
Multi-language Design Smells:
Characteristics, Prevalence, and Impact

- Ph.D. Dissertation -

Mouna Abidi
Supervisor: Prof. Foutse Khomh

Computer Engineering and Software Engineering Department – Polytechnique Montreal

May 5th, 2021

What is a Multi-language System?

2

Multi-language Systems

3

Benefits of Multi-language Systems

4

Reuse of libraries

Reuse of code

Choose programming language

Lower development cost

Save development time

Limitations of Multi-language Systems

5

Complex interactions Higher maintenance costDependency issues

Security issues Hard to understand Additional bugs

Issues Related to Multi-language Systems

6

Design Smells

7
https://refactoring.guru/design-patterns

Identification of
good practices
and design
patterns

Identification of
bad practices and
design smells

Literature

8

Developers’ Blogs

9

10

Developers’ Blogs

11

12

Thesis Statement

• Design smells exist in multi-language systems (H1)

• Multi-language design smells are prevalent in open source projects (H2)

• Multi-language design smells present negative impacts on the software
quality (H3)

Objectives

• Define and catalog design smells for multi-language systems

• Study the prevalence of multi-language design smells

• Study the impacts of multi-language design smells on software
quality

13

Thesis Overview

Investigate the usage of
multi-language systems

A systematic
literature review

(IST)

A technical
survey

(CASCON* & JSS)

Define and catalog
design smells for
multi-language

systems

A catalog of
multi-language
design smells

(Europlop & Tplop)*

A detection
approach
(TOSEM)*

Study the prevalence
of multi-language

design smells

An empirical
study – open

source projects
(TOSEM)*

Study the impacts of
multi-language design

smells on software
quality

An empirical
study – open

source projects
(TOSEM*&TOSEM)

Categories of
bugs

(TOSEM)

Risky activities
(TOSEM)*

Capture developers’
perception about

multi-language
design smells

A technical
survey

(MSR & EMSE)*

14* Accepted papers

Thesis Overview

Investigate the usage of
multi-language systems

A systematic
literature review

(IST)

A technical
survey

(CASCON* & JSS)

Define and catalog
design smells for
multi-language

systems

A catalog of
multi-language
design smells

(Europlop & Tplop)*

A detection
approach
(TOSEM)*

Study the prevalence
of multi-language

design smells

An empirical
study – open

source projects
(TOSEM)*

Study the impacts of
multi-language design

smells on software
quality

An empirical
study – open

source projects
(TOSEM*&TOSEM)

Categories of
bugs

(TOSEM)

Risky activities
(TOSEM)*

Capture developers’
perception about

multi-language
design smells

A technical
survey

(MSR & EMSE)*

15* Accepted papers

16

Pilot 1 - Systematic Literature Review

Inclusion and Exclusion Criteria

Data Extraction

138 papers

3694 papers

17

Multi-language Papers Over Time

Study Results

The Top 20 Combinations of Programming Languages Discussed in Literature

Techniques Used for the Integration of Programming Languages

Study Results

18

Major Challenges of Multi-language Systems

Thesis Overview

Investigate the usage of
multi-language systems

A systematic
literature review

(IST)

A technical
survey

(CASCON* & JSS)

Define and catalog
design smells for
multi-language

systems

A catalog of
multi-language
design smells

(Europlop & Tplop)*

A detection
approach
(TOSEM)*

Study the prevalence
of multi-language

design smells

An empirical
study – open

source projects
(TOSEM)*

Study the impacts of
multi-language design

smells on software
quality

An empirical
study – open

source projects
(TOSEM*&TOSEM)

Categories of
bugs

(TOSEM)

Risky activities
(TOSEM)*

Capture developers’
perception about

multi-language
design smells

A technical
survey

(MSR & EMSE)*

19* Accepted papers

Pilot 2 – Technical Survey

20

Survey Participants collection

Survey Administration

Data Analysis

Study Design 133 participants (47.5%)

• Increasing popularity

• Perceived benefits:
Ease implementation of the initial code
Reuse of code
Benefits from each programming language
Increase developers' motivation

• Perceived Challenges:
 Complex maintenance
 Diverse competences requirements
 Complex dependencies
 Lack of dedicated support

• Current Solution:
 Mono-language patterns and solutions for multi-language systems

21

Developers’ Perspectives on Multi-language Systems

“Good practices and tools for multiple language may help developers keep
their code clean and maintainable” (Participant)

Implications from the Pilot Studies

22

Information scattered Concrete relevance Developers’ perceptionEvaluation of impact

Thesis Overview

Investigate the usage of
multi-language systems

A systematic
literature review

(IST)

A technical
survey

(CASCON* & JSS)

Define and catalog
design smells for
multi-language

systems

A catalog of
multi-language
design smells

(Europlop & Tplop)*

A detection
approach
(TOSEM)*

Study the prevalence
of multi-language

design smells

An empirical
study – open

source projects
(TOSEM)*

Study the impacts of
multi-language design

smells on software
quality

An empirical
study – open

source projects
(TOSEM*&TOSEM)

Categories of
bugs

(TOSEM)

Risky activities
(TOSEM)*

Capture developers’
perception about

multi-language
design smells

A technical
survey

(MSR & EMSE)*

23* Accepted papers

Multi-language Design Smells

• Multi-language design smells are defined as poor design and coding decisions when
bridging between different programming languages

• Design smells include anti-patterns and code smells

• They represent violations of best practices related to the combination of programming
languages that often indicate the presence of bigger problems

24

Study Design

25

Literature Bug reportsDocumentation

Practices Collection

Coding Practices

Documentation Process

Data Collection Validation Process

Source code Exclusion Criteria

Design Smells

Inclusion Criteria

Validation Process

Examples of Collection of Practices

26

Bad Practices

Good Practices

Study Design

27

Literature Bug reportsDocumentation

Practices Collection

Coding Practices

Documentation Process

Data Collection Validation Process

Source code Exclusion Criteria

Design Smells

Inclusion Criteria

Validation Process

A Catalog of Multi-language Design Smells

• A catalog of 15 types of Multi-language Design Smells

28

Refine Design Smells

N. Multi-language Design Smells

1 Not Handling Exceptions

2 Not Securing Libraries

3 Local Reference Abuse

4 Memory Management Mismatch

5 Excessive Objects

6 Too Much Clustering

7 Unused Method Implementation

8 Unused Parameters

9 Assuming Safe Return Values

10 Not Using Relative Path

11 Hard Coding Libraries

12 Not Caching Objects

13 Too Much Scattering

14 Excessive Inter-language Communication

15 Unused Method Declaration

Writers’ WorkshopRounds of shepherding
Process

Too Much Scattering

29

30

Memory Management Mismatch

Thesis Overview

Investigate the usage of
multi-language systems

A systematic
literature review

(IST)

A technical
survey

(CASCON* & JSS)

Define and catalog
design smells for
multi-language

systems

A catalog of
multi-language
design smells

(Europlop & Tplop)*

A detection
approach
(TOSEM)*

Study the prevalence
of multi-language

design smells

An empirical
study – open

source projects
(TOSEM)*

Study the impacts of
multi-language design

smells on software
quality

An empirical
study – open

source projects
(TOSEM*&TOSEM)

Categories of
bugs

(TOSEM)

Risky activities
(TOSEM)*

Capture developers’
perception about

multi-language
design smells

A technical
survey

(MSR & EMSE)*

31* Accepted papers

MLSInspect: A Detection Approach For Multi-language
Design Smells

32

SrcML

Design Smells Occurrences

Detection RulesSrcML Representation

Unified SrcML representation

Summary
Detection Results

1- Parsing Source Code 2- Detection Process 3- Results Generation

Detailed
Detection Results

33

Memory Management Mismatch

Parsing Source Code

34

MLSInspect: A Detection Approach For Multi-language
Design Smells

35

SrcML

Design Smells Occurrences

Detection RulesSrcML Representation

Unified SrcML representation

Summary
Detection Results

1- Parsing Source Code 2- Detection Process 3- Results Generation

Detailed
Detection Results

Detection Process

36

(mem ← f1(y) | f1 ∈ {GetStringChars, GetStringUTFChars,…})

AND (∌ f2(mem) | f2 ∈ {ReleaseGetStringChars, ReleaseGetStringUTFChars,…})
genericCallQuery = "descendant::call[name/name='%s']"

MLSInspect: A Detection Approach For Multi-language
Design Smells

37

SrcML

Design Smells Occurrences

Detection RulesSrcML Representation

Unified SrcML representation

Summary
Detection Results

1- Parsing Source Code 2- Detection Process 3- Results Generation

Detailed
Detection Results

Results Generation

38

MLSInspect Evaluation

39

Evaluated on 6 open source projects

MLS Inspect

Systems Recall Precision

Openj9 93% 96%

Rocksdb 87% 95%

Conscrypt 80% 95%

PlJava 90% 99%

JNA 74% 88%

JMonkey 92% 94%

(H1) Design Smells Exist in Multi-language Systems

40

Catalog of Multi-language
Design smells

Detection Approach

N. Multi-language Design Smells

1 Not Handling Exceptions

2 Not Securing Libraries

3 Local Reference Abuse

4 Memory Management Mismatch

5 Excessive Objects

6 Too Much Clustering

7 Unused Method Implementation

8 Unused Parameters

9 Assuming Safe Return Values

10 Not Using Relative Path

11 Hard Coding Libraries

12 Not Caching Objects

13 Too Much Scattering

14 Excessive Inter-language Communication

15 Unused Method Declaration

Minimum precision of 88%

Minimum recall of 74%

Evaluated on 6 open source projects

MLS Inspect

H1

Thesis Overview

Investigate the usage of
multi-language systems

A systematic
literature review

(IST)

A technical
survey

(CASCON* & JSS)

Define and catalog
design smells for
multi-language

systems

A catalog of
multi-language
design smells

(Europlop & Tplop)*

A detection
approach
(TOSEM)*

Study the prevalence
of multi-language

design smells

An empirical
study – open

source projects
(TOSEM)*

Study the impacts of
multi-language design

smells on software
quality

An empirical
study – open

source projects
(TOSEM*&TOSEM)

Categories of
bugs

(TOSEM)

Risky activities
(TOSEM)*

Capture developers’
perception about

multi-language
design smells

A technical
survey

(MSR & EMSE)*

41* Accepted papers

Prevalence of Multi-language Design Smells

42

Clone Projects

98 Releases

R1.0

RN.0

9 Systems

MLS Inspect Detection Results

Data Analysis

Multi-language Design Smells Detection

Study Design

Do Multi-language Design Smells Occur Frequently in Open
Source Projects?

43

Systems Releases Analyzed %Files with Smells
Conscrypt 1.0.0.RC2 - 2.3.0 30.21%
Realm 0.90.0 - 5.15.0 11.67%
Java-smt 1.0.1 - 3.0.0 36.21%
Zstd-jni 0.4.4 - latest release 61.36%
Rocksdb 5.0.2 - latest release 36.30%
Javacpp 0.9 - 1.5.1-1 58.97%
JPype 0.5.4.5 - latest release 10.18%
PlJava REL1_5_STABLE - latest release 30.13%
VLC-android 3.0.0 – latest release 30.49%

Do Multi-language Design Smells Occur Frequently in
Open Source Projects?

• Multi-language design smells are prevalent in open
source projects

• Multi-language design smells persist and even increase
over the releases

44

Evolution of Design Smells in the Releases of the Studied Systems

Are Some Specific Multi-language Design Smells more
Frequent than Others in Open Source Projects?

Systems UP UM TMS TMC UMI ASR EO EILC NHE NCO NSL HCD NURP MMM LRA
Conscrypt 79.60% 4.40% 0% 1.90% 0% 3.99% 0% 1.90% 3.99% 0% 5.71% 0% 3.80% 3.78% 3.78
Realm 67.68% 3.066% 9.75% 14.86% 2.32% 4.33% 0% 12.58% 5.15% 0% 2.17% 0% 0 % 0% 0.79
Java-smt 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 94.06% 2.96% 2.96% 0% 0 %
Zstd 10.46% 0.95% 13.98% 12.36% 3.47% 17.98% 0% 23.55% 21.45% 0% 5.74% 3.47% 0% 2.25% 0%
Rocksdb 44.55% 5.48% 34.48% 23.47% 0% 0.67% 0% 14.35% 0.67% 0.91% 2.85% 0.95% 0.95% 0.79% 0.10%
Javacpp 2.53% 31.70% 74.19% 19.49% 0% 0% 0% 69.14% 0% 0% 6.48% 2.51% 0% 0% 0%
JPype 89.24% 0% 0% 0% 0% 1.78% 0% 0.35% 1.78% 0% 0% 0% 0% 8.25% 1.07
PlJava 64.45% 35.62% 31.02% 8.42% 2.04% 0% 0% 4.36% 2.04% 0% 0% 0% 0% 2.04% 0%
VLC-android 63.67% 25.71% 24.74% 17.10% 7.34% 3.67% 0.82% 13.29% 3.67% 0% 3.92% 0% 6.01% 0% 3.67%

45

Acronyms: Up: UnusedParameters, UM: UnusedMethodDeclaration, TMS: ToomuchScattering, TMC: Toomuchclustring, UMI: UnusedMethodImplementation , ASR:
AssumingSafeReturnValue, EO: ExcessiveObjects, EILC: excessiveInterlangCommunication, NHE: NotHandlingExceptions, NCO: NotCachingObjects NSL: NotSecuringLibraries, HCD:
HardCodingLibraries, NURP: NotUsingRelativePath, MMM: MemoryManagementMismatch, LRA: LocalReferencesAbuse

Evolution of Multi-Language Design Smells Over the Releases

46
JavaCppRocksdb

47

While others are less prevalent:
- Excessive Objects
- Not Caching Objects

Some Multi-language smells are more
prevalent than the others:
- Unused Parameters
- Too Much Scattering
- Not Securing Library
- Excessive Inter-language Communication
- Unused Method Declaration

(H2) Multi-language Design Smells are Prevalent

H2

Most of those smells remain and mostly increase from one release to another

Thesis Overview

Investigate the usage of
multi-language systems

A systematic
literature review

(IST)

A technical
survey

(CASCON* & JSS)

Define and catalog
design smells for
multi-language

systems

A catalog of
multi-language
design smells

(Europlop & Tplop)*

A detection
approach
(TOSEM)*

Study the prevalence
of multi-language

design smells

An empirical
study – open

source projects
(TOSEM)*

Study the impacts of
multi-language design

smells on software
quality

An empirical
study – open

source projects
(TOSEM*&TOSEM)

Categories of
bugs

(TOSEM)

Risky activities
(TOSEM)*

Capture developers’
perception about

multi-language
design smells

A technical
survey

(MSR & EMSE)*

48* Accepted papers

Impacts of Multi-language Design Smells on Software
Quality

Clone Projects

98 Releases

R1.0

RN.0

9 Systems

Bug-fixing Commits Bug-inducing CommitsPyDrillerGit Logs

MLS Inspect Detection Results

Data
Analysis

Data Mapping

Mining Software Repositories

Multi-language Design Smells Detection

270 Snapshots

R1.0

RN.0

8 Systems

Fisher’s
Exact Test

Logistic
Regression

Survival
Analysis

Study Design

49

Are Files with Multi-language Design Smells more Fault-
prone than Files without?

50

Releases
Smelly-
buggy

Buggy-
NotSmelly

Smelly-
NotBuggy

NotBuggy-
NotSmelly

Odds
ratio p-values

Confidence
Interval

rocksdb-5.0.2 82 85 17 108 6.13 <0.01 (1.2184, 2.4076)

rocksdb-5.6.2 90 80 24 107 5.01 <0.01 (1.0771, 2.1480)

pljava-1_5_0b3 32 33 14 83 5.75 <0.01 (1.0026, 2.4954)
pljava-1_5_1b2 39 36 14 76 5.88 <0.01 (1.0436, 2.4998)
pljava-1_5_2 38 34 15 78 5.81 <0.01 (1.0392, 2.4806)
realm-java-0.90.0 21 89 2 365 43.06 <0.01 (2.2938, 5.2315)

realm-java-1.2.0 20 169 2 285 16.86 <0.01 (1.3592, 4.2912)
realm-java-2.3.2 33 177 3 269 16.72 <0.01 (1.6194, 4.0135)

realm-java-3.7.2 43 165 8 271 8.82 <0.01 1.3988, 2.9570)
zstd-jni-1.3.4-1 20 1 8 12 30 <0.01 (1.2025, 5.5998
zstd-jni-latest
release 22 1 7 12 37.71 <0.01 (1.4198, 5.8403)
conscrypt-1.0.0.RC2 23 20 6 90 17.25 <0.01 (1.8270, 3.8686)

Findings: Files with
occurrences of design smells
can often lead to bugs more
than files without these smells

Method: Fisher’s Exact Test

Are Some Specific Multi-language Design Smells more
Fault-prone than Others?

51

Findings: Some smells are more related to
bugs than others:
- Unused Parameters
- Too Much Clustering
- Too Much Scattering
- Hard Coding Libraries
- Memory Management Mismatch

Multi-language Design Smells Number and Percentage of Systems

LO > 0 LO in Top 5 (LO>0 and p<0.01)
Excessive Inter-language Communication 25%(2/8) 2 0

Too Much Clustering 62.5%(5/8) 5 4

Too Much Scattering 100%(6/6) 6 3

Unused Method Declaration 37.5%(3/8) 2 1

Unused Method Implementation 25%(1/4) 1 1

Unused Parameters 66.6%(6/9) 5 4

Not Handling Exceptions 42.8%(3/7) 3 2

Not Securing Libraries 28.5%(2/7) 2 1

Hard Coding Libraries 75%(3/4) 3 2

Memory Management Mismatch 50%(2/4) 1 1

Local References Abuse 0%(0/5) 0 0

Excessive Objects NA NA NA

Not Caching Objects NA NA NA

LO = Log Odds (regression coefficient estimate) of the corresponding smell from the logistic regression model.
NA = Corresponding Log odds are not available from the LR models due to singularities

Method: Logistic Regression

Is the Risk of Bugs Higher in Files With Multi-Language
Smells in Comparison With Those Without Smells?

52

Systems exp(coef) p-value (CHM) p-value (PHA)

Rocksdb 1.64 6.162e-26 1.258e-05

Frostwire 3.123 1.749e-52 0.641

Realm 2.747 7.487e-37 9.112e-05

Conscrypt 2.598 3.218e-23 0.0001

Pljava 1.805 6.425e-05 0.002

Javacpp 2.237 3.003e-08 0.164

JNA 5.033 9.526e-32 1.254e-14

OpenDDS 0.229 1.468e-09 0.992

CHM: Cox Hazard Model, PHA: Proportional Hazards Assumption
exp(coef): The exponentiated coefficients for the hazard ratios

Conscrypt PlJava

JNA Realm

Method: Survival Analysis

Is the Risk of Bugs Equal from One Multi-language Design
Smell Type to The Other?

53

Conscrypt – Memory Management Mismatch Conscrypt – Not Handling Exceptions Conscrypt – Unused Parameters Conscrypt – Local Reference Abuse

Is the Risk of Bugs Equal from One Multi-language Design
Smell Type to The Other?

54

Findings: Some smells lead faster to faults
than others:
- Memory Management Mismatch
- Hard Coding Libraries
- Unused Parameters
- Not Handling Exception
- Local Reference Abuse
- Unused Implementation

Multi-language Design Smells #System SFB NSFB % SFB % NSFB
Unused Parameters 8 7 1 87.50% 12.50%

Unused Method Declaration 8 5 3 62.50% 37.50%

Too Much Scattering 6 3 3 50.0% 50.0%

Too Much Clustering 8 5 3 62.50% 37.50%

Unused Method Implementation 5 4 1 80.0% 20.0%

Assuming Safe Return Value 6 4 2 66.67% 33.33%

Excessive Objects 0 N/A N/A N/A N/A

Excessive Interlanguage Communication 7 5 2 71.43% 28.57%

Not Handling Exceptions 7 6 1 85.71% 14.29%

Not Caching Objects 0 N/A N/A N/A N/A

Not Securing Libraries 8 6 2 75.0% 25.0%

Hard Coding Libraries 2 2 0 100.0% 0.0%

Not Using Relative Path 6 3 3 50.0% 50.0%

Memory Management Mismatch 5 5 0 100.0% 0.0%

Local References Abuse 6 5 1 83.33% 16.67%

SFB: %Systems where smelly files are more bug-prone than non-smelly files
NSFB: %Systems where files without (specific) smells are more bug-prone than smelly files
#System: No. of Systems where we have hazard ratios for the concerned smell (covariate)
* Colored percentage values indicate the top-6 bug-prone smell types

Method: Survival Analysis

Thesis Overview

Investigate the usage of
multi-language systems

A systematic
literature review

(IST)

A technical
survey

(CASCON* & JSS)

Define and catalog
design smells for
multi-language

systems

A catalog of
multi-language
design smells

(Europlop & Tplop)*

A detection
approach
(TOSEM)*

Study the prevalence
of multi-language

design smells

An empirical
study – open

source projects
(TOSEM)*

Study the impacts of
multi-language design

smells on software
quality

An empirical
study – open

source projects
(TOSEM*&TOSEM)

Categories of
bugs

(TOSEM)

Risky activities
(TOSEM)*

Capture developers’
perception about

multi-language
design smells

A technical
survey

(MSR & EMSE)*

55* Accepted papers

56

What are the Categories of Bugs that Exist in Multi-language
Smelly Files?

Bug-fixing Commits PyDrillerGit Logs

1- Mining Software Repositories

Commit Messages

3. Manual Labelling2. Topic Modeling

• Programming errors
• Libraries and Features Support
• Memory
• Communication and Network
• Concurrency
• Plateform and Dependencies

Categories of bugs:

Thesis Overview

Investigate the usage of
multi-language systems

A systematic
literature review

(IST)

A technical
survey

(CASCON* & JSS)

Define and catalog
design smells for
multi-language

systems

A catalog of
multi-language
design smells

(Europlop & Tplop)*

A detection
approach
(TOSEM)*

Study the prevalence
of multi-language

design smells

An empirical
study – open

source projects
(TOSEM)*

Study the impacts of
multi-language design

smells on software
quality

An empirical
study – open

source projects
(TOSEM*&TOSEM)

Categories of
bugs

(TOSEM)

Risky activities
(TOSEM)*

Capture developers’
perception about

multi-language
design smells

A technical
survey

(MSR & EMSE)*

57* Accepted papers

58

What are the Activities that are more Likely to Introduce Bugs
in Smelly Files?

Bug-fixing Commits Bug-inducing CommitsPyDrillerGit Logs

1- Mining Software Repositories

Commit Messages

3. Manual Labelling2. Topic Modeling

• Data conversion
• Memory management
• Exception management
• Restructuring the code
• API usage

Risky Activities:

59

Relationship between Smells and
Bugs Survival Analysis

Some smells are more related to faults than
others:

- Unused Parameters
- Too Much Clustering
- Too Much Scattering
- Hard Coding Libraries
- Memory Management Mismatch

Some smells lead faster to faults than
others:
- Memory Management Mismatch
- Hard Coding Libraries
- Unused Parameters
- Not Handling Exception
- Local Reference Abuse
- Unused Implementation

(H3) Multi-language Design Smells Present Negative
Impacts on the Software Quality

H3

Thesis Overview

Investigate the usage of
multi-language systems

A systematic
literature review

(IST)

A technical
survey

(CASCON* & JSS)

Define and catalog
design smells for
multi-language

systems

A catalog of
multi-language
design smells

(Europlop & Tplop)*

A detection
approach
(TOSEM)*

Study the prevalence
of multi-language

design smells

An empirical
study – open

source projects
(TOSEM)*

Study the impacts of
multi-language design

smells on software
quality

An empirical
study – open

source projects
(TOSEM*&TOSEM)

Categories of
bugs

(TOSEM)

Risky activities
(TOSEM)*

Capture developers’
perception about

multi-language
design smells

A technical
survey

(MSR & EMSE)*

60* Accepted papers

Developers’ Perception about Multi-language Design Smells

61

Surveys (Open and Closed) Participants collection

Survey Administration

Data Analysis

Data Collection Design Smells Relevance and Impacts

Clone Projects

270 Snapshots of 8 systems

R1.0

RN.0

Commits and Developers
Collection

Git Logs MLS Inspect Detection Results

Data Mappping

171 participants (23.2 %)

Study Design

• Most frequently identified design smells:

- Unused Method Implementation
- Unused Declaration
- Not Securing Libraries
- Memory Management Mismatch
- Not Caching Objects

• Less frequently identified design smells:

- Hard Coding Libraries
- Excessive Objects
- Not Using Relative Path

To What Extent Do Multi-language Design Smells Reflect
Developers’ Perception of Design Problems?

Multi-language Design Smells % of Correct
Identified

% Incorrect
Identified

Not Handling Exceptions 74.95% 25.05%

Not Securing Libraries 82.5% 17.5%

Local Reference Abuse 74.8% 25.2%

Memory Management Mismatch 81.9% 18.1%

Excessive Objects 38.6% 61.4%

Too Much Clustering 74.95% 25.05%

Unused Method Implementation 87.95% 12.05%

Unused Parameters 75.95% 24.05%

Assuming Safe Return Values 73.55% 26.45%

Not Using Relative Path 49.65% 50.35%

Hard Coding Libraries 31.9% 68.1%

Not Caching Objects 34.8% 65.2%

Too Much Scattering 72% 28%

Excessive Interlanguage Communication 66.75% 33.25%

Unused Method Declaration 84.3% 15.7%

62

• Most harmful design smells:

- Not Handling Exception
- Assuming Safe Return Values
- Local Reference Abuse
- Memory Management Mismatch
- Excessive Inter-language Communication
- Too Much Clustering

• Less harmful design smells:

- Unused Parameters
- Unused Method Declaration
- Not Using Relative Path
- Hard Coding Libraries

What are the Design Smells that Developers Perceive as the
Most Harmful?

Multi-language Design Smells Score (Borda Count) Median Severity

Not Handling Exceptions 2261 12

Assuming Safe Return Value 2137 12

Local Reference Abuse 2063 11

Memory Management Mismatch 2052 9

Excessive Interlanguage Communication 2040 11

Too Much Clustering 1876 10

Not Securing Libraries 1358 7

Too Much Scattering 1342 7

Excessive Objects 1211 6

Unused Method Implementation 964 5

Not Caching Objects 812 6

Hard Coding Libraries 764 5

Not Using Relative Path 632 5

Unused Method Declaration 588 5

Unused Parameters 438 5

63

What are the Perceived Impacts of Multi-language Design
Smells on Software Quality?

Multi-language Design Smells Expandability Simplicity Reusability Learnability Understandability Modularity

Not Handling Exceptions - - - - - -

Not Securing Libraries - - - - - -

Local Reference Abuse - - - - - -

Memory Management Mismatch - - - - - -

Excessive Objects - - - - - -

Too Much Clustering - - - - - -

Unused Method Implementation - - - - - -

Unused Parameters - - - - - -

Assuming Safe Return Values - - - - - -

Not Using Relative Path NEU NEU - NEU - -

Hard Coding Libraries - - - - - -

Not Caching Objects - - - - - -

Too Much Scattering - - - - - -

Excessive Inter-language Communication - - - - - -

Unused Method Declaration - - - - - -
64

- : Negative impact NEU : Neutral Impact Most impacted

• Main negatively impacted quality attributes:
- Understandability
- Reusability
- Expandability

• Less negatively impacted quality attributes:
- Learnability
- Modularity

65

What are the Perceived Impacts of Multi-language Design
Smells on Software Quality?

Do Developers Plan to Refactor Multi-language Design
Smells?

Multi-language Design Smells %No
Refactoring

% Yes Given
Solution

% Yes Alternative
Solution

Not Handling Exceptions 29.4 64.95% 5.65%

Not Securing Libraries 25.25 72.8% 1.95%

Local Reference Abuse 29.65 60.35% 9.9%

Memory Management Mismatch 10.9 81.45% 7.65%

Excessive Objects 62.9 31.4% 5.7%

Too Much Clustering 14.3 78.1% 7.6%

Unused Method Implementation 55.15 42% 2.85%

Unused Parameters 36.5 57.5% 5.95%

Assuming Safe Return Values 24.05 73.6% 2.35%

Not Using Relative Path 35.9 14.75% 49.3%

Hard Coding Libraries 12.5 35.4% 52.1%

Not Caching Objects 39.6 52.1% 8.3%

Too Much Scattering 23.85 66.15% 9.95%

Excessive Interlanguage Communication 49.1 15.2% 35.65%

Unused Method Declaration 55.95 41.65% 2.4%

66

• Design smells considered for refactoring:

- Memory Management Mismatch
- Too Much Clustering
- Assuming Safe Return Values
- Not Securing Libraries
- Too Much Scattering

• Design smells not considered for refactoring:

- Excessive Objects
- Unused Method Declaration
- Unused Method Implementation

Developers’ Perception Versus Empirical Findings (Prevalence)

67

Empirical investigation Survey

• Most prevalent design smells:

- Unused Parameters

- Too Much Scattering

- Not Securing Libraries

- Excessive Inter-language Communication

- Unused Method Declaration

• While others are less prevalent:

- Excessive Objects

- Not Caching Objects

• Frequently identified design smells:

- Unused Parameters

- Too Much Scattering

- Not Securing Libraries

- Excessive Inter-language Communication

- Unused Method Declaration

- Not Caching Objects

• Less frequently identified design smells:

- Excessive Objects

68

Empirical investigation Developers’ Survey

• Perceived as harmful design smells:

- Memory Management Mismatch
- Not Handling Exception
- Local Reference Abuse
- Unused Implementation
- Too Much Clustering
- Too Much Scattering

• Perceived as less harmful design smells:

- Unused Parameters
- Hard Coding Libraries

Some smells are more related to bugs than others:

- Memory Management Mismatch
- Too Much Clustering
- Too Much Scattering
- Unused Parameters
- Hard Coding Libraries

Some smells lead faster to bugs than others:

- Memory Management Mismatch
- Not Handling Exception
- Local Reference Abuse
- Unused Implementation
- Unused Parameters
- Hard Coding Libraries

Developers’ Perception Versus Empirical Findings (Impact)

Recommendations for Researchers

69

• Investigate design smells and design patterns for multi-language software development

• Investigate why and how some specific types of smells are more frequent than others

• Explore the causes and circumstances under which the studied smells may increase the risk of
bugs

• Investigate the roots causes and recommend mitigation strategies related to the categories of
bugs

70

• Developers should pay attention to the design smells studied in this thesis

• Apply MLSInspect to detect occurrences of the studied design smells

• Prioritize multi-language smells types for maintenance activities

• They could also leverage our results to better prioritize their refactoring activities

Recommendations for Practitioners

What is Next?
• Expand our study to other combinations of programming languages

• Investigate and document design patterns for multi-language systems

• Consider refactoring strategies for multi-language design smells

• Study the co-occurrence of multi-language design smells with traditional smells

• Study the combination of programming languages in machine learning applications:

• Design smells and design patterns

• Categories of bugs and issues

71

Conclusion

72

	Multi-language Design Smells: Characteristics, Prevalence, and Impact��- Ph.D. Dissertation -
	What is a Multi-language System?
	Multi-language Systems
	Benefits of Multi-language Systems
	Limitations of Multi-language Systems
	Issues Related to Multi-language Systems
	Design Smells
	Literature
	Developers’ Blogs
	Developers’ Blogs
	Diapositive numéro 11
	Thesis Statement
	Objectives
	Thesis Overview
	Thesis Overview
	Pilot 1 - Systematic Literature Review
	Study Results
	Study Results
	Thesis Overview
	Pilot 2 – Technical Survey
	Developers’ Perspectives on Multi-language Systems
	Implications from the Pilot Studies
	Thesis Overview
	Multi-language Design Smells
	Study Design
	Examples of Collection of Practices
	Study Design
	A Catalog of Multi-language Design Smells
	Too Much Scattering
	Memory Management Mismatch
	Thesis Overview
	MLSInspect: A Detection Approach For Multi-language Design Smells
	Memory Management Mismatch
	Parsing Source Code
	MLSInspect: A Detection Approach For Multi-language Design Smells
	Detection Process
	MLSInspect: A Detection Approach For Multi-language Design Smells
	Results Generation
	MLSInspect Evaluation
	(H1) Design Smells Exist in Multi-language Systems
	Thesis Overview
	Prevalence of Multi-language Design Smells
	Do Multi-language Design Smells Occur Frequently in Open Source Projects?
	Do Multi-language Design Smells Occur Frequently in Open Source Projects?
	Are Some Specific Multi-language Design Smells more Frequent than Others in Open Source Projects?
	Evolution of Multi-Language Design Smells Over the Releases
	(H2) Multi-language Design Smells are Prevalent
	Thesis Overview
	Impacts of Multi-language Design Smells on Software Quality
	Are Files with Multi-language Design Smells more Fault-prone than Files without?
	Are Some Specific Multi-language Design Smells more Fault-prone than Others?
	Is the Risk of Bugs Higher in Files With Multi-Language Smells in Comparison With Those Without Smells?
	Is the Risk of Bugs Equal from One Multi-language Design Smell Type to The Other?
	Is the Risk of Bugs Equal from One Multi-language Design Smell Type to The Other?
	Thesis Overview
	Diapositive numéro 56
	Thesis Overview
	Diapositive numéro 58
	(H3) Multi-language Design Smells Present Negative Impacts on the Software Quality
	Thesis Overview
	Developers’ Perception about Multi-language Design Smells�
	To What Extent Do Multi-language Design Smells Reflect Developers’ Perception of Design Problems?
	What are the Design Smells that Developers Perceive as the Most Harmful?
	What are the Perceived Impacts of Multi-language Design Smells on Software Quality?
	What are the Perceived Impacts of Multi-language Design Smells on Software Quality?
	Do Developers Plan to Refactor Multi-language Design Smells?
	Developers’ Perception Versus Empirical Findings (Prevalence)�
	Developers’ Perception Versus Empirical Findings (Impact)�
	Recommendations for Researchers
	Recommendations for Practitioners
	What is Next?
	Conclusion

