored the need
for the CVS to support some formal mecha-
nism for linking detailed modification reports
and classification of changes.

Sliwerski et al. [21] introduced a refined ap-
proach to identify whether a change induced a
bug fix. They combined a syntactic analysis,
i.e., pattern matching, with semantic analysis.
Semantic analysis compared the author’s name
of the CVS change with that of the developer
responsible to propose bug fixing in Bugzilla.
Consistency of dates and file versions were also
part of their heuristics. They found that the
larger a change, the more likely it is to induce a
fix. They also found that in the Eclipse project,
fixes are three times as likely to induce a later
change than ordinary enhancements.

The idea of logical coupling between source
code artifacts based on data extracted from re-
lease history was introduced by Gall et al. [13].
Ying [28] presented an approach for the identi-
fication of logical coupling that computes as-
sociation rules among files by applying data
mining techniques on CVS repositories. At the
same time, Zimmermann et al. [29] proposed a
change-coupling identification approach capa-
ble of recovering fine-grain co-changing entities
(e.g., classes, methods, fields). They predicted
future changes by detecting causal couplings
between entities and assessed change impact
to prevent incomplete changes. German [14]
abstracted co-changing files into modification
requests and analyzed their interrelationships
and authors.

Weißgerber et al. [25] discussed whether
some types of co–changes, in particular refac-
torings, are less error prone than other types

of changes, identifying cases in which this was
true and cases in which it was not.

Wang et al. [24] proposed an approach to as-
sist triagers in detecting duplicate issues. Their
approach combines both natural language in-
formation and execution information in the de-
tection. They employed two heuristics to com-
bine the two kinds of information. They cali-
brated and evaluated their approach on bug re-
ports from the Eclipse and Firefox repositories
and concluded that it performs better than the
best performance of approaches using only nat-
ural language information. However, their ap-
proach depends on execution information that
are often absent and, if present, costly to ob-
tain and manage because it must be treated
manually.

The work presented in this paper builds upon
previous contributions, mainly on the work of
Sliwerski et al. [21] to study the consistency of
data from different sources. No previous work
deeply investigated the kinds of data stored
in BTS, such as the Mozilla’s Bugzilla BTS.
The main contribution is therefore in the an-
swers to the research questions formulated in
the introduction. Although, as any experimen-
tal study, we must be wary of some possible
threats to the validity of our results (cf. Sec-
tion 5.4), reported results put into perspective
approaches that combine data from CVS and
Bugzilla repositories to build quality models:
only a subset of issues (about a half) posted on
Bugzilla are real bugs, i.e., related to corrective
maintenance.

3 Background

This section provides background information
about the two BTS from which we downloaded
issues to be classified, and about the machine
learning techniques used in this paper.

3.1 Bug Tracking Systems

A standard chain of “reaction” to bugs is the
following: the client, analyst, or developer
makes an error while describing the problem or
developing software artifacts. This error may
or may not result in a fault in the system, an
unexpected state. This unexpected state may

or may not result in a bug, a visible and non-
desired event from a user’s point of view. When
a bug is discovered, it manifests itself, it is doc-
umented and details are posted on BTS.

There exist several BTS, more generally
known as ticket tracking systems, but Bugzilla3

and Jira4 are among the two most popular due
to their use in major open-source projects, such
as Mozilla, Eclipse, and JBoss. Both Bugzilla
and Jira are Web-based systems, offering two
principal user interfaces: an interface to consult
the list of stored issues and an interface to post
and reply to issues. BTS are just front-end to
databases and can be queried in different ways.
Bugzilla program model is based on CGI-BIN
and can be easily queried via HTML get; Jira
supports RSS and, thus, any RSS reader with
an XML parser can be used to extract data.

When posting an issue, most BTS offer a
set of fields to label the issue, including sever-
ity; keywords; the product, component, ver-
sion, hardware, and operating system against
which the issue is filled. Neither Bugzilla
nor Jira make a real distinction between er-
ror, faults, bugs and their synonyms, such as
defects, crashes, problems. For example, all
Bugzilla issues are referred to as bugs and only
the “Severity” field allows the tag “Evolution”.

Bug life cycle somehow depends on the spe-
cific bug tracking tool; however, similarities
can be identified. When a new bug is discov-
ered, its life begins in the “New” or “Uncon-
firmed” status. At this stage, the bug is as-
signed a unique identification number (ID) as
well as some properties such as severity, prior-
ity, components it affects, discovered and re-
ported time-stamps [3].

Subsequently, a programmer takes the lead
or is assigned to the task of proposing a fix.
Bug fixes are often submitted as Unix patches
or context diff. Patches are associated to bugs
via an attachment table linked to the bug ID.
Once a bug resolution is proposed and ap-
proved, its status reaches the final disposition
of “Close”. However, at least for the projects
considered in this paper, a bug almost never
reaches the “Close” state: once it is tagged as
“Resolved”, it remains forever in this state.

3http://www.bugzilla.org/
4http://www.atlassian.com/software/jira/

3.2 Machine Learning Tech-
niques

A classifier is a function f : Rd 7→ C that as-
sign a label from a finite set of classes C =
{c1, . . . , cq} to observations x ∈ Rd. In this pa-
per we are interested in the family of binary
classifiers where there are only two classes and
thus C contains only two symbols C = {0, 1}
or C = {non bug, bug}.

Three families of machine learning tech-
niques are available to build a classifier: un-
supervised learning, supervised learning, and
reinforcement learning [18, 2]. Unsupervised
learning, for example clustering algorithms,
classifies available data based on some fitness
or cost function: often a distance or similar-
ity. Supervised learning, e.g., ClAssification
and Regression Trees (CART), assumes that
a training set of labeled data is available. A
classifier is then built by maximizing some gain
or minimizing a cost function, representative of
the accuracy of the classifier with respect to the
a-priori classification. In reinforcement learn-
ing, a user is required to decide if the classifica-
tion for the current piece of data is correct; the
classifier then incrementally learns a classifica-
tion function. This later family of techniques
is not well suited for off-line classification but
has been successfully applied in traceability re-
covery [16].

Unsupervised learning techniques are ap-
pealing because no pre-labeled data is needed;
however, it is very difficult to interpret the re-
sulting classification and it may be hard to de-
rive guidelines linking the classification with
characteristics of the data or of the develop-
ment process.

Supervised learning techniques, in particular
algorithms such as CART, Bayesian classifiers,
or logistic regression, produce classifiers more
easily interpretable but require a labeled cor-
pus. A labeled corpus is a set of pairs (ob-
servation, label) assumed as are random vari-
ables (X, Y) drawn from a fixed but unknown
probability distribution µ. The objective of the
learning techniques is to find a classifier f with
a low error probability Pµ[f(X) 6= Y].

Both the selection and the evaluation of f
must be based on some data set Dn containing
n labeled pieces of data because the data distri-

bution µ is unknown. Therefore, Dn is usually
split into two parts, the training sample Dm

and the test sample Dn−m.
A learning algorithm is a method that takes

the training sample Dm as input and outputs a
classifier f(x; Dm) = fm(x). A common learn-
ing method chooses a function fm from a func-
tion class that minimizes the training error

L(f, Dm) =
1
m

m∑

i=1

I{f(xi) 6=yi} (1)

where IA is the indicator function of event A.
Examples of learning algorithms using this

method include the back propagation algo-
rithm for feed-forward neural nets [7] or the
C4.5 algorithm for decision trees [19].

To evaluate the chosen function, the error
probability Pµ[f(X) 6= Y] is estimated by the
test error L(f, Dn−m).

3.2.1 Model Feature Selection

Several machine learning models to classify
BTS issues could be built. As in all uses of ma-
chine learning techniques, we are interested in
selecting the most parsimonious model, i.e., in-
cluding the smallest possible subsets of charac-
teristics (features) describing a BTS issue, but
still having an acceptable accuracy. To account
for both false positives and false negatives, we
quantify accuracy via standard information re-
trieval measures: precision and recall [12].

Among all the available features (terms and
other BTS fields) that could be used to describe
a BTS issue, techniques such as backward elim-
ination [20] can be applied to select a subset of
the characteristics leading to the most accurate
classifier. The cost of selecting variables is very
high and can only be performed in off-line ap-
proaches as the ones used in this paper. Fur-
thermore, multiple runs may be needed with
different set of independent variable and differ-
ent variable selection strategies in a trial-and-
error approach.

In the following, we provide a short descrip-
tion of the algorithms used to build classifiers
for BTS issues: decision trees, naive Bayes clas-
sifiers, and logistic regression.

3.2.2 Decision Tree

A decision tree is a complete binary tree where
each inner node represents a yes-or-no question,
each edge is labeled by one of the answers and
terminal nodes contain one of the classification
labels from the set C.

The decision making process starts at the
root of the tree. Given an input vector x
(a1, . . . , ad), the questions in the internal nodes
are answered and the corresponding edges are
followed. The label c of x is determined when
a leaf is reached.

In our case, the leaf node are labeled with
either 0 or 1 to indicate whether an issue is a
bug or not. The internal node contains ques-
tion regarding the values of various fields from
the issue, for example whether the word “criti-
cal” appears in the text describing the entry or
if the entry was tagged as “Enhancement”.

In this paper we applied the Alternating De-
cision trees, or AD trees; AD trees are an ex-
tension of traditional classification trees that
rely on boosting to produce robust classifiers
[26].

3.2.3 Naive Bayes Classifier

A Bayesian classifier is a simple classification
technique that classifies a d-dimensional ob-
servation xi by determining its most probable
class c computed as:

c = arg max
ck

p(ck|a1, . . . , ad),

where ck ranges over the set of classes in C and
the observation xi is written as a generic at-
tribute vector. By using the rule of Bayes, the
probability p(ck|a1, . . . , ad) called probability a
posteriori, is rewritten as:

p(a1, . . . , ad|ck)∑q
h=1 p(a1, . . . , ad|ch)p(ch)

p(ck).

The classifier structure is drastically simpli-
fied under the assumption that, given a class
ck, all attributes are conditionally independent.
Under this assumption the following common
form of a posteriori probability is obtained:

p(ck|a1, . . . , ad) =

∏d
j=1 p(aj |ck)

∑q
h=1

∏d
j=1 p(aj |ch)p(ch)

p(ck).

(2)
When the independence assumption is made,

the classifier is called naive Bayes classifier.
The p(ck) marginal probability [9] (or base
probability [8]) is the probability that a mem-
ber of a class ck will be observed. The p(aj |ck)
prior conditional probability is the probabil-
ity that the jth attribute assumes a particu-
lar value aj given the class ck. These two
prior probabilities determine the structure of
the naive Bayes classifier. They are learned,
i.e., estimated, on a training set when building
the classifier.

3.2.4 Logistic Regression

In a logistic regression classifier, the dependent
variable is commonly a dichotomous variable
and, thus, C assumes only two values {0, 1};
The multivariate logistic regression classifier is
based on the formula:

π(X1, X2, . . . , Xn) =
eC0+C1·X1+···+Cn·Xn

1 + eC0+C1·X1+···+Cn·Xn

(3)
where Xi are the characteristics describing the
modeled phenomenon, and 0 ≤ π ≤ 1 is a value
on the logistic regression curve. In our prob-
lem, variable Xi will be words describing the
issue. Thus, the closer the value is to 1, the
higher is the probability that the bug tracking
issue will describe a bug. To use the model as
a classifier, a threshold is chosen. For example,
if the threshold is equal to 0.5, an issue is con-
sidered to be a corrective maintenance request
if π > 0.5.

4 Description and Oracle

Supervised learning techniques require a la-
beled corpus, a set of tagged BTS issues acting
as the Oracle for the machine learning tech-
niques. These issues are processed to extract
characteristics also called features, used as in-
dependent variables by the various supervised
techniques. This section defines the empiri-
cal study we performed, the addressed research

questions, the oracle construction, the extrac-
tion of the features, and the automatic classifi-
cation of the manually-indexed issues.

4.1 Description

The description of the study follows the Goal-
Question-Metric paradigm [4]. The goal of this
empirical study is to investigate how the text
contained in issues posted on BTS can be used
to classify such issues using machine learn-
ing techniques. The quality focus is achiev-
ing a high percentage of correctly classified is-
sues for the two classes of issues that we con-
sider: “bug”, “non-bug”. The perspective is
both of researchers, who often use bug track-
ing information to build models (assuming that
all issues are related to bugs and using simple
pattern matching for the classification) and of
project managers, who want to quickly distin-
guish particular kinds of issues. The context
of this study is composed of three large open-
source systems: Eclipse, Mozilla and JBoss.

This study aims at answering the research
questions defined in the introduction:

• RQ1: Issue classification. To what ex-
tent the information contained in issues
posted on bug tracking systems can be
used to classify such issues, distinguishing
bugs (i.e., corrective maintenance) from
other activities (e.g., enhancement, refac-
toring)?

• RQ2: Discriminating terms. What are the
terms/fields that machine learning models
use to discern bugs from other issues?

• RQ3: Comparison with grep. Do machine
learning approaches perform better than
grep and regular expression matching in
general, approaches often used to analyze
CVS/SVN logs and classify commits be-
tween bugs and other activities?

4.2 Objects

We perform our study using three well-known,
industrial-strength, open-source systems.

Eclipse is an open-source integrated develop-
ment environment. It is a platform used both
in open-source communities and in industry.

Systems Bug Non bugs Others
Mozilla 270 209 121
Eclipse 194 382 24
JBoss 345 99 156

Table 1: Final classification over the 1,800 BTS
issues for Mozilla, Eclipse and JBoss.

Eclipse is mostly written in Java, with C/C++
code used mainly for widget toolkits. Eclipse
CVS and bug repositories were mirrored locally
at the end of 2006. We extracted all bugs and
selected 10,386 bugs, those tagged as either
“Verified” or “Resolved”, i.e., bugs for which
a resolution is known.

The Mozilla suite is an open-source suite im-
plementing the Web browser and other tools
such as mailers and newsreaders. It was ported
on almost all software and hardware platforms.
It is developed mostly in C++, with C code
accounting for only a small fraction of the sys-
tem. As for Eclipse, we are interested in the
92,858 bugs that are tagged as “Verified” or
“Resolved”.

JBoss is an enterprise-application platform
and web-service application stack to develop,
deploy, and manage Java service-oriented en-
terprise applications. It supports replication,
transaction, caching, messaging, and cluster-
ing. It extends Java EE (J2EE 1.4) via fea-
tures such as EJB3.0, Java Persistence API 1.0,
Servlet 2.5, and so on. It is almost entirely de-
veloped in Java and XML plus shell scripts and
batch files. As for Mozilla and Eclipse, we con-
centrate our effort on bugs for which a resolu-
tion was known. JBoss bugs are store in Jira.
We use a RSS feeder to extract the 3,207 issues
classified as “Resolved”.

We select issues with the “Resolved” or
“Closed” status to avoid duplicated bugs, re-
jected issues, or issues awaiting triage.

4.3 Building of the oracle

We classified, first manually, and then auto-
matically, issues from the BTS of the three sys-
tems. It is clearly infeasible to manually clas-
sify each bug as either corrective maintenance
or not because of the orders of magnitude of
the numbers of retained bugs.

Therefore, we randomly sample and manu-
ally classify 600 issues for each system. Overall,

1,800 distinct issues are sampled. We organize
the issues in bundles of 150 entries each. For
every subset, we ask three software engineers
to classify the issues manually. They are asked
to state if the issues are a corrective mainte-
nance (bugs) or a non-corrective maintenance
(enhancement, refactoring, re-documentation,
or other, i.e., non bug). The classifications go
through a simple majority vote and a decision
on the status of each issue is made. An en-
try is considered a corrective maintenance if at
least two out of three engineers classified it as
a corrective maintenance (hereby referred to as
“bug”). Otherwise the entry is considered as
a non-corrective maintenance (hereby referred
to as “non bug”). The obtained classifications
are reported in Table 1

Manually classifying the issue is often a non
trivial task: terms like “defect”, “error”, “bug”
are not only used to describe corrective main-
tenance but also other form of maintenance.
Indeed, as reported in Table 2, the dictionaries
extracted from bug and non-bug issues share a
non negligible number of words; they have non-
null intersection. Thus, the presence of terms
like “bug” or “defect” does not suffice to clas-
sify an issue as a bug, even if these terms are
more frequent in corrective maintenance.

Table 1 suggests that Mozilla, Eclipse, and
JBoss BTS contain a large fraction of non-
bug issues. Notice the last column of the ta-
ble: these are BTS issues that have nothing
to do with bug fixing or evolution. For exam-
ple, BTS issues in which a user complains of a
problem related to his version of an operating
system library unsupported by the application,
requests an obsolete release, requests bug fixing
of a component not belonging to the system, re-
quests for write access to SVN/CVS repository,
configuration help, and so on.

This labeled corpus is used to build explana-
tory as well as predictive models. These mod-
els could be then subsequently used to pre-
dict whether a new issue is a bug (thus, asking
for the developers’ attention) or something else
(thus to be considered by the developers or the
managers).

Stemmed Dictionary Size
Systems Corrective Maintenance Non Corrective Maintenance Intersection
Mozilla 2,216 1,718 993
Eclipse 673 892 392
JBoss 3,575 1,386 1,065

Table 2: Characteristics of the dictionaries for Mozilla, Eclipse, and JBoss manually-classified issues.

4.3.1 Feature Extraction

Mozilla and Eclipse BTS issues are downloaded
as HTML files while JBoss issues as XML doc-
uments. The downloading of the issues is per-
formed using a Perl script wrapping the wget
command. Feature extraction is also performed
using another Perl script.

To apply machine learning techniques, we
need to preprocess the HTML/XML texts of
the issues. When extracting text from BTS is-
sues, we consider and distinguish different lin-
guistic features, namely: the title, the descrip-
tion, and the discussion following the descrip-
tion. In Bugzilla and Jira, these features have
minor syntactic variation, thus two different
parsers are needed to extract the textual part
of title, description, and discussion.

Linguistic features undergo the standard
processing, i.e., text filtering, stemming, and
indexing [12]. We do not apply stopping be-
cause it removes common English term such as
“should”, “might”, “not”. These terms are ir-
relevant in most general purpose information
retrieval systems but may be important in our
study. The semantic of a sentence “This is not
a bug” is completely lost if the standard En-
glish stop-words are removed because the re-
sult is “This is bug”. Filtering was limited
to punctuation removal [12] and some specific
transformations, such as splitting paths, e-mail
addresses, and camel-case identifiers (i.e., to
divide “MyUser account” into “My”, “User”,
and “account”). Filtering is followed by a stem-
ming phase, aimed at removing plural, identify-
ing the infinitive of verbs, etc. using the Porter
stemmer [6] from the lsa package of the statis-
tical environment R5.

A vector space is then built using the lin-
guistic data [12]. Each BTS issue is mapped
into a vector via the dictionaries built with
filtered and stemmed data. Each vector el-
ement contains the raw frequency of a term

5http://www.r-project.org

in the document (i.e., in the BTS issue). In
previous work using linguistic data, good re-
sults were obtained using the tf-idf indexing
instead of the raw frequency, because the use
of the inverse document frequency (idf) penal-
izes terms appearing in too many documents
(not discriminating). However, this is not so in
our study: terms such as “failure”, “crash”, or
“should” actually appear in many documents
but, as we discover, constitute interesting fea-
tures that guide the classification techniques to
distinguish bugs from non-bugs.

Finally, each indexed BTS issue is
augmented with its class {0, 1}, i.e.,
{non bug, bug}. This column is used by
the machine learning techniques during the
training phase.

The best classification results on the three
systems are achieved with the sole issue de-
scription; therefore, due to space limitation, we
limit ourselves to report only those results in
Section 5.

4.4 Automatic Classification

The automatic classification of BTS issues is
performed using the Weka tool6, in partic-
ular using the symmetrical uncertainty at-
tribute selector, the standard probabilistic
naive Bayes classifier, the alternating decision
tree (ADTree), and the linear logistic regres-
sion classifier.

We first use a feature selection algorithm to
select a subset of the available features with
which to perform the automatic classification.
Then, each automatic classifier is trained on a
set of BTS issues and its performance is evalu-
ated using cross validation [22]. In particular,
we use a 10-fold cross validation, i.e., dividing
each set of issues in 10 sets, training the classi-
fier on 9 of them, classifying the remaining set
to test accuracy, and repeating the process to
classify all the 10 sets.

6www.cs.waikato.ac.nz/ml/weka/

5 Results and Discussions

This section reports the results of automatic
classification of issues and of the evaluation of
the performances of the obtained classifiers, an-
swering the research questions formulated in
Section 4.

5.1 RQ1: Issue Classification

Tables 3, 4 and 5 report the confusion matri-
ces for Mozilla, Eclipse, and JBoss respectively.
They are calculated from the automatic classi-
fication of issues using the different techniques,
and selecting a different number of features, as
described in Section 3.2.1. The matrices re-
port correct classifications on the main diag-
onal (while the other two cells report wrong
classifications) as well as precision and recall
for both classes, and the percentage of correct
decision (in bold).

For Mozilla (see Table 3), we note that in-
creasing the number of features from 20 to 50
helps in increasing the recall of non-bug issues
and the precision of bug issues, while decreas-
ing the recall for bug issues, for ADTree and
logistic regression; for ADtree, it also increases
the precision for non-bug issues while for logis-
tic regression, it decreases the precision from
73% to 71%.

The naive Bayes classifier only exhibits a lim-
ited improvement when increasing the number
of features, with an increase of the recall from
49% to 65% and of the precision of non-bug
issues from 57% from 64%.

Overall, considering precision and recall for
both classes, regression logistics appears to per-
form better than other classifiers, although dif-
ferences with the naive Bayes classifier are lim-
ited. Interestingly, the logistic regression with
50 features has an overall correct decision rate
of 77% much higher of any random or con-
stant classifies and substantially better of naive
Bayes or AD trees.

No further improvements were found when
increasing the number of selected features
above 50.

For Eclipse (see Table 4), the improvement
obtained when increasing the number of fea-
tures is very limited if any. The performance
of the three classifiers is similar (with the ex-

ception of the ADTree that has a lower recall
for bugs: 52% with 20 features and 49% with
50 features). Again, the logistic regression per-
forms slightly better than other techniques not
only in terms of precision and recall but also
as percentage of correct decisions with a 18%
error rate.

For JBoss (see Table 5), we consider a
larger number of features than for Mozilla and
Eclipse, 50 and 100, because we obtain poor
results with 20 features. Overall, we note that
(1) for all three classifiers, there is a slight im-
provement when using 100 features instead of
50 and (2) that the logistic regression again
out-performs other classifiers, although the re-
call for non-bug issues is very low with 29%,
still it achieves an 82% correct decision.

The data in Tables 3, 4 and 5 show that
the classifiers out-perform the random and con-
stant classifiers (that would always classify an
issue as bug or as non-bug), although perfor-
mances of the automatic classifiers vary. For
example, a constant classifier on Mozilla would
always answer “It is a bug” and, thus, would
have a 100% recall and a precision of 56%
on bugs at the price of a null recall on non-
corrective maintenance; overall it has 56% cor-
rect decision.

We therefore conclude that the information
contained in issues posted on bug tracking sys-
tems can be indeed used to classify such issues,
distinguishing bugs from other activities, with
a precision between 64% and 98% and a recall
between 33% and 97%, and an error rate be-
tween 18% and 23%.

5.2 RQ2: Discriminating Terms

In addition to showing that the information
contained in the issue is enough to classify them
as bug or non-bug, we study the features that
are used to perform the classification. This
study is possible for the decision tree, for which
the tree itself can be visualized, and for the lo-
gistic regression, for which the variables and
their related coefficients can be more easily
studied. Moreover, the number of features re-
ally used by these two classifiers is smaller than
the number of selected features because both
these classifiers perform a further selection over
the subset of all provided features.

Selected
Naive Bayes ADTree Logistic Regression

Features

Predicted Predicted Predicted
Bug Non-bug Rec. Bug Non-bug Rec. Bug Non-bug Rec.

20 Bug 133 137 49% 251 19 93% 240 30 89%
Non-bug 28 181 87% 142 67 32% 127 82 39%

Prec. 83% 57% 66% 64% 78% 66% 65% 73% 67%

Predicted Predicted Predicted
Bug Non-bug Rec. Bug Non-bug Rec. Bug Non-bug Rec.

50 Bug 175 95 65% 162 108 60% 205 65 76%
Non-bug 41 168 80% 49 160 77% 46 163 78%

Prec. 81% 64% 72% 77% 60% 68% 82% 71% 77%

Table 3: Mozilla: automatic classification confusion matrices (in bold percentage of correct deci-
sions).

Selected
Naive Bayes ADTree Logistic Regression

Features

Predicted Predicted Predicted
Bug Non-bug Rec. Bug Non-bug Rec. Bug Non-bug Rec.

20 Bug 110 84 57% 101 93 52% 114 80 59%
Non-bug 30 352 92% 27 355 93% 32 350 92%

Prec. 79% 81% 80% 79% 79% 79% 78% 81% 81%

Predicted Predicted Predicted
Bug Non-bug Rec. Bug Non-bug Rec. Bug Non-bug Rec.

50 Bug 117 77 60% 96 98 49% 120 74 62%
Non-bug 33 349 91% 29 353 92% 29 353 92%

Prec. 78% 82% 81% 77% 78% 78% 80% 83% 82%

Table 4: Eclipse: automatic classification confusion matrices (in bold percentage of correct decisions).

Figure 1 shows an example of an ADtree for
Mozilla. Decision points with a positive co-
efficient indicate that, if the expression on the
right side is true, the decision is leaning towards
classifying the issue as a “bug”. Negative coef-
ficients indicate a decision towards classifying
the issue as “non-bug”. It is worth to be noted
that the terms represented in the tree are stem
of words contained in the BTS issues.

We note that terms such as “crash”, “critic”,
“broken”, “when” (often used when one wants
to reproduce an issue) lead to classifying the
issue as a “bug”, while terms such as “should”,
“implement”, “support” cause a classification
as “non-bug” (mostly a request for enhance-
ment or for a new feature).

Moreover, when Bugzilla “Severity” field is
used—field that should actually be used to dis-
tinguish bugs from non-bugs—the “Enhance-
ment” value indicates a possible classification
as non-bug, while “major” as bug.

Figure 2 shows an example of ADTree for
Eclipse (negative coefficients mean non-bug).
Again, when the “Severity” field is used, “En-
hancement” leads towards a non-bug classi-
fication. Terms, such as “failur(e)”, “fail”,

“npe” (null-pointer exception), “except(ion)”,
“error”, lead towards a bug classification.

Figure 3 shows the logistic regression co-
efficients obtained for Eclipse. Positive co-
efficients lead the classification tend towards
a non-bug classification, while negative coeffi-
cients towards a bug classification. Again, the
“Severity” field plays an important role: “En-
hancement” indicates a non-bug issue while all
other values a possible non-bug.

Interestingly, we note that the value “trivial”
was used for some issues in Bugzilla “Severity”
tag for bugs. Terms having a high influence
for the “bug” classification are, for example,
“except(ion)”, “fail”, “npe” (null-pointer ex-
ception), “error”, “correct”, “termin(ation)”,
“invalid”. Terms such as “provid(e)”, “add”,
possibly indicate a non-bug issue.

Figure 4 shows logistic regression coefficients
for JBoss. Negative coefficients lead the classi-
fier towards a non-bug classification. Although
we still have terms such as “pointer” and “in-
correct” among the terms used for the bug clas-
sification and terms such as “should” for the
non-bug classification, the interpretation is less
intuitive.

Selected
Naive Bayes ADTree Logistic Regression

Features

Predicted Predicted Predicted
Bug Non-bug Rec. Bug Non-bug Rec. Bug Non-bug Rec.

50 Bug 112 232 33% 319 25 92% 335 9 97%
Non-bug 4 95 96% 86 13 13% 78 21 21%

Prec. 97% 29% 46% 79% 34% 75% 81% 70% 80%

Predicted Predicted Predicted
Bug Non-bug Rec. Bug Non-bug Rec. Bug Non-bug Rec.

100 Bug 145 199 42% 315 29 92% 333 11 97%
Non-bug 3 96 97% 76 23 23% 70 29 29%

Prec. 98% 32% 54% 80% 44% 76% 83% 72% 82%

Table 5: JBoss: automatic classification confusion matrices (in bold percentage of correct decisions).

| (1)crash < 0.5: 0.056

| | (9)broken < 0.5: 0.039

| | (9)broken >= 0.5: -0.9

| (1)crash >= 0.5: -1.639

| (2)SEV = _enhancement: 1.334

| (2)SEV != _enhancement: -0.072

| | (4)when < 0.5: 0.057

| | | (5)SEV = _major: -0.604

| | | (5)SEV != _major: 0.053

| | (4)when >= 0.5: -0.636

| (3)support < 0.5: -0.03

| | (7)should < 0.5: -0.064

| | | (8)from < 0.5: 0.032

| | | (8)from >= 0.5: -0.825

| | | (10)implement < 0.5: -0.046

| | | (10)implement >= 0.5: 1.071

| | (7)should >= 0.5: 0.462

| (3)support >= 0.5: 1.421

| (6)critic < 0.5: 0.039

| (6)critic >= 0.5: -0.759

Figure 1: Mozilla: Example of ADtree

Therefore, we conclude that certain terms
and fields lead to more discriminating classi-
fiers between “bug” and “non-bug” issues.

5.3 RQ3: Comparison with grep

To assess the usefulness of the machine-learning
classifiers, it is useful to compare their perfor-
mance with those of the simplest classifier that
developers would have used: string and regular
expression matching, e.g. using the Unix util-
ity grep. For example, developers would search
for files containing the term “bug” or synonyms
such as “defect” or “problem”.

Several combinations of conjunctions or dis-
junctions with synonyms and abbreviations of
the term bug are possible. We apply the regu-

| (1)SEV = enhancement: -1.587

| (1)SEV != enhancement: 0.291

| | (3)not < 0.5: -0.086

| | | (7)SEV = normal: -0.08

| | | (7)SEV != normal: 0.309

| | | (10)failur < 0.5: 0.034

| | | (10)failur >= 0.5: 0.775

| | (3)not >= 0.5: 0.64

| (2)except < 0.5: -0.063

| | (4)fail < 0.5: -0.07

| | | (8)npe < 0.5: -0.042

| | | | (9)doe < 0.5: -0.034

| | | | (9)doe >= 0.5: 0.577

| | | (8)npe >= 0.5: 1.06

| | (4)fail >= 0.5: 1.428

| (2)except >= 0.5: 1.58

| (5)error < 0.5: -0.024

| | (6)when < 0.5: -0.04

| | (6)when >= 0.5: 0.631

| (5)error >= 0.5: 0.891

Figure 2: Eclipse: ADtree example

lar expression introduced by [21] and [11] to
classify bugs and recovery traceability links
between BTS and CVS or SVN repositories.
More details on this technique can be found in
[3].

More precisely, we classify issues my means
of the following grep regular expression to max-
imize retrieval:

\bfix| \ bbug| \ bproblem| \ bdefect| \ bpatch

Each hit on the filtered textual information of
the 1,800 manually-classified bugs was consid-
ered as a detected bug; multiple hits on the
same issues were not counted. This regular ex-
pression is a minor variant of [21, 11, 3]. The
difference is the term \b, a word boundary (e.g.,

[SEV=trivial] * -0.26 +

[SEV=enhancement] * 1.69 +

[SEV=blocker] * -0.42 +

[SEV=major] * -0.45 +

[SEV=critical] * -0.21 +

[except] * -2.36 +

[fail] * -2.42 +

[doe] * -0.71 +

[not] * -0.58 +

[when] * -0.42 +

[error] * -0.92 +

[npe] * -1.97 +

[add] * 0.4 +

[correct] * -1.7 +

[provid] * 0.38 +

[termin] * -1.98 +

[other] * -1.63 +

[bad] * -1.75 +

[invalid] * -1.62 +

[record] * -1.41 +

[renam] * -1.07 +

[work] * -0.27 +

[failur] * -1.03

Figure 3: Eclipse: Logistic Regression Coeffi-
cients

white space or a parenthesis) that we use to
decrease the number of false positive (e.g., to
avoid matching “preFIX”).

The data in Tables 6,7, 8 shows the accuracy
of using the regular expression with respect to
the manual classification, i.e., bug and non-
bug data from Table 1. Precisions and recalls
are not very high, if compared to the results
obtained using other classifiers and shown in
Tables 3, 4 and 5. In addition, since a sim-
ple string-matching is performed, it is impos-
sible to automatically distinguish a meaningful
matching from a false positive matching.

Predicted
Recall

Bug Non Bug

Issues
Bug 23 247 9%

Non bug 12 197 94%
Precision 66% 44% 46%

Table 6: Mozilla grep confusion matrix for
manually classified bugs (in bold percentage of
correct decisions).

As reported in the tables, grep achieves at
most 67% correct decisions (i.e., on Eclipse)
but with a bug recall of only 6%. We can con-

[jboss] * 0.04 +

[sentenc] * -1.13 +

[lang] * 0.07 +

[session] * 0.15 +

[pointer] * 0.32 +

[except] * 0.07 +

[jbpm] * -0.12 +

[should] * -0.31 +

[fine] * 0.53 +

[default] * 0.11 +

[excess] * -1.52 +

[recoveri] * -0.5 +

[cmp] * 0.12 +

[commit] * 0.14 +

[trigger] * -0.61 +

[kind] * -0.97 +

[concurr] * 0.34 +

[cnfe] * -0.6 +

[wonnekeys] * -1.16 +

[housekeep] * -0.91 +

[intend] * -1.15 +

[simpler] * -1.22 +

[reload] * -0.79 +

[easier] * -1.19 +

[especi] * -1.31 +

[dom] * -0.39 +

[tell] * -1.05 +

[transfer] * -0.47 +

[mistak] * -0.98 +

[revers] * -0.59 +

[then] * 0.25 +

[multipl] * 0.47 +

[incorrect] * 0.32 +

[modifi] * 0.52 +

[ant] * 0.33

Figure 4: JBoss: Logistic Regression Coeffi-
cients

clude that a naive approach, using grep, is no
match to the previous classifiers.

5.4 Threats to the Validity

This section discusses threats to validity that
can affect our study, following the guidelines
for case study research provided by Yin [27].

Threats to construct validity concern the re-
lationship between the theory and the obser-
vation. In this case the threat can be mainly
due to the use of incorrect operational mea-
sures concerning the investigated phenomenon.
In our study we used all sources of information

Predicted
Recall

Bug Non Bug

Issues
Bug 11 183 6%

Non bug 8 374 98%
Precision 58% 67% 67%

Table 7: Eclipse grep confusion matrix for man-
ually classified bugs (in bold percentage of cor-
rect decisions).

Predicted
Recall

Bug Non Bug

Issues
Bug 106 239 31%

Non bug 31 68 69%
Precision 77% 22% 39%

Table 8: JBoss grep confusion matrix for man-
ually classified bugs (in bold percentage of cor-
rect decisions).

BTS contributors use to report issues, namely
structured fields and free text, for the latter
considering both title, description and discus-
sion. However, we found that the discussion
was not useful for our classification purposes.
Therefore, there is no threat to the construct
validity of our study.

Threats to internal validity concern any con-
founding factor that could influence our results.
In particular, this kind of threats can be due to
a possible level of subjectiveness caused by the
manual construction of oracles, and to the bias
that can be introduced by the manual classifiers
if they are aware of the classification algorithm
to be used. We attempted to avoid any bias in
the building of the oracle and of the classifiers
by first classifying each issues manually with-
out making any choice on the classifiers to be
used. The manual classification was performed
independently by each engineer and then com-
bined using the majority voting technique.

Threats to external validity concern the pos-
sibility of generalizing our results. The study is
limited to the classification of BTS issues com-
ing from Mozilla, Eclipse and JBoss. Although
the approach is perfectly applicable to other
systems, we do not know whether the same re-
sults will be obtained. In addition, we have
built different classifiers for each system, where
the discriminating features and terms were dif-
ferent. Finally, the classification was limited
to a subset of Mozilla, Eclipse and JBoss BTS
issues, since is not feasible to verify by hands
about 100,000 issues. We downloaded 92,858,

10,386 and 3,207 issues from BTS of Mozilla,
Eclipse and JBoss respectively. In a previous
work [3] we randomly selected and manually
classified a sample of 600 Mozilla issues out of
the 35,000. These previously classified issues
are part of the study. Such a sample size was
sufficient to ensure a confidence level of 95%
and a confidence interval of ± 10% for preci-
sion and recall in the context of the study [3]
i.e., 35,000 issues. Although, the number of
manually classified bugs for Eclipse and JBoss
ensures an even higher confidence level and a
smaller confidence interval, we cannot guaran-
tee the same for Mozilla results. In essence,
it is not impossible that better results can be
achieved on Mozilla; results closer to those of
Eclipse and JBoss.

6 Conclusion

This paper shows that linguistic information
contained in BTS entries is sufficient to au-
tomatically distinguish corrective maintenance
from other activities. This is relevant in that
it opens the possibility of building automatic
routing systems, i.e., systems that automati-
cally classify submitted tickets and route them
to the maintenance team (bugs) or to team
leader (enhancement requests and other is-
sues). We also report on our experience in
manually classifying 1,800 issues from the BTS
of three large open-source systems: Mozilla,
Eclipse, and JBoss. We show that, using a
simple voting mechanism, it is possible to clas-
sify this large number of issues, distinguishing
between “bugs” (related to corrective mainte-
nance) and “non-bug” issues (related to other
maintenance activities, documentation, and so
on).

Using the manually-classified issues as an or-
acle, we build classifiers for each systems us-
ing three supervised machine learning tech-
niques: alternating decision trees (ADtree)s,
naive Bayes classifiers, and logistic regression.
With the classifiers, we answered three research
question and concluded that:

• the information contained in issues posted
on bug tracking systems can be indeed
used to classify such issues, distinguishing

bugs from other activities, with a preci-
sion between 64% and 98% and a recall
between 33% and 97% and a correct deci-
sion rate as high as 82%;

• certain terms and fields lead to more dis-
criminating classifiers between “bug” and
“non-bug” issues;

• a naive approach, using grep, is no match
for the classifiers built using our oracle.

In addition, we can report that, out of the
1,800 manually-classified issues, less than half
are related to corrective maintenance. There-
fore, bug tracking systems, in open-source de-
velopment, have a far more complex use than
simple bookkeeping of corrective maintenance.
Also, study based on BTS issues should care-
fully consider what issues are used to build
their predictive models.

Future work includes studying the relation
with bug, bug fixing and design patterns, and
modeling bug fixing induced by previous cor-
rective maintenance interventions.

Acknowledgments

This research was partially supported by the
Natural Sciences and Engineering Research
Council of Canada (Research Chair in Software
Evolution #950-202658) and by G. Antoniol
NSERC Discovery Grant.

About the Authors

Giuliano Antoniol received his degree in
electronic engineering from the Universita’ di
Padova in 1982. In 2004 he received his PhD
in Electrical Engineering at the Ecole Polytech-
nique de Montreal. He worked in companies,
research institutions and universities. In 2005
he was awarded the Canada Research Chair
Tier I in Software Change and Evolution.

Giuliano Antoniol published more than 100
papers in journals and international confer-
ences. He served as a member of the Pro-
gram Committee of international conferences
and workshops such as the International Con-
ference on Software Maintenance, the Interna-
tional Conference on Program Comprehension,

the International Symposium on Software Met-
rics. He is presently member of the Editorial
Board of the Journal Software Testing Verifi-
cation & Reliability, the Journal Information
and Software Technology, the Journal of Em-
pirical Software Engineering and the Journal of
Software Quality.

He is currently Full Professor at the Ecole
Polytechnique de Montreal, where he works in
the area of software evolution, software trace-
ability, search based software engineering and
software maintenance

Kamel Ayari is a Ph.D. candidate at the
Ecole Polytechnique de Montreal, he joined Dr.
Giuliano Antoniol’s team in 2006 and is inter-
ested in working on search based software en-
gineering and software maintenance.

Massimiliano Di Penta is assistant profes-
sor at the University of Sannio in Benevento,
Italy and researcher leader at the Research
Centre On Software Technology (RCOST). He
received his PhD in Computer Engineering in
2003 and his laureate degree in Computer En-
gineering in 1999. His main research interests
include software maintenance, reverse engineer-
ing, empirical software engineering and service-
oriented software engineering. He is author of
over 90 papers published on referred journals,
conferences and workshops. He is program co-
chair of the 14th Working Conference on Re-
verse Engineering (WCRE 2007), of the 9th In-
ternational Symposium on Web Site Evolution
(WSE 2007), of the 9th IEEE International
Workshop on Principles of Software Evolution
(IWPSE 2007) and steering committee member
of CSMR and STEP. He has been program co-
chair of WCRE 2006, SCAM 2006 and STEP
2005. He serves and has served program and or-
ganizing committees of conferences and work-
shops such as CSMR, GECCO, ICSM, IWPC,
SCAM, SEKE, WCRE, and WSE. He is mem-
ber of the IEEE, the IEEE Computer Society
and of the ACM.

Foutse Khomh is a Ph.D. candidate in
Computer Science at the University of Mon-
treal (Canada). The primary focus of his Ph.D.
thesis is to develop techniques and tools to as-
sess the quality of the design and implementa-
tion of large software systems and to ensure the
traceability of design choices during evolution.
The final result of the thesis will be a qual-

ity model that takes into account the quality
of the design of large systems and thus that
provide both a more detailed and high-level
view on quality. He received a Master’s de-
gree in Software Engineering from the National
Advanced School of Engineering (Cameroon)
and a D.E.A (Master’s degree) in Mathematics
from the University of Yaounde I (Cameroon).
He also has experience as Software Engineer at
different companies doing system design and
project management.

Yann-Gal Guhneuc is assistant professor
at the Department of Computing Science and
Operations Research of University of Montreal
where he leads the Ptidej team on evaluating
and enhancing the quality of object-oriented
programs by promoting the use of patterns, at
the language-, design-, or architectural-levels.
He holds a Ph.D. in software engineering from
University of Nantes, France (under Professor
Pierre Cointe’s supervision) since 2003 and an
Engineering Diploma from cole des Mines of
Nantes since 1998. His Ph.D. thesis was funded
by Object Technology International, Inc. (now
IBM OTI Labs.), where he worked in 1999 and
2000. His research interests are program under-
standing and program quality during develop-
ment and maintenance, in particular through
the use and the identification of recurring pat-
terns. He is interested also in empirical soft-
ware engineering; he uses eye-trackers to under-
stand and to develop theories about program
comprehension. He has published many papers
in international conferences and journals.

References

[1] Applied Logistic Regression (2nd Edition).
Wiley, 2000.

[2] Ethem Aplaydin. Introduction to Machine
Learning. MIT Press, 2004.

[3] Kamel Ayari, Peyman Meshkinfam, Giulio
Antoniol, and Massimiliano Di Penta.
Threats on building models from cvs and
bugzilla repositories: the mozilla case
study. In CASCON, Toronto, CA, Oct 23-
25 2007.

[4] V. Basili, G. Caldiera, and D. H. Rom-
bach. The Goal Question Metric Paradigm

Encyclopedia of Software Engineering.
John Wiley and Sons, 1994.

[5] L. C. Briand, S. Morasca, and V. Basili.
Measuring and assesing maintainability at
the end of high level design. In Proceed-
ings of IEEE International Conference on
Software Maintenance, pages 88–97, Mon-
treal, 1993.

[6] S.E. Robertson C.J. van Rijsbergen and
M.F. Porter. New models in probabilistic
information retrieval. London: British Li-
brary, Research and Development Report,
no. 5587, 1980.

[7] Rumelhart D. E., Hinton G. E.and, and
Williams R. J. Learning representa-
tions by back-propagating errors. Nature,
323:533–536, 1986.

[8] ElkanC. Naive bayesian learning. Techni-
cal report, Department of Computer Sci-
ence Harvard University, 1997.

[9] FentonN. and NeilM. A critique of soft-
ware defect prediction models. IEEE
Transactions on Software Engineering,
25(5):675–689, 1999.

[10] Michael Fischer and Harald Gall. Visual-
izing feature evolution of large-scale soft-
ware based on problem and modification
report data. Journal of Software Mainte-
nance and Evolution, 16(6):115–141, 2004.

[11] Michael Fischer, Martin Pinzger, and Har-
ald Gall. Populating a release history
database from version control and bug
tracking systems. In Proceedings of the In-
ternational Conference on Software Main-
tenance, pages 23–32, Amsterdam Nether-
lands, September 2003. IEEE Computer
Society Press.

[12] W. B. Frakes and R. Baeza-Yates. Infor-
mation Retrieval: Data Structures and Al-
gorithms. Prentice-Hall, Englewood Cliffs,
NJ, 1992.

[13] Harald Gall, Karin Hajek, and Mehdi
Jazayeri. Detection of logical coupling
based on product release history. In Pro-
ceedings of IEEE International Conference

on Software Maintenance, pages 190–197,
1998.

[14] Daniel M. German. An empirical study of
fine-grained software modifications. Jour-
nal of Empirical Software Engineering,
2005.

[15] Tibor Gyimóthy, Rudolf Ferenc, and
István Siket. Empirical validation of
object-oriented metrics on open source
software for fault prediction. IEEE Trans.
Software Eng., 31(10):897–910, 2005.

[16] Jane Huffman Hayes, Alex Dekhtyar, and
Senthil Karthikeyan Sundaram. Advanc-
ing candidate link generation for require-
ments tracing: The study of methods.
IEEE Transactions on Software Engineer-
ing, 32(1):4–19, 2006.

[17] N. Kurishima, H. Oikawa, J. Nakamura,
K. Amari, M. Fujioka, and K. D. Denwa.
Quantitative analysis of error in teleco-
munications software. In Proceedings of
IEEE International Conference on Soft-
ware Maintenance, pages 190–198, Victo-
ria, 1994.

[18] Tom Mitchell. Machine Learning. MIT
Press, 1997.

[19] J. Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufmann, 1993.

[20] J.O. Rawlings, S. G. Pandula, and D. A.
Dickey. Applied Regression Analysis a Re-
search Tool. Springer Texts in Statistics.
New York: Springer-Verlag, second edi-
tion edition, 1998.

[21] Jacek Sliwerski, Thomas Zimmermann,
and Andreas Zeller. When do changes in-
duce fixes? In Proceedings of the 2005
International Workshop on Mining Soft-
ware Repositories MSR 2005 Saint Louis
Missouri USA, May 17 2005.

[22] M. Stone. Cross-validatory choice and ass-
esment of statistical predictions (with dis-
cussion). Journal of the Royal Statistical
Society B, 36:111–147, 1974.

[23] Marek Vokavc. Defect frequency and de-
sign patterns: An empirical study of in-
dustrial code. IEEE Trans. Software Eng.,
30:904–917, 2004.

[24] Xiaoyin Wang, Lu Zhang, Tao Xie, John
Anvik, and Jiasu Sun. An approach to de-
tecting duplicate bug reports using natu-
ral language and execution information. In
ICSE ’08: Proceedings of the 30th interna-
tional conference on Software engineering,
pages 461–470, New York, NY, USA, 2008.
ACM.

[25] Peter Weissgerber and Stephan Diehl. Are
refactorings less error-prone than other
changes? In Proceedings of the 2006 In-
ternational Workshop on Mining Software
Repositories MSR 2006 Shanghai China
May 22-23 2006, pages 112–118, 2006.

[26] Ian Witten and Eibe Frank. Data Min-
ing Practical Machine Learning Tools and
Techniques - Second Edition. Elsevier,
2005.

[27] R. K. Yin. Case Study Research: Design
and Methods - Third Edition. SAGE Pub-
lications, London, 2002.

[28] Annie T. T. Ying, Gail C. Murphy, Ray-
mond T. Ng, and Mark Chu-Carroll. Pre-
dicting source code changes by mining
change history. IEEE Trans. Software
Eng., 30(9):574–586, 2004.

[29] Thomas Zimmermann, Peter Weissgerber,
Stephan Diehl, and Andreas Zeller. Min-
ing version histories to guide software
changes. In Proceedings of the Interna-
tional Conference on Software Engineer-
ing, pages 563–572, 2004.

