
An empirical study of faults in late propagation clone genealogies

Liliane Barbour1, Foutse Khomh2,*,† and Ying Zou1

1Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON Canada
2SWAT, École Polytechnique de Montréal, Québec, Canada

SUMMARY

Two similar code segments, or clones, form a clone pair within a software system. The changes to the clones
over time create a clone evolution history. In this work, we study late propagation, a specific pattern of clone
evolution. In late propagation, one clone in a clone pair is modified, causing the clone pair to diverge. The
code segments are then reconciled in a later commit. Existing work has established late propagation as a
clone evolution pattern and suggested that the pattern is related to a high number of faults. In this study,
we examine the characteristics of late propagation in three long-lived software systems using the SIMIAN
(Simon Harris, Victoria, Australia, http://www.harukizaemon.com/simian), CCFINDER, and NICAD (Soft-
ware Technology Laboratory, Queen’s University, Kingston, ON, Canada) clone detection tools. We define
eight types of late propagation and compare them to other forms of clone evolution. Our results not only
verify that late propagation is more harmful to software systems but also establish that some specific types
of late propagations are more harmful than others. Specifically, two types are most risky: (1) when a clone
experiences diverging changes and then a reconciling change without any modification to the other clone in
a clone pair; and (2) when two clones undergo a diverging modification followed by a reconciling change
that modifies both the clones in a clone pair. We also observe that the reconciliation in the former case is
more prone to faults than in the latter case. We determine that the size of the clones experiencing late prop-
agation has an effect on the fault proneness of specific types of late propagation genealogies. Lastly, we can-
not report a correlation between the delay of the propagation of changes and its faults, as the fault proneness
of each delay period is system dependent. Copyright © 2013 John Wiley & Sons, Ltd.

Received 12 February 2012; Revised 21 January 2013; Accepted 15 March 2013

KEY WORDS: clone genealogies; late propagation; fault proneness

1. INTRODUCTION

A code segment is labeled as a code clone if it is identical or highly similar to another code segment.
Two similar code segments form a clone pair. Groups of clone pairs are known as ‘clone classes’.
Clones can be introduced into systems deliberately (e.g., ‘copy and paste’ actions) or inadvertently
by a developer during development and maintenance activities. Like all code segments, code clones
are not immune to change. Large software systems undergo thousands of commits over their life
cycles. Each commit can involve modifications to code clones. As the clones are modified, a change
evolution history, known as a clone genealogy [1], is generated. In this paper, we study the change
evolution history of clone pairs.

Two types of evolutionary changes can affect a clone pair: a diverging change or a reconciling
change. A change is reconciling if after the change the clone pair relationship exists, whether or
not the clone pair existed before the change. In a diverging change, one or both of the clones
evolves independently, destroying the clone pair relationship. Diverging changes can occur
deliberately, such as when code is copied and pasted and then subsequently modified to fit the

*Correspondence to: Foutse Khomh, SWAT, École Polytechnique de Montréal, Québec, Canada.
†E-mail: foutse.khomh@polymtl.ca

Copyright © 2013 John Wiley & Sons, Ltd.

JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2013
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/smr.1597

new context. For example, if a driver is required for a new printer model, a developer could copy
the driver code from an older printer model and then modify it. Diverging changes can also
occur accidentally. A developer may be unaware of a clone pair and cause a divergence by
changing only one half of the pair. This diverging change can result in a software fault. If a
fault is found in one clone and fixed, but not propagated to the other clone in the clone pair,
the fault remains in the system. For example, a fault might be found in the old printer driver
code and fixed, but the fix is not propagated to the new printer driver. For these reasons, a
previous study [1] has argued that accidental diverging changes make code clones more prone
to faults.

Late propagation occurs when a clone pair undergoes one or more diverging changes followed by a
reconciling change [2]. The reconciliation of the code clones indicates that the divergence was
accidental. Because accidental changes are considered risky [3], the presence of late propagation in
clone genealogies can be an indicator of risky, fault-prone code.

Many studies have been performed on the evolution of clones. A few (e.g., [2, 3]) have studied
late propagation and indicated that late propagation genealogies are more fault-prone than other
clone genealogies. Thummalapenta et al. [3] began the initial work in examining the
characteristics of late propagation. The authors considered the delay between a diverging change
and a reconciling change and related the delay to software faults. In our work, we examine more
characteristics of late propagation to determine if only a subset of late propagation genealogies
are at risk of faults. In our case study, we found that late propagation genealogies account
for between 8–21% of all clone genealogies that experience at least one change. If all late
propagation genealogies are considered equally prone to faults, this means that as much as a fifth
of all genealogies must be monitored for faults, which is resource intensive. Developers are
interested in identifying which clones are most at risk of faults. Our goal is to support
developers in their allocation of limited code testing and review resources towards the most risky
late propagation genealogies. Most previous clone evolution studies examine groups of clone
pairs known as ‘clone classes’. However, clone pairs within the same clone group are not
equally fault prone. By studying clone pairs, we identify the most risky clone pairs within each
clone class.

In this paper, we extend our previous work published at the 27th IEEE International Conference on
Software Maintenance [4], titled ‘Late Propagation in Software Clones’ [4], which studies the
characteristics of late propagation genealogies and estimates the likelihood of faults in two software
systems. In addition to adding a new subject system and clone detection tool, in this paper, we
address three other questions that investigate the following three relationships: (1) the effect of
the size of cloned code on the fault proneness of late propagation genealogies; (2) the impact of the
time interval between a diverging change and a reconciling change on fault proneness; and (3) the
fault proneness of reconciling changes in late propagation genealogies. Using clone genealogies
from three open-source software systems, that is, ARGOUML (Jason E. Robbins, California, USA),{

ANT (The Apache Software Foundation, Forest Hill, MD, USA),} and JBOSS (Red Hat, Raleigh,
NC, USA),} we address the following six research questions:

• RQ1: Are there different types of late propagation? Late propagation has been defined by several
researchers [2, 5] as a diverging change followed by a reconciling change. We perform an explor-
atory study to examine several late propagation patterns and investigate whether diverged clone
pairs are ever reconciled without a change propagation occurring.

• RQ2: Are some types of late propagation more fault prone than others? Previous researchers
have determined that late propagation is more prone to faults than other clone genealogies [2].
Using the classification of late propagation clone genealogies described in Section 3, we evalu-
ate late propagation in greater depth and examine if the risk of faults is the same for all types of
late propagation.

{http://argouml.tigris.org/
}http://ant.apache.org/
}http://www.jboss.org/

L. BARBOUR, F. KHOMH AND Y. ZOU

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

• RQ3: Which type of late propagation experiences the highest proportion of faults? In the previous
question, we determine if some types of late propagation are more prone to faults than others. For
this question, we examine the overall number of faults across each late propagation type to deter-
mine which type of late propagation is responsible for the most faults.

• RQ4: Does the size of cloned code affect the fault proneness of late propagation genealogies?We
want to determine if for late propagation types, the size of cloned code (in lines of code (LOC))
has an impact on the fault proneness. It is expected that a smaller clone will be less complex
and less prone to faults.

• RQ5: For a clone pair experiencing late propagation, does the time interval between diverging
and reconciling changes affect the fault proneness? In a previous study on clone genealogies,
Thummalapenta et al. [3] examined the fault proneness of late propagation. The authors checked
clone genealogies that were reconciled within 1 day, separately from other late propagation gene-
alogies. Overall, they found that both experienced a higher proportion of faults compared with
other types of clone genealogies. In this question, we examine late propagation delay at a finer
level of granularity and determine if the time interval between the divergence and reconciliation
phases influences the fault proneness of late propagation clones. It is believed that a long time
interval between changes will lead a developer to become unfamiliar with the code, causing an
increase in the number of faults.

• RQ6: Are late propagation types reconciled because of fault-fixing activities? In this question, we
investigate if reconciling changes on late propagation clone pairs are fault-fixing changes.

The results of this study can be used to identify clone pairs at risk of faults. This helps determine
where testing and review efforts should be focused.

The rest of this paper is organized as follows. Section 2 summarizes related studies on clones and
late propagation. Section 3 discusses different types of late propagation. Section 4 explains the
design of our study. Section 5 describes the study results. Section 6 lists threats to the validity of the
study. Finally, Section 7 concludes the paper and explores future work.

2. RELATED WORK

2.1. Definition of clone genealogies

The first study on code clone evolution was by Kim et al. [1] who analyzed clone classes (i.e., a group
of similar clone pairs) and defined patterns of clone evolution. Through a case study on two Java
systems using the CCFINDER clone detection tool, they observed that the majority of clones in
systems are very volatile, with at least half of the clones being eliminated within eight check-ins
after their creation. They stressed the need for a better understanding of clone genealogies to better
support code clones. Our work strives for a deeper understanding of one specific type of clone
genealogy, late propagation, to help developers efficiently focus their maintenance efforts.

2.2. Analysis of clone genealogies

Several studies have analyzed clone genealogies. They focus on the reconciling and diverging changes
experienced by clones.

Krinke [6] performed a study on five open-source systems to examine reconciling and diverging
changes to code clones. He observed the systems over a 200-week period, using a time interval of
1week between system snapshots. He used the SIMIAN clone detection tool, but examined only
identical clones. He found that clone pairs experience reconciling changes about half of the time and
that late propagation occurs very infrequently. He also found that during late propagation, the
reconciling change usually occurred within a week of the diverging change. This observation,
coupled with the fixed time interval between system snapshots (1week) suggests that a more fine-
grained time interval is necessary to fully understand late propagation. In our study, we use a time
interval of one commit, so all changes to each clone are considered when generating clone genealogies.

AN EMPIRICAL STUDY OF FAULTS IN LATE PROPAGATION CLONE GENEALOGIES

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

Saha et al. [7] looked at 17 open-source systems written in four programming languages and
performed an empirical study of clone genealogies at the release level. Overall, they found that
around 67% of clones were unchanged across releases. They also found that a majority of clones
still remained in the system through the final release. When studying reconciling changes to clones,
they found that on average, 24% of changes reconciled the clones.

Göde et al. [8] repeated and extended another of Krinke’s studies [9] on the stability of cloned code.
Similar to our work, they examined clones at the interval of one commit. They used a token-based
clone detection tool and experimented with different clone lengths. Overall, they confirmed Krinke’s
findings that cloned code is more stable than non-cloned code. They also confirmed that cloned code
experiences more changes involving code deletion than non-cloned code. Göde et al. found that
varying the parameters of the clone detection tool can significantly influence the results. To mitigate
this risk in our work, we use three different clone detection tools.

Göde et al. [10] studied changes to code clones. Looking at three subject systems, they found that
over half of the clones were never modified once a pair was formed. Only about 12% of the clones
experienced more than one change. They concluded that these clones were the most relevant for
developers, because they required additional maintenance effort. This stresses the importance of
understanding the behavior of late propagation genealogies, because of their large number of
changes. In our work, we study late propagation in more detail to identify precisely which clones
are most relevant for maintenance purposes.

Göde et al. [11] examined consecutive changes to code clones. They identify four different patterns
of consecutive changes, consisting of combinations of reconciling and diverging changes. In a study of
three subject systems, they concluded that the majority of clones never experienced more than one
change, if they changed at all. They also concluded that the majority of diverging changes in clones
were intentional. In a separate study on identical clones, Göde [5] determined that the ratio of
reconciling to diverging changes was system dependent. However, overall most diverging changes
never experienced a reconciling change, so late propagation was rare in identical clones.

Overall, these studies show that although many clones are stagnant, some clones experienced further
changes after they are created. In our work, we focus on clones that experience late propagation, which
means that they undergo multiple changes, both reconciling and diverging. We suggest that due to the
higher amount of churn experienced by these clones, they are more susceptible to faults.

2.3. Faults in clones

Static information about clones has been used to identify faulty clones in software systems. Jiang et al.
[12] examine the context of clones to locate faults. They assume that when code is copied and pasted
into a new context, faults can be introduced when the code is not properly modified to suit the new
context. They validated their approach using LINUX and ECLIPSE, and showed that the context of a
clone could be used to locate faults in a software system. Their work is limited to identifying clones
caused by context-related issues. Similarly, Li et al. [13] used their clone detection tool, CP-Miner,
to detect faults in software systems. Their tool located inconsistently renamed identifiers in clones.
In a case study, they were able to identify 49 faults in a version of LINUX, and 32 faults in
FREEBSD, many of which were previously unreported. In our work, we examine if dynamic clone
information can be used to identify fault-prone late propagation genealogies.

2.4. Faults in clone genealogies

Studies have examined clone genealogies, which considers the history of clones. Bakota et al. [14]
argued that to isolate risky clones, clones should be seen as dynamic instead of static. Clones that
experience many changes during their evolution may help locate faults in the system. They
presented several cases where the analysis of changes to clones highlighted risky clones. For
example, they found that clones that evolved independently decreased the maintainability of the
system due to the lost connection between the clones. Bakota et al. performed a case study on 12
revisions of Mozilla Firefox. They found that the use of evolutionary information can be successful
in locating faults in the system. In our work, we examine the evolutionary characteristics of late
propagation genealogies to identify the most fault-prone late propagation genealogies.

L. BARBOUR, F. KHOMH AND Y. ZOU

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

Thummalapenta et al. [3] performed a study on four open-source C and Java systems, including
ARGOUML. They found that late propagation occurred in a maximum of 16% of code clone
genealogies. They also observed that clones exhibiting late propagation were more prone to faults,
concluding that late propagation was a risky cloning behavior. Aversano et al. [2] also showed that
late propagation was a risky clone genealogy and occurred in about 18% of all clones.
Thummalapenta et al. also defined a specific type of late propagation, called delayed propagation,
which occurs when the reconciling change is made within 24 hours of a diverging modification. In
our work, we extend this idea. We examine more periods of delay between a diverging and
reconciling change to determine if specific periods of delay are more prone to faults.

Bettenburg et al. [15] argue that clones should be analyzed at the release level. They suggested that
clones are highly volatile, so we should examine only clones that affect the end user. In a study of two
open-source software systems, they found that only 1–3% of diverging changes caused faults at the
release level. However, in a study of diverging changes in three industrial software systems,
Juergens et al. [16] found that 23% of diverged clones contained a fault. In this paper, we examine
late propagation genealogies, which experienced diverging changes. We determine if specific
combinations of changes to one or more clones in a clone pair make the pair more prone to faults.

3. CLASSIFICATION OF LATE PROPAGATION GENEALOGIES

In the current state of the art, late propagation is defined as a clone pair that experiences one or more
diverging changes followed by a reconciling change [3]. For example, consider two clones that call a
method. A developer modifies the actual parameters of the method call and updates one of the clones
to reflect the change. This causes the clone pair to diverge. Later, she discovers the divergence,
possibly because of a bug report, and propagates the change to the other clone. The clones are
now reconciled.

We define a reconciling change as a change that results in the existence of a clone pair relationship
so that the clones belong to the same clone class [2, 3]. The relationship may or may not exist
immediately prior to the reconciling change. Thummalapenta [3] more specifically defines a
reconciling change as a situation where the resulting clones do not differ by more than a threshold
of the textual and functional similarity of the code segments. In our work, we use the threshold of
similarity of type 1 and type 2 clones. Two code segments that are textually identical except for
variations in whitespace, layout and comments are considered to be type 1 clones. When code
segments are syntactically identical except for variations in identifiers, literals, types, whitespace,
layout, and comments, they are considered to be type 2 clones. Therefore, a reconciling change to
each clone is not necessarily an identical change. The clones can differ because of variable
renaming or different literals.

A diverging change destroys the cloning relationship, so that one or both of the clones no longer
belong to the containing clone class [2]. In other words, they differ by more than a fixed threshold [3].
However, if one or both clones that make up a clone pair are deleted, the genealogy terminates.
We do not define a deletion of the clone pair as a diverging change.

We analyze all the possible sequences of late propagation based on the following three phases:

• Clones modified in diverging change: either one or both of the clones is modified independently,
causing the divergence.

• Clones modified during period of divergence: one, both, or neither of the clones experiences
changes so that the fragments are still different

• Clones modified during reconciling change: either one or both of the clones is modified, reconcil-
ing the clone pair.

Using all combinations of the three phases, we identify eight possible types of late propagation
genealogies. All late propagation genealogies can be classified as one of the eight types. The
characteristics of the individual types are described in Table I. The clones in the table are
interchangeable, so the patterns A-AB-B and B-BA-A are both classified as LP2.

AN EMPIRICAL STUDY OF FAULTS IN LATE PROPAGATION CLONE GENEALOGIES

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

Because the late propagation types are not extracted from existing systems, the types may not appear
in all the systems in our study. It describes the possible sets of modifications to two clones, Clones A
and B, in a clone pair. We divide the types of late propagation into three categories:

1. A propagation always occurs.
2. A propagation may or may not occur.
3. A propagation never occurs.

A propagation occurs when changes from one clone are applied to the other clone in a clone pair.
We observe that late propagation does not necessarily involve any propagation when the reconciling
change is a reverting change. In this study, we consider this factor and examine if the cases that
always involve propagation (i.e., LP1, LP2, and LP3) or never involve propagation (i.e., LP8) are
more prone to faults than other types of late propagation.

Listing 1: An example of a LP1 genealogy from ARGOUML

As listed in Table I, LP1, LP2, and LP3 belong to the first category, because a change must be
always propagated between the clones in the clone pair to reconcile them. For example, in LP1,
Clone A is modified, diverging Clones A and B. Clone A can experience further changes during the
period of divergence. Finally, all changes are propagated to Clone B, reconciling the clone pair.
Listing 1 is an example of an LP1 genealogy taken from ARGOUML using CCFINDER as the clone

Table I. Description of late propagation types for clone pair A and B.

Propagation
category

LP
type

Clones modified in
diverging change

Clones modified during period
of divergence

Clones modified in
reconciling change

Propagation
always occurs

LP1 A A B
A — B

LP2 A B B
A A and B B

LP3 A — A and B
A A A and B

Propagation may
or may not occur

LP4 A B A
A A and B A

LP5 A B A and B
A A and B A and B

LP6 A and B — A
A and B A A
A and B B A
A and B A and B A

LP7 A and B — A and B
A and B A A and B
A and B A and B A and B

Propagation
never occurs

LP8 A — A
A A A

LP, late propagation.

L. BARBOUR, F. KHOMH AND Y. ZOU

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

detection tool. As shown in Listing 1, two clones (i.e., Clones A and B) form a clone pair in commit
595. In commit 602, the parameter in the method call is updated, modifying Clone A. In commit 604,
this change is propagated to Clone B, reconciling the clone pair.

Listing 2 is an example of an LP2 genealogy. Both clones are reconciled in commit 274,858. In commit
306,781, Clone A is modified so that the parameters are changed in two method calls. The clones are now
diverged. While the clones are diverged, they both undergo an additional change in commit 432,728 that
adds an additional line of code to both clones (‘Throwable cause= null;’). However, the clones remain
diverged. Finally, in commit 551,986, the parameter change in Clone A is propagated to Clone B,
reconciling the clone pair.

Listing 2: An example of a LP2 genealogy from ANT

LP8 is the only clone type in the third category, as shown in Table I. In LP8, Clone A is modified,
diverging the clone pair. The change is later reverted, reconciling the clone pair. Listing 3 is an
example of an LP8 genealogy taken from ANT using CCFINDER as the clone detection tool. As
shown in listing 3, two clones (i.e., Clones A and B) form a clone pair in commit 270,250. In commit
270,264, Clone A is modified so that the string ‘m_’ is added to the beginning of each variable name.
In commit 271,109, this change is reverted, reconciling the clone pair. For space reasons, the listings
discussed in this section contain only the interesting lines of code extracted from bigger clones.

AN EMPIRICAL STUDY OF FAULTS IN LATE PROPAGATION CLONE GENEALOGIES

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

In the second category, changes to one clone may or may not be propagated between the clones. In
LP4 and LP5 shown in Table I, only one clone is modified during the initial diverging change. In LP6
and LP7, also shown in Table I, both Clones A and B are modified during the diverging change. For all
four types, both Clones A and B experience diverging changes, so it is possible that changes are
propagated in both directions. For example, in LP4 without propagation, during the period of
divergence, partially reconciling changes could be applied to both clones, but because of the initial
diverging change, they remain diverged. If the initial diverging change is reverted on Clone A, the
clones are reconciled without a propagation occurring. However, if the period of divergence
experiences bidirectional propagations between Clones A and B followed by a reconciling
propagation from Clones B to A, LP4 is said to experience propagation. Therefore, because of
changes experienced by both clones during the period of divergence, it is unclear if propagation
occurs for all types in the second category.

For the remainder of this paper, we use the abbreviations ‘LP’ for late propagation and ‘Gen’ for
genealogy.

4. EXPERIMENTAL SETUP

The goal of our study is to investigate the fault proneness of clone pairs that undergo LP. The quality
focus is the increase in maintenance effort and cost due to the presence of late propagated clone pairs in
software systems. The perspective is that of researchers, interested in studying the effects of LP on
clone pairs. The results may also be of interest to developers, who perform development or
maintenance activities. The results will provide insight in deciding which code segments are most at
risk for faults and in prioritizing the code for testing.

The context of this study consists of the change history of three software systems, ARGOUML,
APACHE ANT, and JBOSS, which have different sizes and belong to different domains.

ARGOUML is a UML-modeling application that supports forward and reverse code engineering
activities. It provides a user with a set of views and tools to model systems using UML diagrams, to
generate the corresponding code skeletons and to reverse engineer diagrams from existing code. The
project started in January 1998 and is still active. It has over 3.1M LOC and 18k commits in its
software repository. We consider an interval of observation ranging from January 1998 to
November 2010. ARGOUML has been used in previous studies on code clone evolution [2].

APACHE ANT is a Java library and tool that enables the user to compile, assemble, test and run Java,
C, and C++ applications. The project started in January 2000 and is currently active. It has over 2.3M
LOC and 1.0M commits in its commit history. We study code snapshots in an interval of observation
ranging from January 2000 to November 2010.

JBOSS Application Server (or JBOSS) is an open-source Java EE-based application server, which is
usable on any operating system that supports Java. The project started in 1999 and is still active. It has
over 1.7M LOC and 110K commits in its software repository. We consider an interval of observation
ranging from April 2000 to December 2010.

Listing 3: an example of a LP8 genealogy from ANT

L. BARBOUR, F. KHOMH AND Y. ZOU

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

Clone detection is performed using three existing clone detection tools, SIMIAN,k CCFINDER[17],
and NICAD[18]. SIMIAN is a string-based clone detection tool. For SIMIAN we select a minimum
clone length of five LOC. SIMIAN outputs a list of clones where each clone is identified by its
location (i.e., start and end line numbers) in a specific file. It identifies clones between code
fragments that are identical (i.e., type 1 clones) or where some identifier names and literals have
been changed (i.e., type 2 clones). CCFINDER is a token-based clone detection tool with a default
minimum clone length of 50 tokens. Like SIMIAN, it identifies types 1 and 2 clones. Additionally,
due to a normalization step during preprocessing of the code, it identifies some clones with gaps [17].
We use the most recent versions of CCFINDER, CCFINDERX and NICAD, NICAD3. NICAD uses a
hybrid approach to detect clones. We use the default settings of NICAD3 to detect clones greater
than 10 LOC. We detect identical clones and clones where the variable names are different.

We select these three clone detection tools because they are fast and consume very little memory.
Abstract syntax-based tools, such as CLONEDR,** require extensive memory and computation
powers. Thus, they have limitations when scanning the entire history of a system.

Although other studies [6, 8] have investigated the impact of the minimum clone length on the
percentage of reconciling changes between clones in software systems, their results may be
influenced by their choice of clone detection tool. To allow our study to be replicated using any
clone detection tool, we use the default settings for both SIMIAN and CCFINDER. To build the clone
genealogies for our experiment, we require the line numbers of each clone. The CCFINDER output
describes a clone by its start and end token numbers within a file, so we post-process the results to
map the token numbers to the line numbers. We use a tool that analyzes the token files created
during CCFINDER’s tokenizing step, minimizing any distortion when mapping tokens to line numbers.

The validity of the genealogies is based on the precision of the clone detection tool. We repeat our
study using two clone detection tools that use different clone detection techniques. This increases the
validity of our study.

Table II reports descriptive statistics on the three systems. The size of each system is reported as the
cumulative number of LOC across all versions of Java files within each system’s Subversion (SVN). In
this work, we study all clone genealogies that contain at least one reconciling modification beyond the
creation of the clone pair. We filter out clones that diverge immediately and remain diverged for the
remainder of their genealogy because they are likely to be false positive clones.

4.1. Data extraction

This section gives an overview of our approach to collect and process clone data to build clone
genealogies. Figure 1 shows an overview of our approach. First, we use the tool J-REX [19] to mine
the code repository of each subject system. J-REX identifies the commits that modify each Java file
and outputs a snapshot of the file at those commits. Commits corresponding to fault fixes are
marked during the process. Next, clone detection is executed to detect clones in the entire subject
system. By using the clone detection results, the clones are mapped across their commits to create

khttp://www.harukizaemon.com/simian/
**http://www.semdesigns.com/Products/Clone/

Table II. Characteristics of the systems.

System
#

LOC
#

Commits
Gen

CCFINDER
LP

CCFINDER
Gen
SIMIAN

LP
SIMIAN

Gen
NICAD

LP
NICAD

ANT 2.3M 1.0M 30k 6k 461 103 3616 832
ARGOUML 3.1M 18k 14k 2k 111 23 4123 833
JBOSS 1.6M 109k 59k 2k 771 12 152 20

LOC, lines of code; Gen, genealogy; LP, late propagation.

AN EMPIRICAL STUDY OF FAULTS IN LATE PROPAGATION CLONE GENEALOGIES

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

clone genealogies. Each clone genealogy is examined to identify instances of LP. Lastly, the LP
genealogies are categorized by the types of LP. We now describe each of the major steps in detail.

4.1.1. Mining Subversion to identify faults. We use J-REX [19] to identify fault fixes within the clone
genealogies. J-REX enables source code extraction, evolutionary analysis, and fault fix identification.
To perform source code extraction and evolutionary analysis, J-REX first extracts a snapshot of the
subject system at each commit. It then breaks each snapshot into component methods and flags any
methods that have been modified since the last commit.

J-REX analyzes each commit message for Java systems to identify the reason for a commit, such as a
fault fix. It performs the analysis using the heuristics proposed by Mockus et al. [20] and used in prior
fault studies [21, 22]. For example, if a commit message contains the word ‘bug’, it is classified as a
fault fix. Using heuristics can lead to false positive ‘faulty’ commits. For example, in ARGOUML,
commit number 828 has the commit message ‘Removed debugging line’. J-REX would misclassify
this commit as a fault fix because of the word ‘debugging’. We could not remove all the false
positives from our study because of the large number of commit messages. To provide a context for
our results, we performed a statistical sampling to estimate the accuracy of J-REX. We manually
evaluated a sample of commit messages from the three subject systems based on a confidence level
of 95% with a confidence interval of 5. This translates to between 377 and 384 samples per system.
To avoid a bias of the J-REX results from a single evaluator, we recruited four graduate students to
manually evaluate the samples. All four students had experience using an SVN system and had
industrial software development experience. The authors reviewed the evaluations of the students.
Overall, the accuracy of J-REX was found to be 87%. Measuring precision only gives an indication
of how many commits identified as faulty are actually faulty. We determine the accuracy of J-REX

to also evaluate how many non-faulty commits are correctly identified as non-faulty. The accuracy is
similar to a finding by Hassan in an evaluation of C-REX [23], which analyzes the commit messages
for C systems. J-REX is based on C-REX and uses the same approach and heuristics to identify fault-
fixing commits. Hassan compared the output of C-REX to a manual evaluation of commit messages
by six professional developers from industry and found that the inter-developer correlation was as
high as the correlation between C-REX and the developers (s> 0.8). These results show that
C-REX’s ability to recognize fault fixes is comparable with that of a professional developer. We
assume that J-REX has a similar performance to C-REX because both tools use the same set of
heuristics. Although J-REX will misclassify some of the commits, because all our data is extracted
from the SVN repositories using J-REX, the accuracy of J-REX will affect the experimental and
control groups of our experiments equally.

Existing studies build clone genealogies between system snapshots taken at fixed intervals (e.g.,
1 week). The interval chosen can affect the creation of clone genealogies because any changes that
occur between system snapshots are lost. Therefore, we examine clones between each commit, the
minimum interval obtainable from an SVN repository.

Due to hardware limitations and the large number of clones in ARGOUML, for CCFINDER we limit
our study of ARGOUML to the period before release 0.12 (October 2002), or the first 2576 commits.

4.1.2. Removing test files. All our subject systems contain files that are not used during normal
execution of the system. Such files are used during the development of the system to test the
different functionalities. By their nature, they can contain incomplete and even syntactically
incorrect code to test the failure modes of the system. Because test files are frequently copied and
modified to test a different case, they can contain many clones. Therefore, we remove the test files
from our study. To remove the test files, we perform a search on each system for files and folders

SVN
Detect
Clones

Remove
Test Files

Build Clone
Genealogies

Mine the
SVN

System
Snapshots

Fault Fix
Revisions

List of
Clones

Clone
Genealogies

Figure 1. Overview of the analysis process.

L. BARBOUR, F. KHOMH AND Y. ZOU

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

with a filename containing the word ‘test’. We then manually verify each file before removing it from
the study to prevent the automatic removal of a non-test file, such as a file with the name ‘updateState.
java’.

4.1.3. Detecting clones. We detect all of the clones in our subject systems. To build the clone
genealogies, we are interested in clones within the same commit of a software system. To identify
the clones, we first perform clone detection on the entire system. We then post-process the results to
identify any clones that co-exist within the same commit. Further details about our approach can be
found in our study on the impact of software clones [24].

In the first step, we perform clone detection on all the Java file snapshots from the source repository.
Before executing the clone detection, we pre-process the Java file snapshots to extract the methods. We
do this for reasons similar to Göde et al. [8]. First, we exclude package and import statements, as they
add no value to the study and may include many false positive clones. Second, clones can begin in one
method and end in another, creating syntactically incorrect clones. By forcing hard boundaries between
the methods, these clones are eliminated. We wrap each method snapshot in an individual file and
submit it for clone detection.

Table II describes the number of clone genealogies and the number of LP Gens for each subject
system using all three clone detection tools. There is a large discrepancy (in orders of magnitude)
between the number of clones in CCFINDER and SIMIAN. We identify two reasons for this
discrepancy: the clone detection technique and the minimum clone length of each tool. SIMIAN uses
a text-based clone detection technique, whereas CCFINDER uses a token-based technique. CCFINDER
converts each Java file into a series of tokens during a preprocessing phase to normalize code
structures, such as variable names and strings. In a manual examination of the CCFINDER clone
detection results, we identify many cases of ‘false positive’ clones due to this normalization. Several
methods have a large number of false positive clones. For example, a method containing a list of
variables being assigned values (e.g., x = 0;) may report tens of thousands of clones. We created a
tool to automatically locate methods with a large number of clone pairs. After manually examining
each method, we filtered the results to remove them from the study. A large number of false positive
clones are not as apparent in the SIMIAN clone detection results. Overall, we found CCFINDER to
have a high recall but low precision. A high recall means that CCFINDER does not miss many clones
during clone detection. The clone detection tool parameters also contribute to the discrepancy.
CCFINDER specifies a minimum number of tokens, whereas SIMIAN specifies a minimum number of
lines. To have the same minimum clone size, each Java file must have an average of around eight
tokens per line. If the code has a much higher average number of tokens per line, CCFINDER will
have a smaller minimum number of lines and will therefore detect more clones than SIMIAN.

In addition to these two tools, we extend our previous work [4] by repeating the study using NICAD.
NICAD was selected because it uses a different approach compared with our other two tools; it is fast
and has been reported to be accurate [18].

4.1.4. Building clone genealogies. To build the clone genealogies, we map clones from the clone list
across commits. Both the line numbers and the size of the clones can change over time. To determine
the changes to a clone pair over time and to assign new line numbers to each clone in the clone pair, we
query the SVN of each studied system using diff. diff is a utility that compares files and generates a list
of differences between them. When building clone genealogies, we only note changes that modify one
or both of the clones in the clone pair. This is because changes that occur outside of the clone
boundaries affect the line numbers, but not the contents of the clone. For example, if a clone starts
on line 14 of a method, and three lines of code are inserted at line 3, then the clone start line and
end line increases by three. The change does not affect the consistency of the clone pair.

For each clone pair, we query the J-REX output for a list of all the commits where the methods
containing the clones are modified. As mentioned previously, not all of these commits modify the
cloned code, but this step reduces the number of commits that must be checked for changes. Using
the commit number of the clone pair as a starting commit (i.e., the ‘reference clone’), we execute
diff on the SVN of the subject system to create a list of changes between the current version and the
next commit in the commits list. We update the line numbers of the clone pair as needed to create

AN EMPIRICAL STUDY OF FAULTS IN LATE PROPAGATION CLONE GENEALOGIES

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

an updated reference clone and determine if the clones themselves are modified during the commit. If
they are modified, we need to determine if the change was diverging or reconciling.

A clone detection tool is used to determine if a change is divergent. Using the existing clone list
obtained during the clone detection step, we identify a clone pair in the same snapshot of the system
that contains the same start and end line numbers as the updated reference clones. If no matching
clone pair is found in the clone list, we flag it as a diverging change in the clone genealogy. If the
clone pair is found, the change is marked in the genealogy as a reconciling change. We repeat the
entire process for each commit in the commit list, until each possible commit has been visited or the
clone pair is removed. A clone pair is considered to be removed when either the file is deleted or
the lines of code containing the clone are deleted.

In our work, a change is reconciling if the changed clone pair is identified as a types 1 or 2 clones
using a clone detection tool. Changes that go beyond simple identifier renaming or changes to literals
must be propagated in order for a change to be reconciling. Therefore, if a clone pair becomes a type 3
clone, where a line or more of code has been inserted (excluding comments and whitespace), the
change will be labeled as diverging.

A clone detection tool may find a clone larger than the updated reference clone, so we allow a clone
in the list to contain the updated reference clone. Even if we identify a clone larger than our clone pair
of interest, we continue to build the genealogy using the updated reference clone. This is because the
updated reference clone can be contained in a larger clone for only one commit, and yet it can continue
to be modified in future commits.

Our approach for generating clone genealogies is similar to the approaches used in other studies [5,
6]. Both Göde and Krinke track clones over time by acquiring a list of changes from the source code
repositories of the subject systems. They then query a clone detection tool with the updated clone pair
to determine if changes caused the clones to diverge. Unlike these authors, we create an overall list of
clones before creating clone genealogies, instead of calling a clone detection tool during the genealogy
building process. Like Krinke [6], we use existing clone detection tools, SIMIAN, CCFINDER, and
NICAD, to detect reconciling and diverging changes. In his work, Krinke made several assumptions
when updating line numbers of clones between commits. We use the same assumptions in our study:

1. If a change occurs before the start of the clone, or after the end of the clone, the clone is not
modified.

2. If an addition occurs starting at the first line number of a clone, the clone shifts within the method
but is not modified.

3. If a deletion occurs anywhere within the clone boundaries, the clone is modified and its size
shrinks.

4. If a deletion followed by an addition overlaps the clone boundaries, we assume that the clone size
shrinks because of the deletion, and the new lines do not make up part of the clone.

In the last assumption, it is possible that there exists a clone containing both our updated reference clone
and the newly added lines. We use the strictest assumption that the new lines are not included. When
determining reconciling and diverging changes, we look for clones in the clone list that contain our
updated reference clone. Therefore, this scenario would still be considered a reconciling change.

4.2. Analysis method

Three analysis methods are used in this study: the odds ratio, chi-square test, and the Kruskal–Wallis test.
In this section, we describe each of these tests in more detail.

The odds ratio (OR) indicates the likelihood of an event to occur. It is defined as the ratio of the odds p/
(1� p) of an event (i.e., a fault-fixing change) occurring in one sample (i.e., experimental group) to the odds
q/(1� q) of the event occurring in the other sample (i.e., control group): OR ¼ p= 1�pð Þ

q= 1�qð Þ , where p is the
probability of the event occurring (i.e., a fault-fixing change) for the experimental group, and q is the
probability of the event occurring for the control group.

An OR = 1 indicates that the event is equally likely in both samples; an OR> 1 shows that the event
is more likely in the experimental group, whereas an OR< 1 indicates that it is more likely in the
control group.

L. BARBOUR, F. KHOMH AND Y. ZOU

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

In our results, each control group is assigned an OR of 1, because it is being compared with itself. In
Table IV, the second and third columns contain data of the control group, that is, the genealogies
without LP. The fifth and sixth columns contain data of the experimental group. Using the data from
the first row of the table, the probability of a fault-fixing change occurring in the control group is q ¼

10;064
10;064þ18;706 ¼ 0:349. Hence, the odds of a fault-fixing change occurring in the control group is 0:349

1�0:349 ¼
0:537. Similarly the probability of a fault-fixing change occurring in the experimental group is p ¼

3437
3437þ3018 ¼ 0:532. The odds of a fault-fixing change occurring in the experimental group is therefore
0:532

1�0:532 ¼ 1:138. Consequently, the OR for ANT using CCFINDER is OR ¼ 1:138
0:537 ¼ 2:12.

The chi-square test is a statistical test used to determine if there are non-random associations
between two variables. We use the test to validate our odds ratios. The control group and the
experimental groups of the odds ratios must all have the same two categorical variables (e.g., the
number of the members of the group that contain faults and the number of the members of
the group that contain no faults). If the p-value of the chi-square test is less than 0.01 then the OR
values are statistically significant. Otherwise, we must assume that the OR could be due to chance
variations in the data set.

The Kruskal–Wallis test is a non-parametric test. Given a set of experimental groups, it determines if
the number of faults in each group is independent.

5. CASE STUDY RESULTS

This section reports and discusses the results of our study.

5.1. RQ1: Are there different types of late propagation?

Motivation
In Table I, we see that as much as a fifth of clone pair genealogies contain LP. We suggest that the in-
stances of LP can be classified into eight types of LP. If only specific types of LP are more prone to
faults, then they should be prioritized over other types for testing. This question is preliminary to the
other questions. It provides the quantitative data on the percentages with which different types of LP
occur in our studied systems. The eight types of LP as discussed in Section 3 are hypothetical. In this
question, we determine if all eight types appear in software systems and are therefore worth inves-
tigating individually.

Approach
We address this question by classifying all instances of LP using the three characteristics described in
Section 3. For each type of LP, we report the number of occurrences in the systems. Using the types
of LP described in Section 3, we categorize all instances of LP in our studied systems. Table III lists
each of the categories and the proportion of occurrences in each system, both as a numerical value
and a percentage of the overall number of LP instances for that system. For each system we repeat
the experiment using all three clone detection tools. Each set of two rows in Table III summarizes
the distribution of LP clone pairs for a specific system (e.g., ARGOUML) using a specific clone de-
tection tool (e.g., SIMIAN).

Results
As summarized in Table III, four types of LP are dominant across all systems using three clone detection
tools (i.e., LP1, LP6, LP7, and LP8). The five dominant types represent the three propagation catego-
ries. As shown in Table III, the instances of LP2 and LP3 are low. Therefore, the ‘propagation always
occurs’ category (i.e., LP1, LP2, and LP3) does not account for the majority of instances of a diverg-
ing change followed by a reconciling change. For all cases, the ‘propagation never occurs’ category
(i.e., LP8) contributes more instances of LP than the ‘propagation always occurs’ category. As shown
in Table III, LP7 occurs in an average of 50% of instances of LP, so it is the most common form of LP
across all systems. However, LP7 is also the least understood of the types of LP. Because both clones
in LP7 clone pairs are modified during all three steps of LP (i.e., diverging, period of divergence, and
reconciliation), it is unclear in which direction changes are propagated during the evolution of the
clone pair. A few types of LP (i.e., LP2 and LP4) contribute minutely to the number of LP Gens.

AN EMPIRICAL STUDY OF FAULTS IN LATE PROPAGATION CLONE GENEALOGIES

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

Overall, we conclude that there is representation from multiple types of LP and across all categories
of LP. In the following research questions, we examine the types in more detail to determine if some
types are more risky than others.

5.2. RQ2: Are some types of LP more fault prone than others?

Motivation
Previous researchers [3] have studied the relationship between LP and faults. In this research question,

we first replicate the earlier studies, and then extend our study to include the different categories of
LP. To replicate earlier studies, we determine if LP Gens are more fault prone than non-LP Gens in
general. Then, we divide the instances of LP into groups based on their type of LP. We compare the
fault proneness of each type of LP compared with non-LP Gens. We investigate if only specific
types of LP are at risk of faults. Rather than suggesting that all LP Gens are prone to faults and must
be monitored, developers can focus their limited testing efforts only on certain types of LP that are
the most fault prone.

Approach
We compute the number of fault-containing and fault-free Gens in each LP category. A Gen is fault-

containing if its Gen contains at least one fault-fixing change during its history. We compute the
same values for non-LP clone Gens that experience at least one change. For the remainder of this
paper, we use the abbreviation ‘Non-LP’ for clone pairs that experience at least one change but
are not involved in any type of LP. We test the following null hypothesis†† H02: Each type of LP
Gen has the same proportion of clone pairs that experience a fault fix. For this question, we use
the chi-square test [25] and compute the OR [25].

Results
The results for this question are divided into two sections. First, we present the results for LPGens in general.

Then, we examine the fault proneness of each LP type in detail.

††There is no H01 because RQ1 is exploratory.

Table III. Number of clone pairs that underwent a late propagation.

Propagation always
occurs

Propagation may or may
not occur

Propagation
never occurs

LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8

CCFINDER
ANT Number 521 46 121 33 70 166 2482 3016

% 8.07 0.71 1.87 0.51 1.09 2.57 38.45 46.72
ARGOUML Number 57 13 226 18 73 129 1242 394

% 2.65 0.60 10.50 0.85 3.39 5.99 57.71 18.31
JBOSS Number 45 1 55 4 44 70 995 758

% 2.28 0.05 2.79 0.20 2.23 3.55 50.46 38.44

SIMIAN

ANT Number 21 0 0 0 0 1 29 52
% 20.39 0.00 0.00 0.00 0.00 0.97 28.15 50.49

ARGOUML Number 0 0 1 2 0 5 6 9
% 0.00 0.00 4.35 8.70 0.00 21.74 26.09 39.13

JBOSS Number 0 0 0 0 1 0 8 3
% 0.00 0.00 0.00 0.00 8.33 0.00 66.67 25.00

NiCad
ANT Number 37 4 1 3 1 1 516 269

% 4.45 0.48 0.12 0.36 0.12 0.12 62.02 32.33
ARGOUML Number 41 13 51 4 32 53 498 141

% 4.92 1.56 6.12 0.48 3.84 6.36 59.78 16.93
JBOSS Number 0 0 0 0 2 1 12 5

% 0.00 0.00 0.00 0.00 10.00 5.00 60.00 25.00

L. BARBOUR, F. KHOMH AND Y. ZOU

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

5.2.1. Fault proneness of late propagation. Table IV summarizes the results of the tests described in
Section 4.2 for instances of LP compared with non-LP Gens. The first and second columns in the table
list the number of non-LP Gens that experience fault fixes and the number that are free of fault fixes.
The third and fourth columns show the same data for LP-Gens. The last column of the table lists the
OR test results for each system using all three clone detection tools. Except for the cases where
ARGOUML and JBOSS are analyzed using SIMIAN, and JBOSS is analyzed using NICAD, all of our
results pass the chi-square test with a p-value less than 0.01 and are therefore significant. Where
there are few data points, we use Fisher’s exact test to confirm the results from the chi-square test.
The Fisher’s exact test is more accurate than the chi-square test when sample sizes are small [25]. In
this study, the Fisher test provided the same results as the chi-square test, so we do not present the
Fisher test results in the tables.

In all the significant cases, the OR is greater than 1, indicating that LP Gens are more fault prone
than non-LP Gens. However, for ARGOUML and JBOSS using SIMIAN, and JBOSS using NICAD, the
results of the chi-square test are not statistically significant. This can be explained by the small
number of clone Gens obtained with the SIMIAN and NICAD detection tools. Overall, our results
agree with previous studies [3] that found that LP is more at risk of faults.

5.2.2. Fault proneness of late propagation types. We repeat the previous tests, dividing the instances
of LP into their respective LP types. We compare each type of LP to Gens with no LP. Tables V, VI,
and VII summarizes the results obtained from CCFINDER, SIMIAN, and NICAD, respectively. For each
type of LP, the table lists the number of instances that experience a fault fix, the number that never
experience a fault fix, the result from the chi-square test, and the OR using the control group.

The chi-square test results for ARGOUML and JBOSS using SIMIAN in Table VI and JBOSS using
NICAD are greater than 0.01, so they are insignificant. Therefore, they are excluded from consideration.

An examination of the significant cases in Tables V, VI, and VII reveals that the ORs are greater
than 1, so each type of LP is more fault prone than non-LP Gens. There are six exceptions to this
observation within ANT: LP6 in Table VI, LP5 and LP7 in Table V, and LP4, LP6, and LP7 in
Table VII. Additionally, JBOSS using CCFINDER is less fault prone than non-LP Gens for LP1 and
LP7. All exceptions, except LP1, belong to the ‘propagation may or may not occur’ category. LP1
belongs to the ‘propagations always occur’ category.

Comparing Tables V, VI, and VII to Table III, we conclude that there are many types that make up a
small proportion of LP instances and have a very high OR. Thus, when one of these LP types occurs, it
is very likely to contain a fault fix. For example, LP2 has a high OR (e.g., 26.64 in ANT using
CCFINDER in Table III), but accounts for less than 1% of all LP instances in Table III.

The two most common LP types in the previous research question, LP7 and LP8, in general have
low ORs in Table III. This indicates that although they occur frequently, they are less fault prone
than other less common LP types (e.g., LP2).

Table IV. Contingency table and chi-square test results for clone genealogies with and without late
propagation.

Releases No LP – faults No LP – no faults LP – faults LP – no faults p-values OR

CCFINDER
ANT 10,064 18,706 3437 3018 <0.01 2.12
ARGOUML 8755 9869 1398 754 <0.01 2.10
JBOSS 5684 8268 1020 952 <0.01 1.56

SIMIAN

ANT 124 251 68 35 <0.01 3.93
ARGOUML 44 45 12 11 1 1.12
JBOSS 5 8 4 8 0.88 0.8

NICAD

ANT 797 1987 357 475 <0.01 1.87
ARGOUML 1891 1399 655 178 <0.01 2.72
JBOSS 53 79 9 11 0.87 1.21

LP, late propagation; OR, odds ratio.

AN EMPIRICAL STUDY OF FAULTS IN LATE PROPAGATION CLONE GENEALOGIES

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

Table V. CCFINDER – contingency tables with the chi-square test.

Propagation always
occurs

Propagation may or may
not occur

Propagation
never occurs

No LP LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8

ANT Faults 10,064 282 43 50 27 19 109 814 2093
No faults 18,706 239 3 71 6 51 57 1668 923
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 1 2.19 26.64 1.31 8.36 0.69 3.55 0.91 4.21

ARGOUML Faults 8755 41 11 175 13 57 96 712 293
No faults 9869 16 2 51 5 16 33 530 101
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 1 2.88 6.2 3.87 2.93 4.02 3.28 1.51 3.27

JBOSS Faults 5684 7 1 25 2 19 44 356 566
No faults 8268 38 0 30 2 25 26 639 192
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 < 0.01
OR 1 0.27 Infinite 1.21 1.45 1.11 2.46 0.81 4.29

LP, late propagation; OR, odds ratio.

Table VI. SIMIAN – contingency tables with the chi-square test.

Propagation always
occurs

Propagation may or may
not occur

Propagation
never occurs

No LP LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8

ANT Faults 124 8 0 0 0 0 0 10 50
No Faults 251 13 0 0 0 0 1 19 2
p-value <0.01 <0.01 n/a n/a n/a n/a <0.01 <0.01 <0.01
OR 1 1.25 n/a n/a n/a n/a 0 1.07 50.6

ARGOUML Faults 44 0 0 0 2 0 2 3 5
No Faults 45 0 0 1 0 0 3 3 4
p-value 0.65 n/a n/a 0.65 0.65 n/a 0.65 0.65 0.65
OR 1 n/a n/a 0 Infinite n/a 0.68 1.02 1.28

JBOSS Faults 10,064 0 0 0 0 5 0 2 2
No Faults 18,706 0 0 0 0 8 0 6 1
p-value 0.52 n/a n/a n/a n/a 0.52 n/a 0.52 0.52
OR 1 n/a n/a n/a n/a 0 n/a 0.53 3.2

LP, late propagation; OR, odds ratio; n/a, not applicable.

Table VII. NICAD – contingency tables with the chi-square test.

Propagation always
occurs

Propagation may or may
not occur

Propagation
never occurs

No LP LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8

ANT Faults 797 22 4 1 0 1 0 133 196
No faults 1987 15 0 0 3 0 1 383 73
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 1 3.66 Infinite Infinite 0 Infinite 0 0.87 6.69

ARGOUML Faults 1891 32 9 43 3 28 45 408 87
No faults 1399 9 4 8 1 4 8 90 54
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 1 2.63 1.66 3.98 2.22 5.18 4.16 3.35 1.91

JBOSS Faults 53 0 0 0 0 0 1 5 3
No faults 79 0 0 0 0 2 0 7 2
p-value 0.46 n/a n/a n/a n/a 0.46 0.46 0.46 0.46
OR 1 n/a n/a n/a n/a 0 Infinite 1.06 2.24

LP, late propagation; OR, odds ratio; n/a, not applicable.

L. BARBOUR, F. KHOMH AND Y. ZOU

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

Overall, each type of LP has a different level of fault proneness. Thus, we reject H02 in general.

5.3. RQ3: Which type of late propagation experiences the highest proportion of faults?

Motivation
In the previous question (RQ2), we examine which types of LP are the most prone to faults. In this
question, we examine which types of LP contribute the most faults to each system. In other words,
we examine if, when faults occur, do they occur in large numbers? This question examines the im-
pact of a fault-prone Gen, because a clone pair that experiences 10 faults may require more effort
than a clone pair that only experiences one fault.

Approach
We want to identify which type of LP experiences the highest proportion of faults. Therefore, we test
the following null hypothesis H03: Different types of LP have the same proportion of clone pairs that
experience a fault fix. For each type of LP, we calculate the sum of all faults experienced by in-
stances of that type of LP. We use the non-parametric Kruskal–Wallis test to investigate if the num-
ber of faults for the different types of LP are identical.

Results
Table VIII presents the distribution of faults for different types of LP. The ‘Total’ row represents the
total numbers of faults over all LP Gens. For example, for ANT using CCFINDER, there are 5566
fault fixes across all Gens. These 5566 faults are spread over 1104 commits marked by J-REX as
a fault fix. This is because multiple clone pairs are modified during a fault-fixing commit.
To validate the results, we perform the non-parametric Kruskal–Wallis test, which compares the

distribution of faults between groups of different types of LP. Table IX summarizes the results of
the Kruskal–Wallis test. Globally, we observe a statistically significant difference between the
distribution of faults across all the groups of LP types. From Table IX, only ARGOUML and JBOSS

using SIMIAN, and JBOSS using NICAD are not statistically significant.
Examining the results in Table VIII for almost all the significant cases, we see that in general, LP7

and LP8 contribute to a large proportion of the faults. In the previous question, LP7 and LP8 have
lower ORs. Although they are less prone to faults, when they do experience faults, fault-fixing

Table VIII. Proportion of faults for each type of late propagation.

Propagation always
occurs

Propagation may or may
not occur

Propagation
never occurs

LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8

CCFINDER
ANT Number of Faults 484 79 68 56 25 197 999 3658

% 8.70 1.42 1.22 1.01 0.45 3.54 17.95 65.72
ARGOUML Number of Faults 72 25 311 17 108 134 1121 500

% 3.15 1.09 13.59 0.74 4.72 5.86 48.99 21.85
JBOSS Number of Faults 7 1 40 2 26 47 486 851

% 0.48 0.07 2.74 0.14 1.78 3.22 33.29 58.29

SIMIAN

ANT Number of Faults 9 0 0 0 0 0 12 106
% 7.09 0.00 0.00 0.00 0.00 0.00 9.45 83.47

ARGOUML Number of Faults 0 0 0 4 0 2 6 6
% 0.00 0.00 0.00 22.22 0.00 11.11 33.33 33.33

JBOSS Number of Faults 0 0 0 0 0 0 4 3
% 0.00 0.00 0.00 0.00 0.00 0.00 57.14 42.86

NICAD

ANT Number of Faults 32 8 1 0 2 0 140 289
% 6.78 1.70 0.21 0.00 0.420 0.00 29.66 61.23

ARGOUML Number of Faults 126 39 89 5 65 97 676 168
% 9.96 3.08 7.04 0.40 5.14 7.67 53.44 13.28

JBOSS Number of Faults 0 0 0 0 0 2 5 6
% 0.00 0.00 0.00 0.00 0.00 15.38 38.46 46.15

AN EMPIRICAL STUDY OF FAULTS IN LATE PROPAGATION CLONE GENEALOGIES

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

commits are likely to occur in large numbers. When a developer is reconciling these divergent clones
due to a fault fix, he should be careful to check for other faults in the clones. In the case of ANT, LP8
contributes over half of all fault fixes, but is one of the least fault-prone types compared with other LP
types. The change causing the divergence may lead to faults in the system, which may be why the
change is reverted instead of being propagated to the other clone in the clone pair.

The remaining results are system dependent. For example, in the case of ARGOUML using
CCFINDER in Table VIII, the category where propagation always occurs contributes over two times
the amount of faults than the category where propagation never occurs. This trend does not hold
across all systems in our study.

Overall, we can conclude that types LP7 and LP8 are the most dangerous, with the other types being
system dependent in their fault proneness. The proportion of faults for each type of LP are therefore
very different. Thus, we reject H03.

5.4. RQ4: Does the size of cloned code affect the fault proneness of late propagation genealogies?

Motivation
In RQ2, we investigate the fault proneness of the different types of LP Gens described in Section 3. In

this question, we examine the relationship between the size of the cloned code and fault proneness. It
is expected that smaller clones will be less prone to faults, as they contain less code and would be
easier to comprehend. For each type of LP, we investigate if smaller clones have a different odds
ratio than bigger clones of the same type. If the fault proneness is size dependent, then fault-prone
LP types can be further filtered by their size to highlight the most risky clones.

Approach
For each LP clone pair, we measure the number of lines of cloned code. Using this value, we classify

each clone pair as either small or large. It is classified as ‘LARGE’ if the size is greater than 10 LOC,
or ‘SMALL’ if it is smaller than or equal to 10 LOC. We obtain the cutoff by examining the distri-
bution of clone sizes. For example, Figure 2 shows the distribution of clone sizes for ANT using
CCFINDER. The figure shows that almost all of the clones are smaller than 100 LOC. A large pro-
portion of the clones are smaller than 10 LOC. The number of occurrences of clones of a specific
size decreases as the size increases. Using the clone size distribution information, we select our cut-
off of 10 LOC for small clones.
We test the following null hypothesis H04: There is no relationship between the size of a clone

experiencing LP and its fault proneness. We group the clone pairs based on their size (i.e., LARGE
and SMALL). For each type of LP, we compute the number of small and big fault-containing and
small and big fault-free Gens. Therefore, there are two experimental groups for each type of LP, a
BIG group and a SMALL group. We also calculate the number of small and large fault-containing
and fault-free non-LP clone Gens. We compute the ORs and perform the chi-square test.

Results
We determine the control group for this question by calculating the ORs between the small non-LP

Gens and the big non-LP Gens. The p-value of the chi-square test and the OR of the small non-LP

Table IX. Results of the Kruskal–Wallis tests.

System Kruskal–Wallis p-values

ANT – CCFINDER <0.01
ANT – SIMIAN <0.01
ANT – NICAD <0.01
ARGOUML – CCFINDER <0.01
ARGOUML – SIMIAN 0.24
ARGOUML – NICAD <0.01
JBOSS – CCFINDER <0.01
JBOSS – SIMIAN 0.47
JBOSS – NICAD 1

L. BARBOUR, F. KHOMH AND Y. ZOU

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

Gens are shown in the first column of data in Tables X, XI, and XII. We use the group of non-LP Gens
with big sizes as the control group.
The ORs for each LP type and size and their corresponding chi-square test values are listed in

Tables X, XI, and XII. Each type of LP is divided into two different groups, big and small. The first
column of data in the big rows describes the control group, which consists of all big non-LP Gens.
In Table XI, only ANT passes the chi-square test. Therefore, we exclude ARGOUML and JBOSS

using SIMIAN from our discussion. Similarly, when using the NICAD clone detection tool, JBOSS

fails the chi-square test. Therefore, we exclude it from our discussion.
From Tables X, XI, and XII, examining all systems, we notice that for LP4, the small clones are

more fault prone than big clones. However, except for LP2 in ARGOUML in Table XII, for LP2,

0

200

400

600

800

1000

1200

10 15 20 25 100 More
Clone Size

oc

cu
rr

en
ce

s

Figure 2. Clone size distribution of ANT using CCFINDER.

Table X. CCFINDER – contingency tables with the chi-square test for the fault proneness of late propagation
types grouped by size.

Propagation always
occurs

Propagation may or may
not occur

Propagation
never occurs

No LP LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8

ANT BIG Faults 6326 167 26 31 17 8 54 517 1453
No faults 11776 79 1 32 4 36 16 1226 635
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 1 3.93 48.39 1.80 7.91 0.41 6.28 0.78 4.25

SMALL Faults 3738 115 17 19 10 11 55 297 640
No faults 6930 160 2 39 2 15 41 442 288
p-value 0.88 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 1.01 1.33 15.82 0.91 9.3 1.36 2.49 1.25 4.13

ARGOUML BIG Faults 3692 18 8 81 3 18 41 267 114
No faults 2866 5 0 12 2 3 6 138 33
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 1 2.79 Infinite 5.24 1.16 4.65 5.30 1.50 2.68

SMALL Faults 5063 23 3 94 10 39 55 445 179
No faults 7003 11 2 39 3 13 27 392 68
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 0.56 1.62 1.16 1.87 2.58 2.33 1.58 0.88 2.04

JBOSS BIG Faults 1692 4 1 13 0 8 27 211 209
No faults 4608 22 0 11 0 15 5 292 69
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 1 0.5 Infinite 3.22 n/a 1.45 14.71 1.97 8.24

SMALL Faults 3992 3 0 12 2 11 17 145 357
No faults 3660 16 0 19 2 10 21 347 123
p-value <0.01 <0.01 n/a <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 2.97 0.51 n/a 1.72 2.72 2.99 2.20 1.13 7.90

LP, late propagation; OR, odds ratio; n/a, not applicable.

AN EMPIRICAL STUDY OF FAULTS IN LATE PROPAGATION CLONE GENEALOGIES

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

LP3, and LP6, the opposite is true. For these types, big clones are more fault prone than small clones.
In most cases for LP8, the ORs of the big and small clones are similar in value. For the other types of
LP (i.e., LP1, LP5, and LP7), the fault proneness of big and small clones is different. Thus, in general,
we reject H04. Additionally, which of the big or small clones is more fault prone is system dependent.

5.5. RQ5: For a clone pair experiencing LP, does the time interval between the diverging change and
the reconciling change affect fault proneness?

Motivation
In a previous study on code clone Gens [3], Thummalapenta et al. categorized LP Gens by whether or

not a reconciling change occurs within the first day. In this research question, we investigate the dif-
ferent periods of delay between the diverging and reconciling changes. We want to evaluate if a
smaller period of delay will be less prone to faults because a developer will be more familiar with
the code. If certain periods of delay are more fault prone, then those Gens should be prioritized
for testing.

Approach
We establish if the time interval between the divergent phase and the reconciling phase of the clone

pair impacts the fault proneness of a clone pair experiencing LP. We classify clone pairs experienc-
ing LP by the time interval between the diverging and the reconciling changes. We divide them into
five groups corresponding to the following five time period: 1 day, 1week, 1month, 1 year, and
more than 1 year. Using the ‘More than a Year’ group as the control group, we calculate the ORs
between the control group and the other time period groups (i.e., the experimental groups) and per-
form the chi-square test. We select the ‘More than a Year’ group as our control group because we
suggest that a longer period of delay will be the most fault prone. A developer may be unfamiliar
with the code and could be more likely to introduce faults into the system. We test the following null

Table XI. SIMIAN – contingency tables with the chi-square test for the fault proneness of late propagation
types grouped by size.

Propagation always
occurs

Propagation may or may
not occur

Propagation
never occurs

No LP LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8

ANT BIG Faults 89 6 0 0 0 0 0 10 35
No faults 159 6 0 0 0 0 1 16 2
p-value <0.01 <0.01 n/a n/a n/a n/a <0.01 <0.01 <0.01
OR 1 1.78 n/a n/a n/a n/a 0 1.12 31.26

SMALL Faults 35 2 0 0 0 0 0 0 15
No faults 92 7 0 0 0 0 0 3 0
p-value 0.13 <0.01 n/a n/a n/a n/a n/a <0.01 <0.01
OR 0.68 0.51 n/a n/a n/a n/a n/a 0 Infinite

ARGOUML BIG Faults 17 0 0 0 1 0 0 0 3
No faults 22 0 0 0 0 0 1 0 3
p-value 0.79 n/a n/a n/a 0.79 n/a 0.79 n/a 0.79
OR 1 n/a n/a n/a Infinite n/a 0 n/a 1.29

SMALL Faults 27 0 0 0 1 0 2 3 2
No faults 23 0 0 1 0 0 2 3 1
p-value 0.44 n/a n/a 0.79 0.79 n/a 0.79 0.79 0.79
OR 1.52 n/a n/a 0 Infinite n/a 1.29 1.29 2.58

JBOSS BIG Faults 2 0 0 0 0 0 0 0 2
No faults 4 0 0 0 0 0 0 0 1
p-value 0.52 n/a n/a n/a n/a n/a n/a n/a 0.52
OR 1 n/a n/a n/a n/a n/a n/a n/a 4

SMALL Faults 3 0 0 0 0 0 0 2 0
No faults 4 0 0 0 0 1 0 6 0
p-value 0.82 n/a n/a n/a n/a 0.52 n/a 0.52 n/a
OR 1.50 n/a n/a n/a n/a 0 n/a 0.67 n/a

LP, late propagation; OR, odds ratio; n/a, not applicable.

L. BARBOUR, F. KHOMH AND Y. ZOU

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

hypothesis H05: The time interval between the diverging and the reconciling of a LP clone pair has
no relationship with its fault proneness.

Results
The results for this research question are shown in Tables XIII, XIV, and XV. The control group,
the delay before the reconciling change is greater than a year, is shown in the last column in
each table.
In all cases that passed the chi-square test, we see that compared with LP Gens that reconcile after

more than a year, the fault proneness of each delay period is different. Therefore, we reject H05.
However, the fault proneness of each delay period is not consistently greater than 1 or less than 1
across all systems using both clone detection tools, so the fault proneness of each delay period is
system dependent. For example, the OR of LP Gens that reconcile within 1 day is almost zero in
three cases, however it is infinite in the three other cases. We cannot say that overall the fault
proneness of a LP increases or decreases as the time because the divergence increases.

5.6. RQ6: Are the clone pairs in late propagation reconciled because of fault-fixing activities?

Motivation
In this question, we determine if the reconciling change following a diverging change (RC) in a LP
Gen is a fault-fixing change. A divergent clone pair becomes reconciled when either changes are
propagated between two clones or the diverging changes are reverted. Because a fault-fixing recon-
ciling change eliminates the divergence, it is possible that the divergence was accidental. It is also
possible that the diverging change introduced the fixed fault in the system. Therefore, if a high pro-
portion of the reconciling changes of a type of LP are fault-fixing changes, we recommend that de-
velopers monitor that type of LP more carefully. However, we cannot claim that LP caused the fixed
faults, because these faults could have been introduced in the system prior to the LP occurring.

Table XII. NICAD – contingency tables with the chi-square test for the fault-proneness of late propagation
types grouped by size.

Propagation always
occurs

Propagation may or may
not occur

Propagation
never occurs

No LP LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8

ANT BIG Faults 775 22 4 1 0 1 0 132 195
No faults 1889 12 0 0 3 0 1 383 72
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 1 4.47 Infinite Infinite 0 Infinite 0 0.84 6.60

SMALL Faults 22 0 0 0 0 0 0 1 1
No faults 98 3 0 0 0 0 0 0 1
p-value 0.01 <0.01 n/a n/a n/a n/a n/a <0.01 <0.01
OR 0.68 0.51 n/a n/a n/a n/a n/a Infinite 2.44

ARGOUML BIG Faults 1186 19 6 36 2 23 31 309 76
No faults 1087 9 4 4 1 4 3 61 47
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 1 1.93 1.37 8.25 1.83 5.27 9.47 4.64 1.48

SMALL Faults 705 13 3 7 1 5 14 99 11
No faults 312 0 0 4 0 0 5 29 7
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 2.07 Infinite Infinite 1.60 Infinite Infinite 2.57 3.13 1.44

JBOSS BIG Faults 52 0 0 0 0 0 1 5 3
No faults 72 0 0 0 0 2 0 7 2
p-value 0.48 n/a n/a n/a n/a 0.48 0.48 0.48 0.48
OR 1 n/a n/a n/a n/a 0 Infinite 0.99 2.08

SMALL Faults 1 0 0 0 0 0 0 0 0
No faults 7 0 0 0 0 0 0 0 0
p-value 0.20 n/a n/a n/a n/a n/a n/a n/a n/a
OR 0.2 n/a n/a n/a n/a n/a n/a n/a n/a

LP, late propagation; OR, odds ratio; n/a, not applicable.

AN EMPIRICAL STUDY OF FAULTS IN LATE PROPAGATION CLONE GENEALOGIES

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

Approach
We test the following null hypothesis H06: the proportion of reconciling changes that follow a diverg-

ing change that are fault fixes is equal to the proportion of other changes that are fault fixes. For

Table XIII. CCFINDER – contingency tables with the chi-square test for the delay between a diverging
change and a reconciling change and faults.

Within 1 day Within 1week Within 1month Within 1 year More than a year

ANT Faults 37 128 542 1130 1600
No faults 75 413 849 969 712
p-value <0.01 <0.01 <0.01 <0.01 <0.01
OR 0.22 0.14 0.28 0.52 1

ARGOUML Faults 2 67 93 920 316
No faults 26 17 62 477 172
p-value <0.01 <0.01 <0.01 <0.01 <0.01
OR 0.04 2.15 0.82 1.05 1

JBOSS Faults 18 14 253 642 93
No faults 0 14 88 751 99
p-value <0.01 <0.01 <0.01 <0.01 <0.01
OR Infinite 1.06 3.06 0.91 1

OR, odds ratio.

Table XIV. SIMIAN – contingency tables with the chi-square test for the delay between a diverging change
and a reconciling change and faults.

Within 1 day Within 1week Within 1month Within 1 year More than a year

ANT Faults 7 0 10 38 13
No faults 0 5 6 19 5
p-value <0.01 <0.01 <0.01 <0.01 <0.01
OR Infinite 0 0.64 0.77 1

ARGOUML Faults 0 0 3 3 6
No faults 0 0 2 6 3
p-value n/a n/a 0.34 0.34 0.34
OR n/a n/a 0.75 0.25 1

JBOSS Faults 0 0 0 3 1
No faults 0 0 3 5 0
p-value n/a n/a 0.17 0.17 n/a
OR n/a n/a 0 0 n/a

OR, odds ratio; n/a, not applicable.

Table XV. NICAD – contingency tables with the chi-square test for the delay between a diverging change
and a reconciling change and faults.

Within 1 day Within 1week Within 1month Within 1 year More than a year

ANT Faults 6 22 63 116 150
No faults 8 117 180 153 17
p-value <0.01 <0.01 <0.01 <0.01 <0.01
OR 0.09 0.02 0.04 0.09 1.00

2 ARGOUML Faults 2 19 37 366 231
No faults 0 17 22 88 51
p-value <0.01 <0.01 <0.01 <0.01 <0.01
OR Infinite 0.25 0.37 0.92 1.00

JBOSS Faults 0 2 1 6 0
No faults 0 0 1 4 6
p-value n/a 0.04 0.04 0.04 0.04
OR n/a Infinite Infinite Infinite 1.00

OR, odds ratio; n/a, not applicable.

L. BARBOUR, F. KHOMH AND Y. ZOU

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

each type of LP, we calculate the number of RC changes that were a fault fix and the number that
were not a fault fix. We use all other changes within the LP clone Gens as our control group and
determine the number that contained a fault fix. A non-RC change is any change that modifies the
clone pair. This includes all diverging changes and reconciling changes that are immediately pre-
ceded by a reconciling change. We calculate the OR between the non-RC changes and the RC
changes from each type of LP. We validate our results using the chi-square test.

Results
The results of our study are shown in Tables XVI, XVII, and XVIII. The first column of data in the
tables contains the non-RC changes, which is the control group in our study. ARGOUML and JBOSS

using SIMIAN fail the chi-square test, so we exclude them from our discussion.
In five of the seven significant cases, the OR of LP8 is greater than 1, indicating that the reconciling

change in an LP8 Gen is more likely to be a fault-fixing change. LP8 belongs to the ‘Propagation never
occurs’ category, and in this type, the diverging change is reverted without the other clone in a clone
pair being modified. This indicates that when a change is reverted to reconcile the clone pair, it has a
high likelihood of being a fault-fixing change.

The OR of LP7 is less than 1 in all significant cases, except for JBOSS using NICAD. This indicates
that in LP Gens where both clones are modified during all three phases (i.e., diversion, period of
divergence, and reconciliation) as described in Section 3, the reconciliation is less likely to be due to
a fault fix. All other changes in a LP Gen are more likely to be a fault-fixing change.

The results for all other types of LP are both system and clone detection tool dependent. However,
overall, the fault proneness of the reconciling change for each LP type is different, so we reject H06.

6. THREATS TO VALIDITY

We now discuss the threats to validity of our study, following the guidelines for case study research [26].
Construct validity threats concern the relation between theory and observation. In this study, the

threats are mainly due to measurement errors possibly introduced by our chosen clone detection
tools. To reduce the possibility of misclassification of code fragment as clones, we chose three clone
detection tools that have been used in previous studies and repeat the study for all three tools.

All clone detection tools in this study can detect identical (i.e., type 1) and near-identical clones (i.e.,
type 2). CCFINDER can detect some gaps in type 1 and 2 clones. An additional LOC within a clone
(excluding whitespace and comments) cannot be detected by the tools. The addition or deletion of
an LOC to one clone segment and not the other is a diverging change. Thus, if we were to use a
clone detection tool that detects multiple lines between clone segments, our Gens would be

Table XVI. CCFINDER – contingency tables with the chi-square test for the likelihood that reconciling
changes are fault-fixing changes.

Propagation always
occurs

Propagation may or may
not occur

Propagation
never occurs

Non-RS LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8

ANT Faults 4433 139 7 3 15 3 24 190 680
No faults 21,093 382 39 117 18 67 142 2293 2336
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 1 1.73 0.85 0.12 3.97 0.21 0.8 0.39 1.39

ARGOUML Faults 1836 14 6 63 1 11 14 224 98
No faults 7778 43 7 163 17 62 115 1018 296
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 1 1.38 3.63 1.64 0.25 0.75 0.52 0.93 1.40

JBOSS Faults 1175 0 0 11 0 6 3 116 123
No faults 5900 45 1 43 4 38 67 880 635
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 1 0 0 1.28 0 0.79 0.22 0.66 0.97

OR, odds ratio; Non-RS, Non-resynchronizing.

AN EMPIRICAL STUDY OF FAULTS IN LATE PROPAGATION CLONE GENEALOGIES

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

inaccurate. It is possible in our current approach that the clone detection tool may detect the two clone
segments as new clone pairs, but only if the clone segments meet the minimum clone size
requirements. These new clone pairs would create Gens in parallel with the larger clone Gen.
However, they would only experience LP if the main clone Gen experienced LP a second time, and
it must occur within one of the clone segments. One of the authors manually inspected the Gens and
could not find such occurrences. In future work, we plan to consider type 3 clone Gens.

Another construct validity threat is the software evolution tool J-REX, which uses heuristics to
identify fault-fixing changes [19]. The results of this study are dependent on the accuracy of the
results from J-REX. However, we are confident in the results from J-REX as it implements the same
algorithm used previously by Hassan et al. [27] and Mockus et al. [20]. Additionally, we perform
an evaluation of J-REX and determine that the accuracy of J-REX is 87%. We do not remove the
false positives from our study, due to the large number of commit messages that would need to be
manually examined.

Table XVII. SIMIAN – contingency tables with the chi-square test for the likelihood that reconciling changes
are fault-fixing changes.

Propagation always
occurs

Propagation may or may
not occur

Propagation
never occurs

Non-RS LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8

ANT Faults 95 1 0 0 0 0 0 1 23
No faults 368 20 0 0 0 0 1 28 29
p-value <0.01 <0.01 n/a n/a n/a n/a <0.01 <0.01 <0.01
OR 1 0.19 n/a n/a n/a n/a 0 0.14 3.07

ARGOUML Faults 17 0 0 0 0 0 0 0 2
No faults 83 0 0 0 2 0 5 7 7
p-value 0.55 n/a n/a n/a 0.55 n/a 0.55 0.55 0.55
OR 1 n/a n/a n/a 0 n/a 0 0 1.39

JBOSS Faults 5 0 0 0 0 0 0 2 0
No faults 36 0 0 0 0 0 0 7 3
p-value 0.57 n/a n/a n/a n/a n/a n/a 0.57 0.57
OR 1 n/a n/a n/a n/a n/a n/a 2.06 0

OR, odds ratio.

Table XVIII. NICAD – contingency tables with the chi-square test for the likelihood that reconciling changes
are fault-fixing changes.

Propagation always
occurs

Propagation may or may
not occur

Propagation
never occurs

Non-RS LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8

ANT Faults 324 8 1 0 0 1 0 26 55
No faults 3357 29 3 1 3 0 1 490 214
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 1 2.86 3.45 0 0 Infinite 0 0.55 2.66

ARGOUML Faults 1082 9 3 19 0 9 10 100 19
No faults 2855 32 10 32 4 23 43 398 122
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
OR 1 0.74 0.79 1.57 0 1.03 0.61 0.66 0.41

JBOSS Faults 7 0 0 0 0 0 1 2 3
No faults 54 0 0 0 0 2 0 10 2
p-value <0.01 n/a n/a n/a n/a <0.01 <0.01 <0.01 <0.01
OR 1 n/a n/a n/a n/a 0 Infinite 1.54 11.57

OR, odds ratio.

L. BARBOUR, F. KHOMH AND Y. ZOU

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

J-REX can distinguish between methods with the same name by their parameters. However,
a renamed method is treated as a deletion of the previous method and creation of a new
method.

Threats to internal validity do not affect this study, as it is an exploratory study [26]. Although we
cannot claim causation, we do identify, in RQ2 and RQ3, a relation between LP and fault proneness for
clone pair Gens. Furthermore, we have provided some qualitative explanation of our results on the
basis of the inspection of the source code of our studied systems.

Conclusion validity threats concern the relation between the treatment and the outcome. We pay
attention to the assumptions of the statistical tests. Also, we mainly use non-parametric tests that do
not require a normal distribution of the data.

Threats to external validity concern the possibility of generalizing our results. We examine Java
systems, some that use a plug-in architecture. Although the selected systems have different sizes and
belong to different domains, further validation on more systems should be performed. Additionally,
this study should be repeated on systems that use other programming languages, such as C and C++.

Reliability validity threats concern the possibility of replicating this study. We attempt to provide all
the details needed to replicate our study. Also, the source code and SVN repositories of the studied
systems are publicly available.

7. CONCLUSION

In this paper, we extend previous studies on clone Gens to examine LP in more detail. These studies
identified LP as a fault-prone type of clone Gen. We first confirm that LP is more risky than other
clone Gens. We then identify eight types of LP and study them in detail to identify which contribute
most to faults in LP. Overall, we find that two types of LP, LP7, and LP8 are riskier than the others,
in terms of their fault proneness and the magnitude of their contribution toward faults. LP8 involves
no propagation at all and occurs when a clone diverges and then reconciles itself without changes to
the other clone in a clone pair (i.e., any modifications that diverge the clone pair are reverted). The
reconciling change in LP8 has a higher likelihood of being a fault-fixing change, indicating that the
period of divergence within an LP8 Gen may be prone to faults. LP7 occurs when both clones are
modified, causing a divergence and then both are modified to reconcile the clone pair. The
contribution of other types of LP is found to be system dependent. We also investigated the effect of
size and the delay between the diverging change and reconciling change in a clone pair. For both of
these characteristics, we find that the fault proneness varies with the size and period of delay.
However, it is system dependent. Overall, we show that instances of LP can be filtered by their
types to identify the most fault prone clone pairs. These types of LP can be further filtered by
their size and the period of delay, but these two characteristics should be evaluated to determine
their relationship with faults within a specific software system.

Currently our Gen generation framework supports Java systems. In the future, we plan to expand our
framework to evaluate other languages. We will also examine the effect of the design phase or maturity
of a project on LP. Lastly, we will increase the scope of our work to study more Gen patterns.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers of JSME for their valuable feedback that helped
us to improve the quality of the paper. We would also like to thank Weiyi Shang at Queen’s University, for
his assistance in the extraction of evolutionary change and fault fix information from the software reposito-
ries, as well as Hao Yuan, Feng Zhang, Bipin Upadhyaya, Shuai Xie, and Shaohua Wang at Queen’s
University, for their assistance in evaluating J-REX.

REFERENCES

1. Kim M, Sazawal V, Notkin D, Murphy G. An empirical study of code clone genealogies. Proceedings of the
10th European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ESEC/FSE-13, ACM: New York, NY, USA, 2005; 187–196.

AN EMPIRICAL STUDY OF FAULTS IN LATE PROPAGATION CLONE GENEALOGIES

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

2. Aversano L, Cerulo L, Di Penta M. How clones are maintained: an empirical study. Proceedings of the 11th Euro-
pean Conference on Software Maintenance and Reengineering, 2007; 81–90.

3. Thummalapenta S, Cerulo L, Aversano L, Di Penta M. An empirical study on the maintenance of source code clones.
Empirical Software Engineering 2010; 15:1–34.

4. Barbour L, Khomh F, Zou Y. Late propagation in software clones. Software Maintenance (ICSM), 2011 27th IEEE
International Conference on, 2011; 273–282. DOI: 10.1109/ICSM.2011.6080794.

5. Göde N. Evolution of type-1 clones. Proceedings of the Ninth IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM ’09, 2009; 77–86. DOI: 10.1109/SCAM.2009.17.

6. Krinke J. A study of consistent and inconsistent changes to code clones. Proceedings of the Working Conference on
Reverse Engineering 2007; 0:170–178.

7. Saha R, Asaduzzaman M, Zibran M, Roy C, Schneider K. Evaluating code clone genealogies at release level: an em-
pirical study. Proceedings of the 10th IEEE Working Conference on Source Code Analysis and Manipulation, SCAM
’10, 2010; 87–96. DOI: 10.1109/SCAM.2010.32.

8. Göde N, Harder J. Clone stability. 15th European Conference on Software Maintenance and Reengineering, 2011.
9. Krinke J. Is cloned code more stable than non-cloned code? Proceedings of the IEEE International Workshop on

Source Code Analysis and Manipulation, 2008; 57–66.
10. Göde N, Koschke R. Frequency and risks of changes to clones. Proceedings of the 33rd International Conference on

Software Engineering, 2011.
11. Göde N, Harder J. Oops! . . . i changed it again. Proceedings of the 5th International Workshop on Software Clones,

IWSC ’11, ACM: New York, NY, USA, 2011; 14–20. DOI: http://doi.acm.org/10.1145/1985404.1985408. URL:
http://doi.acm.org/10.1145/1985404.1985408.

12. Jiang L, Su Z, Chiu E. Context-based detection of clone-related bugs. Proceedings of the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC-FSE ’07, ACM: New York, NY, USA, 2007; 55–64. DOI: http://doi.acm.org/10.1145/
1287624.1287634. URL: http://doi.acm.org/10.1145/1287624.1287634.

13. Li Z, Lu S, Myagmar S, Zhou Y. CP-Miner: a tool for finding copy-paste and related bugs in operating system
code. Proceedings of the 6th Conference on Symposium on Operating Systems Design & Implementation -
Volume 6, USENIX Association: Berkeley, CA, USA, 2004; 20–20. URL: http://dl.acm.org/citation.cfm?
id=1251254.1251274.

14. Bakota T, Ferenc R, Gyimothy T. Clone smells in software evolution. Proceedings of the IEEE International
Conference on Software Maintenance, 2007; 24–33.

15. Bettenburg N, Shang W, Ibrahim W, Adams B, Zou Y, Hassan AE. An empirical study on inconsistent changes to
code clones at release level. Proceedings of the 16th Working Conference on Reverse Engineering, WCRE ’09, IEEE
Computer Society: Washington, DC, USA, 2009; 85–94. DOI: http://dx.doi.org/10.1109/WCRE.2009.51. URL:
http://dx.doi.org/10.1109/WCRE.2009.51.

16. Juergens E, Deissenboeck F, Hummel B, Wagner S. Do code clones matter? Proceedings of the 31st In-
ternational Conference on Software Engineering, ICSE ’09, IEEE Computer Society: Washington, DC,
USA, 2009; 485–495. DOI: http://dx.doi.org/10.1109/ICSE.2009.5070547. URL: http://dx.doi.org/10.1109/
ICSE.2009.5070547.

17. Kamiya T, Kusumoto S, Inoue K. CCFINDER: a multilinguistic token-based code clone detection system for large
scale source code. IEEE Transactions on Software Engineering 2002; 28:654–670.

18. Roy C, Cordy J. NICAD: accurate detection of near-miss intentional clones using flexible pretty-printing and code
normalization. Program Comprehension, 2008. ICPC 2008. The 16th IEEE International Conference on, 2008;
172–181. DOI: 10.1109/ICPC.2008.41.

19. Shang W, Jiang ZM, Adams B, Hassan A. MapReduce as a general framework to support research in Mining Soft-
ware Repositories (MSR). Proceedings of the 6th IEEE International Working Conference on Mining Software Re-
positories, 2009; 21–30.

20. Mockus A, Votta L. Identifying reasons for software changes using historic databases. Proceedings of the Interna-
tional Conference on Software Maintenance, 2000.

21. Shihab E, Ihara A, Kamei Y, Ibrahim W, Ohira M, Adams B, Hassan A, Matsumoto K. Predicting re-opened bugs: a
case study on the eclipse project. Reverse Engineering (WCRE), 2010 17th Working Conference on, 2010; 249–258.
DOI: 10.1109/WCRE.2010.36.

22. Hassan A. Predicting faults using the complexity of code changes. Software Engineering, 2009. ICSE 2009. IEEE
31st International Conference on, 2009; 78–88. DOI: 10.1109/ICSE.2009.5070510.

23. Hassan AE. Predicting faults using the complexity of code changes. Proceedings of the 31st International Conference
on Software Engineering, ICSE ’09, IEEE Computer Society: Washington, DC, USA, 2009; 78–88. DOI: http://dx.
doi.org/10.1109/ICSE.2009.5070510. URL: http://dx.doi.org/10.1109/ICSE.2009.5070510.

24. Selim GM, Barbour L, Shang W, Adams B, Hassan AE, Zou Y. Studying the impact of clones on software defects.
Proceedings of the Working Conference on Reverse Engineering, 2010; 13–21.

25. Sheskin D. Handbook of Parametric and Nonparametric Statistical Procedures (4th edn). Chapman & All,
2007.

26. Yin RK. Case Study Research: Design and Methods (3rd edn). SAGE Publications: Boca Raton, FL, 2002.
27. Hassan AE, Holt RC. Studying the evolution of software systems using evolutionary code extractors. Proceedings of

the 7th International Workshop on Principles of Software Evolution, IEEE Computer Society: Washington, DC,
USA: Thousand Oaks, CA, 2004; 76–81.

L. BARBOUR, F. KHOMH AND Y. ZOU

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

AUTHORS’ BIOGRAPHIES

Liliane Barbour is a Developer and QA Specialist at Namzak Labs. She received her
BSc in Electrical Engineering from Queen’s University in 2009 and her MASc in
Software Engineering from Queen’s University in 2012. Her research interests include
clone genealogies and mining software repositories.

Foutse Khomh is an Assistant Professor at the Ecole Polytechnique de Montreal
(Canada). He received a Ph.D in Software Engineering from the University of
Montreal in 2010. His research interests include software maintenance and evolution,
cloud engineering, service-centric software engineering, empirical software engineer-
ing, and software analytics. He also received a Master’s degree in Software Engineer-
ing from the National Advanced School of Engineering (Cameroon) and a D.E.A
(Master’s degree) in Mathematics from the University of Yaoundé I (Cameroon). He
has experience as Software Engineer at different companies doing research, system
design, and project management. He has published several papers in international
conferences and journals. He is a member of IEEE and IEEE Computer Society.

Ying Zou is an Associate Professor in Department of Electrical and Computer Engi-
neering at Queen’s University. She is also cross appointed to the School of Computing
at Queen’s University. She is the Canada Research Chair Tier II in Software Evolution
at Queen’s University in Canada. She is an IBM visiting scientist and was awarded
twice IBM Faculty awards. Her research interests include: software engineering,
software maintenance, software analytics, service oriented architecture, and business
process management.

AN EMPIRICAL STUDY OF FAULTS IN LATE PROPAGATION CLONE GENEALOGIES

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

