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Abstract—Code review is the process of having other team
members examine changes to a software system in order to
evaluate its technical content and quality. A lightweight variant of
this practice, often referred to as Modern Code Review (MCR), is
widely adopted by software organizations today. Previous studies
have established a relation between the practice of code review
and the occurrence of post-release bugs. While the prior work
studies the impact of code review practices on software release
quality, it is still unclear what impact code review practices have
on software design quality. Therefore, using the occurrence of 7
different types of anti-patterns (i.e., poor solutions to design and
implementation problems) as a proxy for software design quality,
we set out to investigate the relationship between code review
practices and software design quality. Through a case study of
the Qt, VTK and ITK open source projects, we find that software
components with low review coverage or low review participation
are often more prone to the occurrence of anti-patterns than those
components with more active code review practices.

I. INTRODUCTION

Software system design is critical. Studies suggest that
defects relating to system design are orders of magnitude more
expensive to fix than those introduced during its implementa-
tion [1–4]. Indeed, neglecting to carefully design a software
system may result in a highly complex implementation that
is difficult to maintain. Moreover, a complex implementation
requires a considerable investment of effort to restructure.

To improve the design of software systems, software design-
ers use design patterns [5] (i.e., reusable solutions to recurring
design problems) and avoid anti-patterns [6] (i.e., poor solutions
to design and implementation problems). In fact, Khomh et
al. [7] find that there is a strong correlation between the
occurrence of anti-patterns and the change-proneness of source
code files. Moreover, Taba et al. [8] and D’Ambros et al. [9]
find that source code files that contain anti-patterns tend to be
more defect-prone than other source code files.

Like other complex systems, software systems age [10].
As they age, software systems tend to grow in complexity
and degrade in effectiveness [11], unless the quality of the
systems is controlled and continually improved. Even good
design solutions (e.g., design patterns) tends to decay into
anti-patterns as systems age [12, 13]. When the design of a
system is poor, changes to it often degrade the quality of the
system. Aging systems are often defect-prone, and the cost for
removing these defects is high [10]. Moreover, the length of
time that an anti-pattern can remain in a system is variable,
though there is evidence to suggest that they tend to linger for
several releases [14, 15].

According to a recent study at Microsoft [16], practitioners
expect that code review, i.e., the practice of having other team
members critique changes to a software system, will help to
combat design decay. Prior work has shown that much of the
discussion of a code review relates to the evolvability of a
module rather than the behaviour of a change [17, 18]. However,
the relationship between code review practices and software
design quality remains largely unexplored.

In this paper, we study the impact that code review practices
have on software design quality. To quantify code review
practices, similar to our prior work [19], we use code review
coverage, i.e., the proportion of changes that have been code
reviewed, and code review participation, i.e., the degree of
reviewer involvement in the code review process. Furthermore,
we use the occurrences of 7 well-known anti-patterns (i.e.,
Code Duplication, Blob, Data Class, Data Clumps, Feature
Envy, Schizophrenic Class and Tradition Breaker) as a proxy
for software design quality. Using our code review metrics to
complement of popular product and process metrics, we train
regression models that explain the occurrences of anti-patterns.
Through a case study of Qt, VTK and ITK open source projects,
we address the following two research questions:

(RQ1) Is there a relationship between code review cover-
age and the incidence of anti-patterns?
We find that code review coverage has a negative impact
on the occurrence of anti-patterns. However, review
coverage provides a statistically significant amount of
explanatory power in only two of the four studied
systems, suggesting that review coverage alone is not
enough to ensure a low rate of design issues.

(RQ2) Is there a relationship between code review partic-
ipation and the incidence of anti-patterns?
Participation during the code review process is also
associated with components that have fewer anti-
patterns. Indeed, according to our models, there is
a high correlation between review participation metrics
and the occurrence of anti-patterns.

Paper organization. The remainder of this paper is organized
as follows. Section II provides background details and discusses
the related work on anti-patterns and code reviews. Section III
describes our case study design, while Section IV presents the
results. Section V discloses the threats to the validity of our
study. Finally, Section VI draws our conclusions and lays out
directions for future work.



II. BACKGROUND AND RELATED WORK

In this section, we describe anti-patterns, the code review
process, and discuss the related work.

Anti-patterns—such as those defined by Brown et al. [20]—
have been proposed to embody poor design choices. These anti-
patterns stem from experienced software developers’ expertise
and are reported to negatively impact systems by making
classes more change-prone [21] and defect-prone [7, 8]. They
are opposite to design patterns [22], i.e., they identify “poor”
solutions to recurring design problems. For example, Brown
et al. define 40 anti-patterns that describe the most common
recurring pitfalls in the software industry [20]. Anti-patterns
are generally introduced in software systems by developers not
having sufficient experience in solving a particular problem,
or having misapplied some design patterns. Coplien and
Harrison [23] described an anti-pattern as “something that looks
like a good idea, but which back-fires badly when applied”. A
common anti-pattern is the Blob, a.k.a., God Class. The Blob
is a large and complex class that centralises the behaviour of a
portion of a system and only uses other classes as data holders,
i.e., data classes. The main characteristic of a Blob class are:
a large size, a low cohesion, some method names recalling
procedural programming, and its association with data classes,
which only provide fields or accessors to their fields. Another
example anti-pattern is the MessageChain, which occurs when
a class uses a long chain of method invocations to realise (at
least) one of its functionalities, causing the class to become
coupled to all of the classes involved in this traversal. As a
result, a change to any of the intermediate relationships will
require a change to the class. Khomh et al. [7] investigated
MessageChains in ArgoUML, Eclipse, Mylyn, and Rhino and
found them to be consistently related to high defect and change
rates.

The literature related to anti-patterns generally falls into
three categories: (1) the detection of anti-patterns (e.g., [24,
25]); (2) the evolution of anti-patterns in software systems
(e.g., [15, 26, 27]) and their impact on software quality (e.g.,
[7, 28, 29]); and (3) the relationship between anti-patterns and
software development activities (e.g., [29, 30]). Our work in this
paper falls into the third category – we aim to understand how
code review practices impact the incidence of anti-patterns
in software systems. Sjoberg et al. [30], who investigated
the relationship between anti-patterns and maintenance effort
reported that anti-patterns have a limited impact on maintenance
effort. However, Abbes et al. [29] found that combinations
of Blob and Spaghetti Code anti-patterns have a negative
impact on code understandability. They recommend applying
refactoring to remove such interactions of anti-patterns.

Code review—is a widely-adopted technique used to im-
prove the quality of changes to a software system. The typical
modern code review process follows the steps described below.
First, an author solicits feedback on a proposed set of changes
by submitting them to reviewers. Next, reviewers provide
comments and suggestions, based on their expertise. After
authors address the issues raised by reviewers, they may

resubmit an updated set of changes. The process iterates until
reviewers are satisfied with the proposed changes.

Prior work has examined code review practices. Rigby et
al. [31] described the code review process in the Apache project
as early, frequent reviews performed on small amounts of code
that are independent of each other and led by a reduced number
of experts. Other studies have established that code review is
an effective mean to reduce post-release defects in software
systems [19, 32, 33].

While identifying and fixing bugs early in the development
process is a strong motivation for code review practices, it is
not the sole motivation for performing code reviews. In a study
performed at Microsoft, Bacchelli and Bird [16] found that the
code review process improves team awareness, and transfers
knowledge among members of development teams. Mäntylä
and Lassenius [34] examined defects corrected during code
reviews activities at 9 software companies and found that 75%
of these defects had an impact on the understandability of the
code.

Gerrit-based code review—To provide an insight of the
code review process in the examined projects take the following
example: Bob uploads a patch (i.e., a collection of proposed
changes to a software system) to a Gerrit server. A set of
Reviewers are invited to participate in the review process either
by: (a) explicit invitation by Bob, (b) automatic invitation due to
expertise with the modified component(s), or (c) self-invitation
based on the reviewers interest in the patch. The reviewers
then provide inline or general feedback about the patch to Bob,
who can then reply to their comments, or address them by
producing a new revision of the patch. Reviewers provide a
revision score to indicate their agreement/disagreement and
their level of confidence (1 or 2).

In addition to reviewers, Gerrit supports the role of patch
verifiers who validate that Bob’s patch accomplishes the task
it was designed to without introducing regression of system
behaviour. Verifiers can also provide comments and assign
a score to reflect the verification status (+1 success/-1 fail).
Furthermore, verifiers can be other team members or bots that
automatically build and test patches.

Finally, Gerrit enables teams to set code review and
verification criteria that must be met before changes are
integrated into upstream VCS repositories. Once these criteria
are satisfied, patches are automatically integrated into upstream
code repositories.

III. STUDY DEFINITION AND DESIGN

In this paper, we set out to empirically evaluate the link
between design quality and code reviews. In this section, we
introduce our research questions, describe the studied systems,
and present our data extraction approach. Furthermore, we
describe our model construction and model analysis approaches.
(RQ1) Is there a relationship between code review cover-

age and the incidence of anti-patterns?
Prior work shows that code review is an effective
means of improving the quality of software sys-
tems [19, 32, 33]. However, the prior work focused on
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Fig. 1: An overview of our approach.

software release quality as measured by the incidence of
post-release defects, i.e., defects that permeate through
the quality assurance process to official releases. Yet
the impact that code review has on other aspects of
software quality, such as design quality, remain largely
unexplored. Hence, we first set out to better understand
the impact that code review coverage has on software
design quality.

(RQ2) Is there a relationship between code review partic-
ipation and the incidence of anti-patterns?
A code review cannot improve design quality if review-
ers are not participating in the review process. Hence,
we are interested in studying the relationship between
the degree of participation in the review process and
software design quality.

A. Studied systems

In order to address our research questions, we perform a case
study of 3 open source projects that are primarily implemented
in C++. Qt1 is a cross-platform application and UI framework.
VTK2 is a framework used to develop 3D graphics. ITK3 is a
cross-platform framework and a set of tools for image analysis.

B. Data Extraction

In order to perform our case study, we need to extract data
describing the code review process and the incidence of anti-
patterns. Figure 1 provides an overview of our approach. We
describe each step in our data extraction approach below.
Collect code review data. In order to perform our study, we
leverage our previously collected code review datasets [19].
The datasets describe code review activity aggregated at the
component (i.e., directory) level. In addition to code review
metrics, these datasets includes product, process, and human
factors metrics. Table II describes the metrics that we use in
our study, and our rationale for including them.
Measure anti-pattern incidence rates. In this study, we use
the incidence rates of anti-patterns as a proxy for software
design quality. We use the Incode4 tool to detect anti-patterns
in the studied systems. Incode is a mature, commercial design
quality tool capable of detecting the following 7 anti-patterns:

1http://qt-project.org/
2http://www.vtk.org/
3http://www.itk.org/
4https://www.intooitus.com/products/incode

Table I: Descriptive statistics of the studied systems.
Qt VTK ITK

Version 5.0 5.1 5.10 4.3
Size (LOC) 5,560,317 5,187,788 1,921,850 1,123,614
Components w/anti-patterns 285 143 86 76
Components total 1,164 1,268 129 194
Commits w/reviews 10,003 6,795 554 344
Commits total 10,163 7,106 1,431 352
# Authors 435 422 55 41
# Reviewers 358 348 45 37

1) Code Duplication: identical or slightly-modified code
fragments.

2) Blob: A large class that: (a) is lacking cohesion, (b)
monopolizes much of the processing time, (c) makes
most of the processing decisions, or (d) is associated with
data classes.

3) Data Class: A class with an interface that exposes data
members, without encapsulating its own functionality.

4) Data Clumps: A large group of parameters that appear
together in the signature of many methods.

5) Feature Envy: A class that uses many methods or data
attributes from other classes instead of implementing its
own.

6) Schizophrenic Class: A class with a large and non-
cohesive interface. Typically, schizophrenic classes contain
several disjoint sets of public methods that are used by
disjoint sets of client classes.

7) Tradition Breaker: A class that breaks the interface
inherited from a base class or an interface.

We choose to analyze these anti-patterns because: (1) they
are well-defined [20], (2) they appear frequently in the studied
systems, i.e., between 11% (Qt 5.1) and 66% (VTK 5.10) of
components in the studied systems contain at least one of
the anti-patterns, and (3) they have been studied in previous
works [7, 15, 30].

For each file, we obtain the list of anti-patterns and group
them at component (i.e., directory) level. Next, we join the
count of anti-patterns with code review data, filtering away
files that were not written in a language (e.g., Python, Perl,
Javascript) supported by the Incode anti-pattern detection tool.
Table I provides an overview of the components that survived
our filtering process.

C. Model Construction

To assess the impact that code review has on software
design quality, we use Ordinary Least Squares (OLS) multiple
regression analysis. Our regression models are trained to explain
the number of anti-patterns that occur in a component (the
response variable) using the metrics of Table II (explanatory
variables).

We use the non-linear regression modeling techniques
proposed by Harrell Jr. [37]. These techniques relax linearity
assumptions of traditional modeling techniques, allowing the
relationship between explanatory variables and the response
to change in direction, while being mindful of the threat of
overfitting, i.e., constructing a model that is too specific to the



Table II: A taxonomy of the considered control (top) and reviewing metrics (bottom).
Metric Description Rationale

Pr
od

uc
t Size Lines of code (LOC). Large components are hard to maintain and commonly associated

with anti-patterns(e.g., Large Class).
Complexity The McCabe cyclomatic complexity. Components with a very high complexity are potential candidates

to be split in simpler routines.
Pr

oc
es

s Churn Sum of added and removed lines of code. Components with anti-patterns are more change-proneness than
others [21].

Change Entropy A measure of the volatility of the change. Components that undergo refactoring reduces its Change en-
tropy [35].

H
um

an
Fa

ct
or

s

Total authors Number of unique authors. Components developed by several authors with weak ownership
are likely to be defect-prone [36].

Minor authors Number of unique authors who have contributed
less than 5% of the changes.

Components with several minor contributors may exhibit poor
design because of these minor contributors’ lack of adequate
knowledge about the design intent of the component [36].

Major authors Number of unique authors who have contributed
at least 5% of the changes.

The design quality of components with Major contributors may
benefit from a strong component-specific knowledge from the
major contributors [36].

Author owner-
ship

The proportion of changes contributed by the
author who made the most changes.

Components that present notable ownership from very active
contributors present less failures [36].

C
ov

er
ag

e Proportion of re-
viewed changes

The proportion of changes that have been re-
viewed in the past.

We expect that components with high-review rates will contain
less anti-patterns.

Proportion of re-
viewed churn

The proportion of churn that has been reviewed
in the past.

We assume that the larger is the amount of code churn that
undergo code review the higher will be the design quality.

Pa
rt

ic
ip

at
io

n

Proportion of
self-approved
changes

The proportion of changes to a component that
are only approved for integration by the original
author.

Changes approved only by their author may not follow all
guidelines for a good design.

Proportion of
hastily reviewed
changes

The proportion of changes that are approved for
integration at a rate that is faster than 200 lines
per hour.

There is evidence in previous studies that components whose
changes where approved at a rate faster than 200 lines per hour
will present more defects [33].

Proportion of
changes without
discussion

The proportion of changes related to a compo-
nent that are not discussed.

Components that have several changes approved without critical
discussion may display a poor design quality.

Typical review
window

The length of time between the creation of
a review request and its final approval for
integration, normalized by the size of the change
(churn).

It could be argued that when the review window of a component
is not long enough, developers are likely to miss critical design
issues.

Typical discus-
sion length

The discussion length normalized by the size of
the change.

Changes with many brief discussions do not leverage code review
strengths and minimize its effectiveness.

data that the model is trained on and applying it to similar
datasets. Our model construction approach is comprised of four
steps that we describe below:

Estimate budget for degrees of freedom. As suggested by
Harrell Jr. [37], before fitting our regression models, we
estimate a budget for the models, i.e., the maximum number
of degrees of freedom that we can spend. As suggested by
Harrel Jr. [37], we spend no more than n

15 degrees of freedom
on our OLS models, where n is the number of components in
the modeled dataset.

Normality adjustment. Software engineering data is often
skewed. Since OLS assumes that the response variable is
normally distributed, we apply a log transformation [ln(x+1)]
to the response variables of our studied systems.

Correlation and redundancy analysis. Explanatory variables
with high correlation can interfere with each other when
interpreting the constructed regression model. Hence, before we
construct our models, we remove highly correlated explanatory
variables (|ρ| ≥ 0.7). Moreover, redundant variables that are
not highly correlated, but contain similar signals will also
interfere with our interpretation. Hence, we perform redundant
variable analysis by fitting models that explain each explanatory
variable using the others with the redun function of the rms
R package [38]. We remove the explanatory variables that have

a model fit with an R2 exceeding 0.9 – the default threshold
of the redun function.
Allocate and spend model degrees of freedom. In order to
spend our limited budget of degrees of freedom most effectively,
we measure the Spearman multiple ρ2 between response and
explanatory variables. To mitigate the threat of overfitting our
models, we limit the maximum number of degrees of freedom
that we allocate to a single variable to 5.

We divide the explanatory variables into 3 groups. Explana-
tory variables that share the highest Spearman multiple ρ2

scores with the explanatory variable are assigned 5 degrees of
freedom. Explanatory variables with moderate Spearman mul-
tiple ρ2 scores are assigned 3 degrees of freedom. Explanatory
variables with low Spearman multiple ρ2 scores are limited to a
linear relationship with the explanatory variable (i.e., 1 degree
of freedom). Note that as the ρ2 values vary from project to
project, it is difficult to define ranges that apply across all of
our datasets, therefore, the decision to distribute is based on
our knowledge of the domain and the estimated budget in order
to avoid overfitting.

Finally, we fit our regression model, spending the degrees
of freedom that we allocate to each explanatory variable using
Cubic Splines. Since cubic splines tend to curl heavily upwards
or downwards in the tails, they tend to perform poorly in these
areas of the data. Hence, we use restricted cubic splines [37],



which force the tails of the first and last degrees of freedom to
be linear. We use the function rcs in the rms R package [38]
to fit the allocated degrees of freedom for each explanatory
variable.

D. Model Analysis

Once our regression models have been constructed, we
analyze them to better understand: (1) the stability of the
model, (2) the explanatory power provided by each surviving
metric, and (3) the relationship shared between the incidence
rates of anti-patterns and the explanatory variables that provide
a statistically significant amount of explanatory power. We
describe each model analysis step below.
Assessment of model stability. We evaluate the fit of our
models using the Adjusted R2, which provides a measure of
fit that penalizes the use of additional degrees of freedom.
However, since the adjusted R2 is measured using the same
data that was used to train the model, it is inherently upwardly
biased, i.e., “optimistic”. We estimate the optimism of our
models using the following bootstrap-derived approach [39]:

1) From original dataset with n components, select a boot-
strap sample also of n components with replacement.

2) Fit a model in the bootstrap sample using the allocation
of degrees of freedom as the original model, and apply it
to both the original and bootstrap samples.

3) The optimism is estimated as the difference in the adjusted
R2 of the bootstrap model in the bootstrap and original
samples.

This calculation is repeated 1,000 times, and the model
optimism is calculated as the mean of the bootstrap optimism
estimates. This mean optimism is subtracted from the adjusted
R2 of the model fit on the original data to obtain the optimism-
reduced adjusted R2. The smaller the mean optimism, the
higher the stability of the original model fit.
Estimate power of explanatory variables. The variables that
were assigned additional degrees of freedoms are represented
in the model by multiple terms. Hence, we jointly test the set of
model terms that relate to one explanatory variable using Wald
χ2 maximum likelihood (a.k.a., “chunk”) tests. The larger
the Wald χ2 value, the larger the impact that a particular
explanatory variable has on the response. We report both the
raw Wald χ2 values, and its significance level according to its
p-value.
Examine explanatory variables in relation to the outcome.
While the chunk tests of the prior step provide a measure of
the impact that an explanatory variable has on our models, it
does not provide a notion of the direction(s) of the relationship
it shares with the response. To uncover the direction of the
relationship, we use plots that hold all other explanatory
variables at their typical (median) values, while varying the
explanatory variable under test. We achieve this, using the
Predict function of the rms package [38], which also
computes bootstrap-derived 95% confidence intervals for each
plotted explanatory variable.
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Fig. 2: Hierarchical clustering of variables according to
Spearman’s |ρ| in QT.50. RQ1
Table III: Statistics of the regression model involving review
coverage and anti-patterns counts

Qt VTK ITK
5.0 5.1 5.10 4.3

Adjusted R2 0.72 0.36 0.63 0.30
Optimism-reduced adjusted R2 0.68 0.31 0.57 0.23
Wald χ2 2896.49*** 690.04*** 210.07*** 79.65***
Budgeted Degrees of Freedom 78 85 9 13
Degrees of Freedom Spent 18 18 8 10

Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear

Size D.F. 4 3 4 3 1 − 1 −
χ2 982 ∗ ∗∗599 ∗ ∗∗ 341 ∗ ∗∗169 ∗ ∗∗ 30 ∗ ∗∗− 55 ∗ ∗∗−

Complexity D.F. 2 1 4 3 1 − 1 −
χ2 < 1◦ < 1◦ 6◦ 6◦ 7 ∗ ∗ − < 1◦ −

Churn D.F. 2 1 2 1 1 − 1 −
χ2 4◦ 4◦ 5◦ 5∗ 2◦ − < 1◦ −

Change entropy D.F. 2 1 4 3 1 − 1 −
χ2 < 1◦ < 1◦ 14 ∗ ∗ 11 ∗ ∗ 8 ∗ ∗ − 1◦ −

Total authors D.F. 3 2 2 1 1 − †
χ2 19 ∗ ∗∗ 9∗ 45 ∗ ∗∗ 5∗ 63 ∗ ∗∗−

Minor authors D.F. ‡ ‡ ‡ 1 −
χ2 1◦ −

Major authors D.F. † † † †
χ2

Author ownership D.F. 4 3 3 2 1 − 1 −
χ2 6◦ 1◦ 1◦ 1◦ < 1◦ − < 1◦ −

Reviewed changes D.F. 1 − 1 − 1 − 1 −
χ2 < 1◦ − 7 ∗ ∗ − 1◦ − 17 ∗ ∗∗−

Reviewed churn D.F. † † † †
χ2

Discarded during:
† Variable clustering analysis (|ρ| ≥ 0.7)
‡ Redundant variable analysis (R2 ≥ 0.9)
Statistical significance of explanatory power according to Wald χ2 likelihood ratio test:
◦ p ≥ 0.05; ∗ p <0.05;∗∗ p <0.01;∗ ∗ ∗ p <0.001
– Nonlinear degrees of freedom not allocated

IV. STUDY RESULTS

In this section, we present the results of our case study
with respect to our two research questions. For each research
question, we first describe the metrics that we use, as well
as the outcome of our model construction and model analysis
steps described in Section III.

(RQ1) Is there a relationship between code review coverage
and the incidence of anti-patterns?

Metrics. The response variable of our regression models of
RQ1 is the number of anti-patterns, i.e., the total count of the
anti-patterns detected within a component. Furthermore, as was
done in prior work [19], we use the proportion of reviewed
changes (i.e., the proportion of changes to a component
that underwent code review) and the proportion of reviewed
churn (i.e., the proportion of changed lines in a component
that underwent code review) to measure review coverage in
a component. For example, if 10 changes occurred during
the development of a release, and only 7 of them could be
connected with a code review, then the proportion of reviewed
changes would be 0.7.
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Churn
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Fig. 3: Dotplot of the Spearman multiple ρ2 of each explanatory
and anti-patterns count in Qt 5.0. RQ1

(a) (b)

Fig. 4: Estimated count of anti-patterns in a typical component
for various proportions of reviewed changes.

Model construction. We use hierarchical clustering to analyze
the correlation between explanatory variables. We only retain
one variable from clusters of explanatory variables with |ρ| ≥
0.7. For example, Figure 2 shows the cluster analysis of Qt 5.0.
Similar figures were obtained for the other studied systems,
but they are omitted from the paper to conserve space. We
have made the other figures available online.5

Figure 2 shows that the correlation between the proportion of
reviewed changes and the proportion of reviewed churn exceeds
our |ρ| threshold of 0.7. Similarly, the correlation between total
authors and major authors also exceeds our |ρ| threshold. We
retain the proportion of reviewed changes and total authors
because we believe that they are the most essential metrics in
each pair. We dropped these metrics consistently for the rest of
the projects, except for ITK where we find correlation between
churn, total authors and major authors. In this case we keep
churn as it is the simpler of the three metrics to choose.

Figure 3 shows the non-linear potential of the relationships
between the explanatory variables and the count of anti-patterns
in Qt 5.0 (the plots of the other studied systems are available
online). Based on this figure, we allocate: (1) 5 degrees of
freedom to component size, number of total authors, and author
ownership (ρ2 ≥ 0.20); (2) 3 degrees of freedom to change
entropy, churn, and complexity (0.10 ≤ ρ2 ≤ 0.19); and (3)
1 degree of freedom to the proportion of reviewed changes

5http://swat.polymtl.ca/data/SANER15/

(ρ2 ≤ 0.01). We followed a similar process to allocate degrees
of freedom in Qt 5.1, VTK, and ITK datasets. However, we
are more stringent with the allocation of degrees of freedom
in the more budget-restricted VTK and ITK datasets.
Model analysis. Our regression models achieve optimism-
reduced adjusted R2 values between 0.23 (ITK) and 0.68
(Qt 5.0). The most stable model was obtained from Qt 5.0
with an adjusted R2 of 0.72 and optimism-reduced adjusted R2

of 0.68, while the worst stability values were achieved on ITK,
i.e., an adjusted R2 of 0.30 and an optimism-reduced adjusted
R2 of 0.23. The instability of ITK is likely due to the smaller
number of components (194). Nonetheless, we scrutinize the
results of the ITK model more carefully.

Although the Data Class, and God Class anti-patterns
are size-dependent, component size is not the only consis-
tently significant contributor of explanatory power. Unsur-
prisingly, Table III shows that size offers plenty of explanatory
power to our software design models for all of the studied
releases. Yet size is not the only significant contributor to the
explanatory power of our models. The total number of authors
is a significant contributor of explanatory power in three of
the four studied releases. In fact, the total number of authors
is a more powerful explanatory variable than component size
in the studied VTK release.

The proportion of reviewed changes is a significant
contributor of explanatory power in two of the four
studied releases. Indeed, Table III shows that the proportion
of reviewed changes is a significant contributor of explanatory
power in Qt 5.1 and ITK models. In Figure 4 we observe
the estimated anti-pattern count for Qt 5.1 and ITK of a
component when varying the proportion of reviewed changes,
while holding the other explanatory variables at their median
values. In Figure 4 (b), we can observe a considerable fall
of anti-pattern-proneness as the proportion of code review
changes rise (4 to 1), while Figure 4 (a) shows a moderate fall.
Even in the studied releases where the proportion of reviewed
changes does not provide significant explanatory power, it does
provide a unique signal that is not highly correlated with other
explanatory variables, nor is the information redundant.

To gain a richer perspective about the relationship between
review coverage and anti-patterns, we manually inspect the Qt
5.1 components with a high coverage rate and low number
of anti-patterns. A good example of this is OpenGL, part of
the Qt GUI module, which provides support for rendering
graphics interfaces using OpenGL. This component with 81,648
LOC (the second largest component in the project) and review
coverage rate of 96% does not contain any anti-patterns.
Another example is the LabelMap library, from the Filtering
subsystem in the ITK project. Despite the fact that it is the
largest component outside of the third-party components, it
contains no anti-patterns, while having a review coverage
of 100%. This results suggest that the appearance of anti-
patterns is not entirely reliant on the size of the components.
Furthermore, review coverage appears to play a role in the
incidence of anti-patterns.

http://swat.polymtl.ca/data/SANER15/
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Code review coverage have an impact on the incidence
of anti-patterns in the studied software systems. This
result suggests that code review practices can help
to reduce the incidence of anti-patterns in software
systems.

We repeat the analysis described above by building models
for each type of anti-pattern (i.e., Code Duplication, Blob,
Data Class, Data Clumps, Feature Envy, Schizophrenic Class,
Tradition Breaker, MessageChain) separately. We use the same
independent variables that were selected above. Specifically,
for each project and each type of anti-pattern, we build a
regression model using the total count of anti-patterns from
that type found in the component as the response variable. For
anti-patterns that are identified using the size (e.g., Blob and
Data Class), we excluded size from their regression models.

The models for the different types of anti-patterns achieved
and adjusted R2 between 0.10 (Qt 5.1) and 0.77 (VTK).
Interestingly, the Code Duplication anti-pattern provides both
the most and least stable models of the studied anti-patterns.
The most stable model was achieved using VTK components
(adjusted R2 = 0.81, Optimism-reduced adjusted R2 = 0.76),
while the least stable model was also achieved using Qt 5.1
components (adjusted R2 = 0.12, Optimism-reduced adjusted
R2 = 0.04). We attribute the instability of the Code Duplication
anti-pattern model on Qt 5.1 to the smaller number of Code
Duplication anti-pattern instances found in Qt 5.1 (21 for Qt
5.1 against 368 for VTK).

With respect to review coverage and the specific kinds of
anti-patterns, the proportion of review changes is a statistically
significant contributor of explanatory power for 3 types of
anti-patterns in Qt 5.1 (i.e., The Blob, Data class and Data
clumps), and 2 types of anti-patterns in VTK (i.e., Feature
envy and Code Duplication). The Graphics component in VTK
which has only 25% of review coverage contains the largest
number of Feature envy (12), Sibling duplication (70) and
Blob (42) instances. However, there are also components with
a review coverage of 100% that have anti-patterns. The Data
Class anti-pattern appears more frequently in components that
achieve 100% review coverage than any other anti-pattern; we
found 197 components in Qt 5.0 with a median of 2 Data
classes per component; 98 in Qt 5.1 with a median of 2; 53
components in ITK with a median of 2, and finally 1 component
in VTK with 18 Data Classes. We randomly investigated 133
of these Data Classes (63 Qt 5.0, 38 Qt 5.1, and 32 ITK), and
suggest that 120 of them are related to project design (libraries
defining common structures to be used in specific components).
Take as an example, the filtering subsystem class from ITK
that declares several public structures for the manipulation
of images. Though the tool to detect anti-patterns consider a
struct as a data class, as their members are public and it mainly
holds data, the concept of class and struct differs, and their
use might obey other reasons such as performance, simplicity,
etc.
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A high code review coverage can reduce the occurrence
of Blob, Data class, Data clumps, Feature envy and
Code Duplication in a software system. However,
review coverage alone is not enough to ensure the
absence of these anti-patterns.

(RQ2) Is there a relationship between code review participation
and the incidence of anti-patterns?

Metrics. Similar to RQ1, the response variable of our RQ2
models is the total count of the anti-patterns detected within a
component. Since RQ1 has shown that review coverage has
an impact on the occurrence of anti-patterns, it is necessary to
account for the proportion of reviewed changes when examining
the impact of review participation on the occurrence of anti-
patterns. Hence, when building our regression models to address
RQ2, we select only the components that had a review coverage
rate of 100%. We exclude the VTK project from our RQ2
analysis because it did not contain enough components with
a review coverage rate of 100%. We measure code review
participation using the following five metrics, described in our
previous work [19]:

• Proportion of self-approved changes, i.e., the proportion
of changes approved for integration by only the author of
the change.

• Proportion of hastily reviewed changes, i.e., the proportion
of changes that are reviewed at a rate faster than 200 lines
per hour. According to Kemerer et al. [33], a code change
should not be reviewed at a rate faster than 200 lines per
hour.

• Proportion of changes without discussion, i.e., the pro-
portion of changes that were approved for integration
without any discussion inspired by human participants
(i.e., ignoring comments generated by testing bots).

• Typical review window, i.e., the reviewing window of
each change made on a component normalized by the
amount of churn of the component. To assign a single
value to each component, we compute the median value
of this metric across all patches involving a component.
We chose the median because it is capable of coping with
outliers.

• Typical discussion length, i.e., the length of discussion
for each change made to a component, normalized by the
amount of churn in the component. To assign a single
value to each component, we compute the median value
of this metric across all patches involving a component.

Model construction. Table IV shows that our correlation
analysis revealed problematic correlation between author
ownership, Total authors, and major authors. We choose Total
authors as in RQ1 because we believe it to be more essential
than the two other metrics. We also observed a high correlation
between the typical review window and typical discussion
length. We selected the typical discussion length metric because
it is more precise. In fact, the typical review window metrics
may not measure the exact time that reviewers spent on the
code review, since the review tool does not record the actual



Table IV: Statistics of the regression model involving review
participation and anti-patterns counts

Qt ITK
5.0 5.1 4.3

Adjusted R2 0.74 0.46 0.20
Optimism-reduced adjusted R2 0.71 0.41 0.10
Wald χ2 3048.31*** 919.21*** 28.40**
Budgeted Degrees of Freedom 73 75 8
Degrees of Freedom Spent 17 20 11

Overall Nonlinear Overall Nonlinear Overall Nonlinear

Size D.F. 4 3 4 3 1 −
χ2 937 ∗ ∗∗566∗ 233 ∗ ∗∗76 ∗ ∗∗ 12 ∗ ∗ −

Complexity D.F. 1 − 2 1 1 −
χ2 < 1◦ − 2◦ 1◦ < 1◦ −

Churn D.F. 1 − 4 3 1 −
χ2 < 1◦ − 42 ∗ ∗∗ 42 ∗ ∗∗ < 1◦ −

Change entropy D.F. 2 1 2 1 1 −
χ2 < 1◦ < 1◦ 9 ∗ ∗ 8 ∗ ∗ 1◦ −

Total authors D.F. 3 2 1 2 1 −
χ2 5◦ 2◦ 2◦ 8∗ 2◦ −

Minor authors D.F. ‡ 1 − 1 −
χ2 < 1◦ − < 1◦ −

Major authors D.F. † † †
χ2

Author ownership D.F. † † †
χ2

Self-approval D.F. 2 1 1 − 1 −
χ2 2◦ 2◦ < 1◦ − < 1◦ −

Hastily-reviewed D.F. † 1 − 1 −
χ2 59 ∗ ∗∗ − 6∗ −

No discussion D.F. 2 1 2 1 1 −
χ2 7∗ 2◦ 139 ∗ ∗∗31 ∗ ∗∗ < 1◦ −

Typical review windows D.F. † † 1 −
χ2 2◦ −

Typical discussion length D.F. 2 1 2 1 1 −
χ2 3◦ < 1◦ 8∗ 2◦ 3◦ −

Discarded during:
† Variable clustering analysis (|ρ| ≥ 0.7)
‡ Redundant variable analysis (R2 ≥ 0.9)
Statistical significance of explanatory power according to Wald χ2 likelihood ratio test:
◦ p ≥ 0.05; ∗ p <0.05;∗∗ p <0.01;∗ ∗ ∗ p <0.001
– Nonlinear degrees of freedom not allocated

time that reviewers spend reviewing. On the other hand, the
discussion length captures how actively a change was discussed.
We also observed a high correlation between hastily-reviewed
changes and changes without discussion in Qt 5.0. Thus, we
decided to keep the latter metric to remain consistent with our
previous choice of discussion length.

Similar to RQ1, for each project, we investigated the non-
linear potential of the relationships between the explanatory
variables and the count of anti-patterns in order to decide on the
allocation of degrees of freedom. Due to space constraints, we
do not show detailed results here but we make them available
online6. For Qt 5.0, based on the obtained results, we allocated
(1) 5 degrees of freedom to component size, number of total
authors, and proportion of self-approved changes; (2) 3 degrees
of freedom to typical discussion length, change entropy and
no discussion; and (3) 1 degree of freedom (linear fit) to
complexity and code churn. The distribution of degrees of
freedom for other studied projects is shown in Table IV.
Model analysis. Our regression models achieve optimism-
reduced adjusted R2 values of 0.20 (ITK), 0.46 (Qt 5.1),
and 0.74 (Qt 5.0). The difference between initial adjusted
R2 and the Optimism-reduced adjusted R2 for Qt projects
is considerably low, ranging between 0.03 and 0.1, which
indicates that overfitting is not a major concern for our models.

6http://swat.polymtl.ca/data/SANER15/

Concerning participation metrics, no discussion rate provides
a significant amount of explanatory power for both studied Qt
versions. Moreover, in Qt 5.1, this metric has high level of
significance in the number of degrees of freedom assigned for
both linear and non-linear columns, whereas ITK only reports
hastily-reviewed metric as significant. Given the limited budget
of degrees of freedom, we opt for not adding any additional
knots to any variable; i.e., fitting a linear relationship.

Figure 5 shows the estimated anti-patterns count for Qt (5.0
and 5.1) and ITK projects varying the participation metrics
while holding the other variables at their median values. In
Figure 5 (a) the proportion of changes without discussion has
a positive impact in the appearance of anti-patterns with a
little drop at the beginning and then increments progressively
until it reaches the value of 0.2. Figure 5 (b) shows a similar
trend but with broader confidence intervals in comparison with
Qt 5.0. This is because the model for Qt 5.1 is supported
by more data points. We also observe that the count of anti-
patterns in Qt 5.1 rises considerably higher in comparison to
the other projects. Figure 5 (c) shows the estimated count of
anti-patterns in ITK when varying the proportion of hastily-
reviewed changes. The blue line that represents the original
data is straight; indicating that the count of anti-patterns rises
when components are reviewed very fast. However, this value
should be interpreted with caution, since Table IV shows that
the ITK model is not as stable as Qt models.�
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The lack of participation during code reviews has a
negative impact on the occurrence of anti-patterns in
components. Software organisations should encourage
a large participation of their reviewers to code reviews,
in order to improve design quality.

Similar to RQ1, we repeat the analysis described above
using each type of anti-pattern. We use the same metrics as
explanatory variables and maintain the same distribution of
degrees of freedom as in the models with the total anti-pattern
count. Results (summarized in Table V) show that for 5 out of
7 anti-patterns, no discussion rate provides a significant amount
of explanatory power for both studied Qt versions. For the
pair Qt 5.1-ITK, hastily-reviewed rate provides a significant
amount of explanatory power to the models of Code Duplication
and God Class respectively. The total number of authors also
provides a significant amount of explanatory power for Data
Class in Qt 5.0 and Qt 5.1.�




�

	
The lack of participation during code reviews has a
negative impact on the occurrence of Tradition Breaker,
Code duplication, Data class, Feature Envy, God Class
and Schizophrenic class.

http://swat.polymtl.ca/data/SANER15/
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Fig. 5: Estimated count of anti-patterns in a typical component for various proportions of participation metrics.

Table V: Relevance of review participation metrics for individ-
ual anti-patterns

No Discussion Hastily Reviewed

Q
t

5.
0-

5.
1 Tradition Breaker

Data Class
Feature Envy
God Class
Schizophrenic Class

IT
K Code Duplication

God Class

V. THREATS TO VALIDITY

We now discuss the threats to validity of our study following
common guidelines for empirical studies [40].

Construct validity threats concern the relation between theory
and observation. Our modeling approach assumes that each
anti-pattern is of equal importance, when in reality, this may
not be the case.

Threats to internal validity concern our selection of subject
systems, tools, and analysis method. The accuracy of InCode
impacts our results. InCode is a commercial tool which has been
reported to achieve high precision and recall [41]. However,
other anti-pattern detection techniques and tools should be used
to confirm our findings.

Conclusion validity threats concern the relation between the
treatment and the outcome. We paid attention not to violate
assumptions of the constructed statistical models.

Reliability validity threats concern the possibility of replicat-
ing this study. Every result obtained through empirical studies
is threatened by potential bias from data sets [42]. To mitigate
these threats we tested our hypotheses over two versions of Qt
and another two open source projects (i.e., VTK and ITK). In
addition to this, we attempt to provide all the necessary details
required to replicate our study. The source code repositories
and issue-tracking systems of Qt, ITK and VTK are publicly
available to obtain the same data.

Threats to external validity concern the possibility to
generalize our results. Our study is focus on three open
source software systems having different sizes and belonging to
different domains. Nevertheless, further validation on a larger

set of software systems is desirable, considering systems from
different domains, as well as several systems from the same
domain. In this study, we used a particular yet representative
subset of anti-patterns as proxy for software design quality .
Future work using different anti-patterns are desirable.

VI. CONCLUSION AND FUTURE WORK

In this study, we examine the impact that Modern Code
Review practices, a lightweight, tool-supported variant of the
code review process, can have on software design quality. We
present a quantitative study of three large open source projects
(i.e., Qt, VTK and ITK) that relates code review coverage
and code review participation to design quality, by leveraging
anti-patterns as indicators of poor design quality. Results show
that:

• Code review coverage has an impact on the incidence
of anti-patterns in two of the four studied systems. A
high code review coverage can reduce the occurrence
of Blob, Data class, Data clumps, Feature envy and
Code Duplication in a software system. However, review
coverage alone is not enough to ensure the absence of
these anti-patterns.

• The lack of participation during code reviews has a
negative impact on the occurrence of Tradition Breaker,
Code duplication, Data class, Feature Envy, God Class
and Schizophrenic class. Components containing a high
proportion of changes that are hastily-reviewed may
exhibit God Classes and Code duplication.

The results of this study provide empirical evidences that good
code review practices could help improve the design quality
of software systems. Software organisations should encourage
a large participation of their developers to code reviews, in
order to improve design quality.
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