
An Exploratory Study of the Impact
of Code Smells on Software Change-proneness

Foutse Khomh1, Massimiliano Di Penta2, and Yann-Gaël Guéhéneuc1

1Ptidej Team, DGIGL,́Ecole Polytechnique de Montréal, Canada
2 University of Sannio, Dept. of Engineering, Benevento, Italy

E-mails:{foutsekh, guehene}@iro.umontreal.ca, dipenta@unisannio.it

Abstract

Code smells are poor implementation choices, thought
to make object-oriented systems hard to maintain. In this
study, we investigate if classes with code smells are more
change-prone than classes without smells. Specifically, we
test the general hypothesis: classes with code smells are
not more change prone than other classes. We detect 29
code smells in 9 releases of Azureus and in 13 releases of
Eclipse, and study the relation between classes with these
code smells and class change-proneness. We show that,
in almost all releases of Azureus and Eclipse, classes with
code smells are more change-prone than others, and that
specific smells are more correlated than others to change-
proneness. These results justifya posterioriprevious work
on the specification and detection of code smells and could
help focusing quality assurance and testing activities.

1 Context and Problem

In theory, code smells [12] are poor implementation
choices, opposite to idioms [8] and, to some extent, to de-
sign patterns [13]. They are “poor” solutions to recurring
implementation problems. In practice, code smells are in-
between design and implementation: they may concern the
design of a class, but they concretely manifest themselves
in the source code as classes with specific implementation.
They are usually revealed through particular metric val-
ues [22].

One example of a code smell is the ComplexClassOnly
smell, which occurs in classes with a very high McCabe
complexity when compared to other class in a system. At a
higher level of abstraction, the presence of some specific
code smells can, in turn, manifest in antipatterns [5], of
which code smells are parts of. Studying the effects of an-

tipatterns is, however, out of scope of this study and will be
treated in other works.

Premise. Code smells are conjectured in the literature to
hinder object-oriented software evolution. Yet, despite the
existence of many works on code smells and antipatterns,
no previous work has contrasted the change-proneness of
classes with code smells with this of other classes to study
empirically the impact of code smells on this aspect of soft-
ware evolution.

Goal. We want to investigate the relations between these
code smells and three types of code evolution phenomena.
First, we study whether classes with code smells have an in-
creased likelihood of changing than other classes. Second,
we study whether classes with more smells than others are
more change-prone. Third, we study the relation between
particular smells and change-proneness.

Contribution. We present an exploratory study investigat-
ing the relations between 29 code smells and changes oc-
curring to classes in 9 releases of Azureus and 13 releases
of Eclipse. We show that code smellsdo have a negative
impact on classes, that certain kinds of smellsdo impact
classes more than others, and that classes with more smells
exhibit higher change-proneness.

Relevance.Understanding if code smells increase the risk
of classes to change is important from the points of view of
both researchers and practitioners.

We bring evidence to researchers that (1) code smellsdo
increase the number of changes that classes undergo, (2) the
more smells a class has, the more change-prone it is, and (3)
certain smells lead to more change-proneness than others.
Therefore, this study justifiesa posterioriprevious work on
code smells: within the limits of the threats to its validity,
classes with code smells are more change-prone than others
and therefore smells may indeed hinder software evolution;

1



we empirically support such a conjecture reported in the lit-
erature [12, 21, 32], which is the premise of this study.

We also provide evidence to practitioners—developers,
quality assurance personnel, and managers—of the impor-
tance and usefulness of code smells detection techniques to
assess the quality of their systems by showing that classes
with smells are more likely to change often, thus impacting
on the maintenance effort.

Organisation. Section 2 relates our study with previous
works. Section 3 provides definitions and a description of
our specification and detection approach for code smells.
Section 4 describes the exploratory study definition and de-
sign. Section 5 presents the study results, while Section 6
discusses them, along with threats to their validity. Finally,
Section 7 concludes the study and outlines future work.

2 Related Work

Several works studied code smells, often in relation to
antipatterns. We summarise these works as well as works
aimed at relating metrics with software change-proneness.

Code Smell Definition and Detection.The first book on
“antipatterns” in object-oriented development was written
in 1995 by Webster [33]; his contribution includes con-
ceptual, political, coding, and quality-assurance problems.
Riel [25] defined 61 heuristics characterising good object-
oriented programming to assess a system quality manually
and improve its design and implementation. These heuris-
tics are similar and–or precursor to code smells. Beck [12]
defined 22 code smells, suggesting where developers should
apply refactorings. Mäntylä [21] and Wake [32] proposed
classifications for code smells. Brownet al. [5] described
40 antipatterns, which are often described in terms of lower-
level code smells. These books provide in-depth views on
heuristics, code smells, and antipatterns aimed at a wide
academic audience. They are the basis of all the approaches
to specify and (semi-)automatically detect code smells (and
antipatterns).

Several works proposed approaches to specify and de-
tect code smells and antipatterns. They range from manual
approaches, based on inspection techniques [29], to metric-
based heuristics [22, 24], where code smells and–or antipat-
terns are identified according to sets of rules and thresholds
defined on various metrics. Rules may also be defined us-
ing fuzzy logic and executed by means of a rule-inference
engine [1] or using visualisation techniques [9, 27].

Semi-automatic approaches are an interesting compro-
mise between fully automatic detection techniques that can
be efficient but loose track of the context and manual in-
spections that are slow and subjective [19]. However,
they require human expertise and are thus time-consuming.
Other approaches perform fully automatic detection and

use visualisation techniques to present the detection results
[20, 30].

This previous work has contributed significantly to the
specification and automatic detection of code smells and an-
tipatterns. The approach used in this study, DECOR, builds
on this previous work and offers a complete method to spec-
ify code smells and antipatterns and automatically detect
them.

Design Patterns and Software Evolution. While code
smells and antipatterns represent “poor” implementation
and–or design choices, design patterns are considered to be
“good” solutions to recurring design problems. Neverthe-
less, they may not always have positive effects on a system.
Vokac [31] analysed the corrective maintenance of a large
commercial system over three years and compared the fault
rates of classes that participated in design patterns against
those of classes that did not. He noticed that participating
classes were less fault prone than others. Vokac’s work in-
spired us in the use of logistic regression to analyse the cor-
relations between code smells and change-proneness.

Biemanet al. [4] analysed four small and one large sys-
tems to study pattern change proneness. Other studies dealt
with the changeability and resilience to change of design
patterns and of specific pattern roles [2, 10, 18], and with
their impact on the maintainability of a large commercial
system [34].

While previous works investigated the impact of good
design principles,i.e., design patterns, on systems, we
study the impact of poor implementation choices,i.e., code
smells, on software evolution.

Metrics and Software Evolution. Several studies, such as
Basili et al.’s seminal work [3], used metrics as quality in-
dicators. Cartwright and Shepperd [6] conducted an empir-
ical study on an industrial C++ system (over 133 KLOC),
which supported the hypothesis that classes in inheritance
relations are more fault prone. It followed that Chidamber
and Kemerer DIT and NOC metrics [7] could be used to find
classes that are likely to have higher fault rates. Gyimothy
et al. [15] compared the capability of sets of Chidamber
and Kemerer metrics to predict fault-prone classes within
Mozilla, using logistic regression and other machine learn-
ing techniques,e.g., artificial neural networks. They con-
cluded that CBO is the most discriminating metric. They
also found LOC to discriminate fault-prone classes well.
Zimmermannet al. [36] conducted an empirical study on
Eclipse showing that a combination of complexity metrics
can predict faults and suggesting that the more complex the
code, the more faults. El Emamet al. [11] showed that
after controlling for the confounding effect of size, the cor-
relation between metrics and fault-proneness disappeared:
many metrics are correlated with size and, therefore, do not
bring more information to predict fault proneness.

2



Table 1. List of code smells considered in this
study (definitions can be found [17]).

AbstractClass ChildClass
ClassGlobalVariable ClassOneMethod
ComplexClassOnly ControllerClass
DataClass FewMethods
FieldPrivate FieldPublic
FunctionClass HasChildren
LargeClass LargeClassOnly
LongMethod LongParameterListClass
LowCohesionOnly ManyAttributes
MessageChainsClass MethodNoParameter
MultipleInterface NoInheritance
NoPolymorphism NotAbstract
NotComplex OneChildClass
ParentClassProvidesProtectedRareOverriding
TwoInheritance

We do not claim that smells are better predictor of
change-proneness than metrics, which instead provide more
fine-grained and precise information to prediction models.
On the other hand smells refer to specific programming
styles and are therefore a better tool than metrics for de-
velopers. They are able to tell the developer whether a code
artefact is bad or not, by means of thresholds defined over
metrics. A ComplexClassOnly smells warns against exces-
sive complexity, while McCabe cyclomatic complexity of
WMC [7] leave such a judgement to the developer.

3 Code Smells

We use our previously proposed approach, DECOR (De-
fect dEtection for CORrection) [23], to specify and detect
code smells. DECOR is based on a thorough domain analy-
sis of code smells and antipatterns defined the literature, and
provides a domain-specific language to specify code smells
and antipatterns and methods to detect their occurrences au-
tomatically. It can be applied on any object-oriented system
through the use of the PADL meta-model and POM frame-
work. PADL is a meta-model to describe object-oriented
systems [14]; parsers for AOL, C++, and Java are available.
POM is a PADL-based framework that implements more
than 60 metrics, including McCabe cyclomatic complexity,
Brian Henderson-Sellers’ cohesion metric, Chidamber and
Kemerer metric suite, and statistical features,e.g., comput-
ing and accessing metrics box-plots, to compensate for the
effect of size.

Mohaet al. [23] reported that the DECOR current detec-
tion algorithms for antipatterns ensure 100% recall and have
a precision greater than 31% in the worst case, with an av-
erage greater than 60%. Although such a precision could be
an issue in general, in this paper we use only the code smells
detection algorithms of DECOR (antipatterns are defined in
terms of code smells), which have a higher precision (80%
on average), because the definition of a code smell is always
more constraining than that of an antipattern, and includes
less variability, such as fuzzy threshold or union between

many rules.
The definition of a code smell includes several metrics

with specific thresholds. In the current algorithms, the
thresholds have been defined based on the literature and em-
pirical studies.

Listing 1 shows the specifications of the ComplexClas-
sOnly and LowCohesionOnly code smells. A class has the
ComplexClassOnly smell if its McCabe complexity, com-
puted as the sum of the McCabe complexities of all its meth-
ods, is very high with respect to the complexity of all the
other class in the system. A class is with the LowCohe-
sionOnly smell if it lacks cohesion, measured using Brian
Henderson-Sellers’ cohesion metric LCOM5 and evaluated
as very high,i.e., over the upper quartile when considering
all classes. The values 20 indicates that, in these two code
smells, a deviation from the upper quartile is possible,e.g.,
classes with McCabe values that are up to 20% below the
upper quartile are also complex classes.

In the following, we study 29 code smells [5, 12], as
shown in Table 1. We choose these smells because they
are representative of problems with data, complexity, size,
and the features provided by classes. Their definitions and
specifications are outside of the scope of this paper and are
available in a longer technical report [17].

4 Study Definition and Design

The goal of our study is to investigate the relation be-
tween the presence of smells in classes and class change-
proneness. Thequality focusis the increase of maintenance
effort and cost due to the presence of code smells.

Theperspectiveis that of researchers, wanting to get ev-
idence on the conjecture of the impact of smells on change
proneness—to further our understanding of the impact of
implementation and design choices on systems. Also,
recommendations on code smells can be useful from the
perspective of developers: the presence of change-prone
classes likely increases the maintenance effort and cost. Fi-
nally, they can be viewed from the perspective of managers
and–or quality assurance personnel, who could use code
smell detection techniques to assess the change-proneness
of in-house or to-be-acquired systems to better quantify
their cost-of-ownerships.

The contextof this study consists of the change history
of two systems, Azureus and Eclipse, having a different size
and belonging to different domains. Azureus1, now known
as “Vuze”, is an open source BitTorrent client written in
Java. BitTorrent is a protocol that allows to exchange files
over the Internet. Eclipse2 is an open-source integrated de-
velopment environment used both in open-source commu-
nities and in industry. It is mostly written in Java, with

1http://azureus.sourceforge.net/
2http://www.eclipse.org/

3



1 RULE_CARD : ComplexClassOnly{
2 RULE : ComplexClassOnly{ (METRIC : McCabe , VERY_HIGH , 20) } ;
3 } ;
4 RULE_CARD : LowCohesionOnly {
5 RULE : LowCohesionOnly { (METRIC : LCOM5, VERY_HIGH , 20) } ;
6 } ;

Listing 1. Specification of the ComplexClassOnly and LowCoh esionOnly code smells.

Table 2. Summary of the 9 releases of Azureus
(changes are counted from one release to the next,
Azureus 4.2.0.2 is thus excluded).

D
a

te
s

R
e

le
a

se
s Number of

L
O

C

C
la

ss
e

s

C
ha

ng
e

s

2008-06-16 3.1.0.0 589,049 2,954 669
2008-07-01 3.1.1.0 604,527 3,026 7,035
2008-10-15 4.0.0.0 690,116 3,045 383
2008-10-24 4.0.0.2 648,942 3,099 387
2008-11-20 4.0.0.4 651,642 3,111 1,589
2009-01-26 4.1.0.0 664,163 3,149 238
2009-02-05 4.1.0.2 664,554 3,149 478
2009-02-25 4.1.0.4 664,810 3,150 1,341
2009-03-23 4.2.0.0 680,238 3,210 106

Total 9 5,858,041 27,893 12,226

Table 3. Summary of the 13 analysed releases
of Eclipse (changes are counted from one release to
the next, Eclipse 3.4 is thus excluded).

D
a

te
s

R
e

le
a

se
s Number of

L
O

C

C
la

ss
e

s

C
ha

ng
e

s

2001-11-07 1.0 781,480 4,647 21,553
2002-06-27 2.0 1,249,840 6,742 26,378
2003-06-27 2.1.1 1,797,917 8,730 10,397
2003-11-03 2.1.2 1,799,037 8,732 11,534
2004-03-10 2.1.3 1,799,702 8,736 15,560
2004-06-25 3.0 2,260,165 11,166 11,582
2004-09-16 3.0.1 2,268,058 11,192 24,150
2005-03-11 3.0.2 2,272,852 11,252 49,758
2006-06-29 3.2 3,271,516 15,153 2,745
2006-09-21 3.2.1 3,284,732 15,176 11,854
2007-02-12 3.2.2 3,286,300 15,184 10,682
2007-06-25 3.3 3,752,212 17,162 7,386
2007-09-21 3.3.1 3,756,164 17,167 40,314

Total 13 31,579,975 151,039 243,903

C/C++ code used mainly for widget toolkits. Eclipse has
been developed partly by a commercial company (IBM),
which makes it more likely to embody industrial practices.
Also, it has been used by other researchers in related stud-
ies,e.g., to predict faults [36].

We analysed 9 releases of Azureus, from release 3.1.0.0
to 4.2.0.0, in the years 2008-2009. We tracked the change
history between releases using its Concurrent Versions Sys-
tem (CVS). Characteristics of the analysed releases are
shown in Table 2. We analysed 13 releases of Eclipse avail-
able on the Internet between 2001 and 2008. Table 3 sum-
marises the analysed releases and their key figures. On each

considered release, we apply the 29 current code smell de-
tection algorithms provided by DECOR to obtain the sets of
classes with smells.

4.1 Research Questions

Based on the data collected from Azureus and Eclipse,
our study aims at answering three research questions on
the relationship between code smells and classes change-
proneness,

• RQ1: What is the relation between smells and change
proneness?We investigate whether classes with smells
are more change-prone than others by testing the null
hypothesis:H01: the proportion of classes undergoing
at least one change between two releases does not sig-
nificantly differ between classes with code smells and
other classes.

• RQ2: What is the relation between the number of
smells in a class and its change-proneness?We
are also interested to evaluate whether classes with a
higher number of smells are more change-prone than
others by testing the null hypothesis:H02: the number
of smells in change-prone classes is not significantly
higher than the number of smells in classes that do not
change.

• RQ3: What is the relation between particular kinds
of smells and change proneness?Also, we analyse
whether particular kinds of smells contribute more
than others to changes by testing the null hypothe-
sis: H03: classes with particular kinds of code smells
are not significantly more change-prone than other
classes.

4.2 Variable Selection

We relate the following dependent and independent vari-
ables to test the previous null hypotheses and, thus, answer
the associated research questions.

Independent variables. We have as many independent
variables as kinds of code smells: we investigate the pres-
ence of 29 different kinds of smells. Each variablesi,j,k

4



indicates the number of times a classi has a smellj in a
releaserk. For RQ1, we aggregate these variables into a
Boolean variableSi,k indicating whether a classi has at
least one smell of any kind. For RQ2, we consider the num-
ber of changesci,k a classi to underwent betweenrk and
rk+1, and convertci,k into a Boolean variableCi,k (true if
the class underwent at least one change,falseotherwise).

Dependent variables. The dependent variables measure
the phenomena related to our independent variables. Our
dependent variable for RQ1 and RQ3 is the classchange
proneness, which is measured, as above described, as the
number of changesci,k that a classi underwent between re-
leaserk (in which it has some smells) and the subsequent
releaserk+1. This number of changes is counted as the
number of commits in the CVS. For RQ1 and RQ3, we
are interested to distinguish classes that underwent, between
two releases, at least one change. In RQ2, we compare the
number of smells in change-prone classes with that in non-
change-prone classes, using as dependent variable the total
number of smellssti,k a classi has in a releaserk.

4.3 Analysis Method

In RQ1, to attempt rejectingH01, we test whether the
proportion of classes exhibiting (or not) at least one change,
significantly varies between classes with (some) smells and
other classes. We use Fisher’s exact test [26], which checks
whether a proportion vary between two samples. We also
compute theodds ratio(OR) [26] that indicates the likeli-
hood for an event to occur. The odds ratio is defined as the
ratio of the oddsp of an event occurring in one sample,i.e.,
the odds that classes with some smells underwent a change
(experimental group), to the oddsq of the same event occur-
ring in the other sample,i.e., the odds that classes with no
smell underwent a change (control group):OR = p/(1−p)

q/(1−q) .
An odds ratio of1 indicates that the event is equally likely
in both samples. AnOR greater than1 indicates that the
event is more likely in the first sample (smells), while an
OR less than1 that it is more likely in the second sample.

In RQ2, we use a (non-parametric)Mann-Whitney test to
compare the number of smells in change-prone classes with
the number of smells in non-change-prone classes. Non-
parametric tests do not require any assumption on the un-
derlying distributions. We also test the hypothesis with the
(parametric)t-test. Other than testing the hypothesis, it is
of practical interest to estimate the magnitude of the differ-
ence of the number of smells in classes with and without
changes: we use the Cohend effect size [26], which indi-
cates the magnitude of the effect of a treatment on the de-
pendent variables. The effect size is considered small for
0.2 ≤ d < 0.5, medium for0.5 ≤ d < 0.8 and large for
d ≥ 0.8. For independent samples (to be used in the con-
text of unpaired analyses, as in our case), it is defined as

the difference between the means (M1 andM2), divided by
the pooled standard deviation (σ =

√

(σ2
1 + σ2

2)/2) of both
groups:d = (M1 − M2)/σ.

In RQ3, we use a logistic regression model [16], simi-
larly to Vokac’s study [31] to relate change-proneness with
the presence of particular kinds of smells. In a logistic
regression model, the dependent variable is commonly a
dichotomous variable and, thus, assumes only two values
{0, 1}, e.g., changed or not. The multivariate logistic re-
gression model is based on the formula:

π(X1, X2, . . . , Xn) =
eβ0+β1·X1+...+βn·Xn

1 + eβ0+β1·X1+...+βn·Xn

where (i) Xj are characteristics describing the modelled
phenomenon, in our case the number of smells of kindj
a class contains,i.e., si,j,k when the model is applied to the
classi of releaserk

3; (ii) βj are the model coefficients; and
(iii) 0 ≤ π ≤ 1 is a value on the logistic regression curve.
The closer the value is to1, the higher is the likelihood that
the class undergoes a change.

While in other contexts (e.g., [15]), logistic regression
models were used for prediction purposes; as in [31], we
use such models as an alternative to the Analysis Of Vari-
ance (ANOVA) for dichotomous dependent variables. This
is to say that we use logistic regression to rejectH03. Then,
for each smell and for the 9 analysed Azureus releases and
for the 13 Eclipse releases, we count the number of times
that thep-values obtained by the logistic regression were
significant. It is also important to highlight that the proce-
dure for building the logistic regression model discards vari-
ables that are highly correlated to others (i.e., it only selects
one variable)—that can happen between some smells—thus
only selects a non-redundant set of features (smells) useful
to warn against classes change-proneness.

5 Study Results

We now report the results of our study to address the
research questions. We discuss these results in the following
Section 6.

5.1 RQ1: Smells and Change Proneness

Tables 4 and 5 report, for each analysed release of
Azureus and Eclipse, the number of classes (1) with smells
and that changed; (2) with smells but that did not change;
(3) without smells but with changes; and, (4) without smells
nor changes. The tables also report the result of Fisher’s ex-
act test andORs when testingH01.

Results for Azureus in Table 4 show that theORs are
very high (always greater than 3); in most cases the odds

3for simplicity we omiti andk from the formula.

5



Table 4. Azureus: contingency table and
Fisher test results for classes with at least
one smell that underwent at least one change.

Releases S
m

e
lls

-C
ha

ng
e

s

S
m

e
lls

-N
o

C
ha

ng
e

s

N
o

S
m

e
lls

-C
ha

ng
e

s

N
o

S
m

e
lls

-N
o

C
ha

ng
e

s
p-values OR

3.1.0.0 220 1967 20 1433 < 0.01 8.01
3.1.1.0 564 1686 101 1381 < 0.01 4.57
4.0.0.0 83 2238 7 1519 < 0.01 8.05
4.0.0.2 106 2206 12 1510 < 0.01 6.04
4.0.0.4 435 1886 39 1484 < 0.01 8.77
4.1.0.0 50 2297 11 1533 < 0.01 3.03
4.1.0.2 112 2235 11 1533 < 0.01 6.98
4.1.0.4 112 2236 12 1532 < 0.01 6.39
4.2.0.0 37 2353 3 1580 < 0.01 8.28

Table 5. Eclipse: contingency table and
Fisher test results for classes with at least
one smell that underwent at least one change.

Releases S
m

e
lls

-C
ha

ng
e

s

S
m

e
lls

-N
o

C
ha

ng
e

s

N
o

S
m

e
lls

-C
ha

ng
e

s

N
o

S
m

e
lls

-N
o

C
ha

ng
e

s

p-values OR
1.0 2042 1731 417 448 < 0.01 1.27
2.0 3673 1373 767 236 0.02 0.82
2.1.1 2224 3838 193 964 < 0.01 2.89
2.1.2 2400 3664 359 798 < 0.01 1.46
2.1.3 2942 3125 516 642 0.01 1.17
3.0 3415 4880 684 1032 0.32 1.06
3.0.1 6216 2087 1294 423 0.69 0.97
3.0.2 5784 2520 1194 524 0.91 1.01
3.2 1819 9621 115 2210 < 0.01 3.63
3.2.1 2778 8680 291 2038 < 0.01 2.24
3.2.2 3321 8144 409 1921 < 0.01 1.92
3.3 1778 10844 145 2364 < 0.01 2.67
3.3.1 4337 8290 682 1830 < 0.01 1.40

for classes with smells to change is six times higher or more
than for classes without smells.H01 rejection and theORs
providea posterioriconcrete evidence of the negative im-
pact of smells on change-proneness. Developers should be
wary of classes with smells, because they are more likely to
be the subject of their maintenance effort. For Eclipse, ex-
cept for the 3.0 release series, proportions are significantly
different, thus allowing to rejectH01. There is a greater
proportion of classes with smells that change with respect
to other classes. In some cases (e.g., releases 1.0, 2.0, 2.1.2,
2.1.3, and the 3.0 release series),ORs are close to 1,i.e.,
the odds is even that a class with a smell changes or not. In
the other releases, the odds of changing are 2 to 3.6 times in
favour of classes with smells. We conclude that the odds to
change are in general higher for classes with smells.

Table 6. Azureus: Mann-Whitney and t-test
results for number of smells in classes that
are change-prone or not.

Releases M-W t-test Cohen
p p d

3.1.0.0 < 0.01 < 0.01 0.72
3.1.1.0 < 0.01 < 0.01 0.71
4.0.0.0 < 0.01 < 0.01 1.01
4.0.0.2 < 0.01 < 0.01 0.86
4.0.0.4 < 0.01 < 0.01 0.83
4.1.0.0 < 0.01 < 0.01 0.59
4.1.0.2 < 0.01 < 0.01 0.93
4.1.0.4 < 0.01 < 0.01 0.85
4.2.0.0 < 0.01 < 0.01 1.02

Table 7. Eclipse: Mann-Whitney and t-test re-
sults for number of smells in classes that are
change-prone or not.

Releases M-W t-test Cohen
p p d

1.0 0.79 0.03 0.06
2.0 < 0.01 < 0.01 −0.08
2.1.1 < 0.01 < 0.01 0.31
2.1.2 < 0.01 < 0.01 0.13
2.1.3 0.04 < 0.01 0.07
3.0 0.07 0.10 0.03
3.0.1 0.11 0.26 −0.03
3.0.2 0.12 0.28 −0.02
3.2 < 0.01 < 0.01 0.41
3.2.1 < 0.01 < 0.01 0.29
3.2.2 < 0.01 < 0.01 0.25
3.3 < 0.01 < 0.01 0.41
3.3.1 < 0.01 < 0.01 0.18

5.2 RQ2: Number of Smells and Change Prone-
ness

Tables 6 and 7 report, for Azureus and Eclipse respec-
tively, results of the Mann-Whitney two-tailed test,t-test,
and Cohend effect size, aimed at comparing the number of
code smells in classes that changed or not. For Azureus,
thep-values are always significant with a high effect size,
indicating that for all the analysed releases change-prone
classes are those with a higher number of smells. For
Eclipse, results are significant (although with a small ef-
fect size), except for the 3.0 release series, where differ-
ences are not significant, thus confirming the findings from
RQ1 regarding the limited relation of smells with change-
proneness for this release series. In summary we can reject
H02.

5.3 RQ3: Kinds of Smells and Change Proneness

Tables 8 and 9 show the results of the logistic regression
for the correlations between changes and the different kinds
of code smells. In particular, the tables summarise the num-

6



Table 8. Azureus: number of significant p-
values in the 9 analysed releases obtained
by logistic regression for the correlations
between change-proneness and kinds of
smells. Boldface indicates significant p-
values for at least 75% of the releases.

Smells Proneness to
Changes

AbstractClass 5
ChildClass 3
ClassGlobalVariable 2
ClassOneMethod 1
ComplexClassOnly 2
ControllerClass 2
DataClass 4
FewMethods 2
FieldPrivate 1
FieldPublic 2
FunctionClass 2
HasChildren 1
LargeClass 5
LargeClassOnly –
LongMethod –
LongParameterListClass 1
LowCohesionOnly 2
ManyAttributes –
MessageChainsClass 4
MethodNoParameter 2
MultipleInterface 4
NoInheritance 3
NoPolymorphism 3
NotAbstract 7
NotComplex 2
OneChildClass 1
ParentClassProvidesProtected–
RareOverriding 1
TwoInheritance –

ber of analysed releases for which each kind of smells was
significant in the logistic regression model. Smells that are
significant for at least 75% of the releases (7 for Azureus, 10
for Eclipse) are highlighted in boldface. Detailed resultsof
the logistic regression are in a longer technical report [17].
In Azureus, only the smell NotAbstract has a significant im-
pact on change proneness in more than 75% of releases. Ab-
stractClass and LargeClass resulted to be significant in more
than 50% of the releases (5 out of 9). In Eclipse, the smells
that have a significant effect on change-proneness for 75%
of the releases or more are HasChildren, MessageChain-
sClass, and NotComplex. In summary, although results
sometimes depend on the particular context—e.g., system
analysed and particular release—we can rejectH03, i.e.,
there are smells that are more related to others to change-
proneness.

As discussed in Section 4, the logistic regression proce-
dure has pruned out from the model smells that are signifi-
cantly correlated to others, initially inserted in the model as
their definition in terms of metrics was different. We also
performed a Spearman rank correlation analysis and identi-
fied pairs of smells that had a significant and high (>0.8)
correlation. Such correlations were consistent in all the
analysed releases of Azureus and Eclipse (see [17]). It is

Table 9. Eclipse: number of significant p-
values in the 13 analysed releases obtained
by logistic regression for the correlations
between change-proneness and kinds of
smells. Boldface indicates significant p-
values for at least 75% of the releases.

Smells Proneness to
Changes

AbstractClass 1
ChildClass 6
ClassGlobalVariable 2
ClassOneMethod 4
ComplexClassOnly 8
ControllerClass 4
DataClass 4
FewMethods 2
FieldPrivate 6
FieldPublic 8
FunctionClass 1
HasChildren 11
LargeClass 8
LargeClassOnly –
LongMethod 9
LongParameterListClass 6
LowCohesionOnly 5
ManyAttributes 9
MessageChainsClass 10
MethodNoParameter 8
MultipleInterface 5
NoInheritance –
NoPolymorphism 3
NotAbstract 1
NotComplex 10
OneChildClass 2
ParentClassProvidesProtected–
RareOverriding 4
TwoInheritance –

the case, for both Azureus and Eclipse, of LargeClass and
LargeClassOnly, and, for Azureus, of NotAbstract and Par-
entClassProvidesProtected, and of RareOverriding and Par-
entClassProvidesProtected. In all these cases, the logistic
regression discarded the second smell in the pair.

6 Discussion

This section discusses results reported in Section 5,
along with threats to validity.

From Tables 4 and 5, it can be noticed that large propor-
tions of classes in each release of both Azureus and Eclipse
are with smells. This fact is not surprising because we used
29 code smell detection algorithms, which cover almost
all aspects of the implementation and–or design of classes.
Moreover, we do not consider that a class with a smell is
necessarily the result of a “bad” implementation or design
choice; only the concerned developers could make such a
judgement. We do not exclude that, in a particular context,
a code smell can be the best way to actually implement and–
or design a (part of a) class. For example, automatically-
generated parsers are often very large and complex classes.
Only developers can evaluate their impact according to the
context: it may be perfectly sensible to have these large and

7



complex classes if they come from a well-defined grammar.
In the following we discuss in details results for the two

systems, Azureus and Eclipse.

6.1 Azureus

Classes with smells are more change-prone than those
without smells in all the 9 releases of Azureus, and this
with high odds ratios (3 to 8 times in favour of classes with
smells). Moreover, the likelihood of change increases with
the increase of the number of code smells in a class, un-
derscoring the fact that code smells are costly and therefore
should be detected and removed as early as possible dur-
ing the development of a system. Across the 9 releases of
Azureus, three particular kinds of code smells lead almost
consistently to change-prone classes: the result for NotAb-
stract is statistically significant for 7 out of 9 releases, while
AbstractClass and LargeClass results are statistically signif-
icant for 5 releases. By observing the presence of smells
across releases, we found that, in each release, existing
smells are generally removed from the system while some
new are introduced in the context of new features addition.
This explains why some smells are not visible in some re-
leases, and that the logistic regression indicated some smells
statistically significant only for some releases of Azureus.
Finally, we found that smells often related to immature de-
sign and implementation (lack of use of abstraction, of poly-
morphism, etc.) often occur in the first releases, when de-
velopers might not have an idea of the future system size
yet. This is the case for example of the smells NoInheri-
tance, NoPolymorphism, and NotComplex.

Going to smells that are significantly correlated to
changes in most of the releases, the NotAbstract smell gen-
erally occurs when a developer does not properly use ab-
straction to simplify her code. Given the extensive use
of inheritance in Azureus, it is not surprising that parts of
its design could be improved by abstracting some classes,
because they may be the root of some important hierar-
chies. The second frequent code smell (AbstractClass) oc-
curs when a class contains generic or abstract code not used
at the time when it is introduced. Such code often exists
in the system to support future pieces of functionality. It is
not surprising that such a code smell is found in Azureus,
since it is a common mistake developers make when us-
ing object-orientation [28]. Finally, the third frequent code
smell (LargeClass), is a class that “is trying to do too much”.
Thus, it does not follow the good practice of divide-and-
conquer,i.e., decomposing a complex problem into smaller
problems. Yet, some problems are not easily decompos-
able or, because of strong requirements imposed on the ef-
ficiency, decomposition might just constitute an overhead.
Again, this is the case of Azureus, where complex algo-
rithms are implemented, and where the efficiency (being it

a network system) is a crucial issue.

6.2 Eclipse

Classes with smells (and, in particular, those with a
higher number of smells) are more change-prone than oth-
ers except in Eclipse 2.0 and in the Eclipse 3.0 series (in-
cluding 3.0.1 and 3.0.2). We explain this by studying the
release notes of Eclipse 2.0 and 3.0. For example, in the
“New and Noteworthy” file coming along Eclipse 3.04 are
described the many changes made to the system, includ-
ing a new Rich Client Platform, new OSGi implementation,
new look-and-feel, and so on. Similarly, but to a smaller
extent, Eclipse 2.0, was a major advancement with respect
to the Eclipse 1.0 series. Consequently, it is not surprising
that many classes changed or were added, thus explaining
the discrepancies in results for different releases. In sum-
mary, in releases such as the 3.0 series when a radical en-
hancement of the system was made in terms of new features,
changes were not really related to smells.

Across the 13 Eclipse releases, three particular kinds
of code smells lead to change-prone classes: HasChildren,
MessageChainsClass, and NotComplex. The first, HasChil-
dren, describes classes with many children. Given the
extensive use of inheritance, and the frequent changes of
class hierarchies in Eclipse (as it was previously found for
Eclipse-JDT in particular [2]), it is not surprising that many
classes have subclasses. The second, MessageChainsClass,
characterises classes that use long message chains to per-
form their functionality. This makes the code dependent on
relationships between potentially unrelated objects. Again,
finding many classes with this smell is not surprising in a
system with thousands of collaborating classes, known for
its rich API. Finally, the third code smell, NotComplex, can
also be explained by the extensive object-orientation, lead-
ing to many classes performing “atomic” functionality, with
little complexityper se.

6.3 Threats to Validity

We now discuss the threats to validity of our study fol-
lowing the guidelines provided for case study research [35].

Construct validitythreats concern the relation between
theory and observation; in our context, they are mainly
due to errors introduced in measurements. The count of
changes occurred to classes is based on the CVS change
log. In this context, we are just interested to check whether
a class changes or not, rather than quantifying the amount
of change, which is however possible and could be investi-
gate in future work. Also, we are aware that the detection
technique used includes our subjective understanding of the

4http://archive.eclipse.org/eclipse/downloads/
drops/R-3.0-200406251208/eclipse-news-R3.html

8



smell definitions, as discussed in Section 3. However, as
discussed, we are interested to relate smells “as they are de-
fined in DECOR” [23] with change-proneness. For this rea-
son, smell detection imprecision does not affect our study.
Finally, we are aware that smells can be dependent each
other. However, we relied on the logistic regression model
building procedure to select the subset of non-correlated
smells. In addition, we also performed a Spearman rank
correlation analysis to identify highly-correlated smells—
actually discarded by the logistic regression— as discussed
in Section 5.

Threats tointernal validity do not affect this particular
study, being an exploratory study [35]. Thus, we cannot
claim causation, but just relate the presence of smells with
the occurrences of changes, although our discussion tries
to explain why some smells could have been the cause of
changes.

Conclusion validitythreats concern the relation between
the treatment and the outcome. We paid attention not to
violate assumptions of the statistical tests that we used (we
mainly used non-parametric tests).

Reliability validity threats concern the possibility of
replicating this study. We attempted here to provide all
the necessary details to replicate our study. Moreover, both
Eclipse and Azureus source code repositories are available
to obtain the same data. Finally, the data set on which our
statistics have been computed is available on the Web5.

Threats toexternal validityconcern the possibility to
generalise our findings. First, we are aware that our study
has been performed on two systems, Eclipse and Azureus,
thus generalisation will require further case studies. How-
ever, we limited such a threat by choosing two different sys-
tems, belonging to different domains, and studied a reason-
ably long history of both—spanning 9 releases for Azureus
and 13 releases for Eclipse. Second, we used a particu-
lar yet representative set of smells. Different smells could
have lead to different results and should be studied in future
work. However, within its limits, our results confirm the
conjecture in the literature.

7 Conclusions and Future Work

In this paper, we reported an exploratory study, per-
formed on 9 releases of Azureus and 13 releases of Eclipse,
which provides empirical evidence of the negative impact of
code smells on classes change-proneness. We showed that
classes with smells are significantly more likely to be the
subject of changes, than other classes. We also showed that
some specific code smells, are more likely to be of concern
during evolution.

5http://www.ptidej.net/downloads/experiments/
prop-WCRE09

This exploratory study supports, within the limits of the
threats to its validity, the conjecture in the literature that
smells may have a negative impact on software evolution.
We justify a posterioriprevious work on smells, and pro-
vide a basis for future research to understand precisely the
root causes of their negative impact. The study also pro-
vides evidence to practitioners that they should pay more
attention to systems with a high prevalence of smells during
development and maintenance. Indeed, systems containing
a high number of smells are likely to be more change prone:
therefore, the cost-of-ownership of such systems will be
higher than for other systems, because developers will have
to put more effort.

Although previous studies correlated source code met-
rics with change-proneness, we believe that smells can pro-
vide to developers recommendations easier to understand
than what metric profiles can do. In fact, smells are de-
fined in terms of thresholds on metrics, thus they can tell
whether some metric values are becoming critical or not,
while in the absence of thresholds, such a decision is left to
the developer, who might lack of skills and experiences to
do judge. On the other hand, it must be clear that smells are
not replacement to metrics in the ability of building change-
proneness or fault-proneness prediction models.

Future work includes (i) replicating this study on other
systems to assess the generality of our results; (ii) study-
ing the effect of antipatterns,i.e., problems at a higher level
of abstraction than smells, and (iii), relating smells and an-
tipatterns not only to change-proneness, but also to other
phenomena such as the fault-proneness.

Data. All data as well as a technical report with more de-
tailed results are available on the Web1.

Acknowledgements.This work has been partly funded by
the Canada Research Chair on Software Patterns and Pat-
terns of Software.

References

[1] E. H. Alikacem and H. Sahraoui. Generic metric extraction
framework. InProceedings of the16th International Work-
shop on Software Measurement and Metrik Kongress (IWS-
M/MetriKon), pages 383–390, 2006.

[2] L. Aversano, G. Canfora, L. Cerulo, C. Del Grosso, and M. Di
Penta. An empirical study on the evolution of design patterns.
In proceedings of ESEC-FSE ’07, pages 385–394, New York,
NY, USA, 2007. ACM Press.

[3] V. R. Basili, L. C. Briand, and W. L. Melo. A validation
of object-oriented design metrics as quality indicators.IEEE
Trans. Software Eng., 22(10):751–761, 1996.

[4] J. M. Bieman, G. Straw, H. Wang, P. W. Munger, and R. T.
Alexander. Design patterns and change proneness: An exam-
ination of five evolving systems. In9th International Soft-

9



ware Metrics Symposium (METRICS’03), pages 40–49. IEEE
Computer Society, 2003.

[5] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick
III, and T. J. Mowbray.Anti Patterns: Refactoring Software,
Architectures, and Projects in Crisis. John Wiley and Sons,
1

st edition, March 1998.
[6] M. Cartwright and M. Shepperd. An empirical investigation

of an object-oriented software system.IEEE Trans. on Soft-
ware Engineering, 26(8):786–796, August 2000.

[7] S. R. Chidamber and C. F. Kemerer. A metrics suite for ob-
ject oriented design.IEEE Trans. on Software Engineering,
20(6):476–493, June 1994.

[8] J. O. Coplien. Advanced C++ Programming Styles and Id-
ioms. Addison-Wesley,1st edition, August 1991.

[9] K. Dhambri, H. Sahraoui, and P. Poulin. Visual detectionof
design anomalies. InProceedings of the12th European Con-
ference on Software Maintenance and Reengineering, Tam-
pere, Finland, pages 279–283. IEEE CS, April 2008.

[10] M. Di Penta, Luigi Cerulo, Y.-G. Guéhéneuc, and G. An-
toniol. An empirical study of the relationships between de-
sign pattern roles and class change proneness. In H. Mei and
K. Wong, editors,Proceedings of the24th International Con-
ference on Software Maintenance (ICSM). IEEE Computer
Society Press, September–October 2008.

[11] K. E. Emam, S. Benlarbi, N. Goel, and S. Rai. The con-
founding effect of class size on the validity of object-oriented
metrics. IEEE Trans. on Software Engineering, 27(7):630–
650, July 2001.

[12] M. Fowler. Refactoring – Improving the Design of Existing
Code. Addison-Wesley,1st edition, June 1999.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley,1st edition, 1994.

[14] Y.-G. Guéhéneuc and G. Antoniol. DeMIMA: A multi-
layered framework for design pattern identification.Trans-
actions on Software Engineering (TSE), 34(5):667–684,
September 2008. 18 pages.

[15] T. Gyimóthy, R. Ferenc, and I. Siket. Empirical valida-
tion of object-oriented metrics on open source software for
fault prediction.IEEE Transaction on Software Engineering,
31(10):897–910, 2005.

[16] D. Hosmer and S. Lemeshow.Applied Logistic Regression
(2nd Edition). Wiley, 2000.

[17] F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc.
An exploratory study of the impactof code smells
on software change-proneness. Technical report,
http://www.ptidej.net/downloads/experiments/
prop-WCRE09/, June 2009.

[18] F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol. Playing
roles in design patterns: An empirical descriptive and analytic
study. In K. Kontogiannis and T. Xie, editors,Proceedings of
the25

th International Conference on Software Maintenance
(ICSM). IEEE Computer Society Press, September 2009.

[19] G. Langelier, H. A. Sahraoui, and P. Poulin. Visualization-
based analysis of quality for large-scale software systems. In
proceedings of the20t

h international conference on Auto-
mated Software Engineering. ACM Press, Nov 2005.

[20] M. Lanza and R. Marinescu.Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

[21] M. Mantyla. Bad Smells in Software - a Taxonomy and an
Empirical Study.PhD thesis, Helsinki University of Technol-
ogy, 2003.

[22] R. Marinescu. Detection strategies: Metrics-based rules for
detecting design flaws. InProceedings of the20th Interna-
tional Conference on Software Maintenance, pages 350–359.
IEEE Computer Society Press, 2004.

[23] N. Moha, Y.-G. Guéhéneuc, L. Duchien, , and A.-F. Le Meur.
DECOR: A method for the specification and detection of code
and design smells.IEEE Transactions on Software Engineer-
ing, To appear.

[24] M. J. Munro. Product metrics for automatic identification of
“bad smell” design problems in java source-code. In F. Lanu-
bile and C. Seaman, editors,Proceedings of the11th Interna-
tional Software Metrics Symposium. IEEE Computer Society
Press, September 2005.

[25] A. J. Riel. Object-Oriented Design Heuristics. Addison-
Wesley, 1996.

[26] D. Sheskin. Handbook of Parametric and Nonparametric
Statistical Procedures (fourth edition). Chapman & All, 2007.

[27] F. Simon, F. Steinbrückner, and C. Lewerentz. Metricsbased
refactoring. InProceedings of the Fifth European Conference
on Software Maintenance and Reengineering (CSMR’01),
page 30, Washington, DC, USA, 2001. IEEE Computer So-
ciety.

[28] N. A. Solter and S. J. Kleper.Professional C++. Wiley
Publishing, Inc, 10475 Crosspoint Boulevard, Indianapolis,
IN 46256, 2005.

[29] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili.De-
tecting defects in object-oriented designs: using readingtech-
niques to increase software quality. InProceedings of the14th

Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 47–56. ACM Press, 1999.

[30] E. van Emden and L. Moonen. Java quality assurance by de-
tecting code smells. InProceedings of the 9th Working Con-
ference on Reverse Engineering (WCRE’02). IEEE Computer
Society Press, Oct. 2002.

[31] M. Vokac. Defect frequency and design patterns: An empir-
ical study of industrial code. pages 904 – 917, Dec. 2004.

[32] W. C. Wake.Refactoring Workbook. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2003.

[33] B. F. Webster.Pitfalls of Object Oriented Development. M
& T Books,1st edition, February 1995.

[34] P. Wendorff. Assessment of design patterns during soft-
ware reengineering: Lessons learned from a large commer-
cial project. In P. Sousa and J. Ebert, editors,Proceedings of
5

th Conference on Software Maintenance and Reengineering,
pages 77–84. IEEE Computer Society Press, March 2001.

[35] R. K. Yin. Case Study Research: Design and Methods -
Third Edition. SAGE Publications, London, 2002.

[36] T. Zimmermann, R. Premraj, and A. Zeller. Predicting de-
fects for Eclipse. InProceedings of the3rd ICSE Interna-
tional Workshop on Predictor Models in Software Engineer-
ing. IEEE Computer Society, 2007.

10



A Detailled Definitions of the Design Smells

In this study we focused on the following code smells:

AbstractClass: This code smell is characteristic of the Speculative Generality Antipattern. This odor exists when we have generic or abstract code that isn’t actually needed
today. Such code often exists to support future behavior, which may or may not be necessary in the future.

ChildClass: This code smell occurs when the number of methods declared ina class and the number of it’s declared attributes is very high. It is a symptom of poor object
decomposition. The public interface of the class differinggreatly from the one of its super-class. This code smell characterises the Tradition Breaker antippatern.

ClassGlobalVariable: This code smell occurs when a class declares public class variable that are used as “global variable” in procedural programming.

ClassOneMethod: This code smell occurs when a class has only one method.

ComplexClassOnly: This code smell is present when a class both declares many fields and methods and which methods realise complex treatments, using many if and switch
instructions. Such a class is probably providing lots of services while being difficult to maintain and fragile due to itscomplexity.

ControllerClass: This odor is present when a class monopolises most of the processing done by a system, takes most of the decisions, and closely directs the processing of
other classes.

DataClass: This code smell is present when a class contains only data andperforms no processing on these data. It is composed of highly cohesive fields and accessors.

FewMethod: This code smell characterise Lazy classes that declare few methods.

FieldPrivate: This code smell is present when many private fields are declared. It’s generally symptomatic of the Functional Decomposition antipattern.

FieldPublic: This code smell is symptomatic of the Class Data Should Be Private antippatern. It occurs when the data encapsulated by a class is public, thus allowing client
classes to change this data without the knowledge of the declaring class.

FunctionClass: This code smell occurs when we have a main class, i.e., a classwith a procedural name, such as Compute or Display. It is symptomatic of the Functional
Decomposition antipattern.

HasChildren: This code smell describes classes with many children.

LargeClass: This odor concerns classes that are trying to do too much. These classes do not follow the good practice of divide-and-conquer which consists of decomposing a
complex problem into smaller problems. These classes also have low cohesion.

LargeClassOnly: This code smell concerns classes with a very high number of attributes and/or methods defined.

LongMethod: This odor is a method with a high number of lines of code. A lot of variables and parameters are used. Generally, this kind ofmethod does more than its name
suggests it.

LongParameterListClass: This odor corresponds to a method with high number of parameters. This smell occurs when the method has more than four parameters. Long lists
of parameters in a method, though common in procedural code,are difficult to understand and likely to be volatile.

LowCohesionOnly: This code smell characterises the lack of cohesion in a class.

ManyAttributes: This code smell occurs when the number of attributes declared in a class is too high.

MessageChainsClass: This code smell is present when you see a long sequence of method calls or temporary variables to get some data. This chain makes the code dependent
on the relationships between many potentially unrelated objects.

MethodNoParameter: This code smell occurs when a class declares methods with no parameter.

MultipleInterface: This code smell occurs when a class implements a high number of interfaces. It is generally symptomatic of the Swiss Army Knife antipattern.

NoInheritance: This odor is present when inheritance is scarcely used.

NoPolymorphism: This odor is present when polymorphism is scarcely used.

NotAbstract: This odor occurs when a developer haven’t yet seen how a higher-level abstraction can clarify or simplify his code.

NotClassGlobalVariable: This odor manifest itself in the anipattern Anti-Singletonwhen a class declares public class variable that are used as “global variable” in procedural
programming. It reveals procedural thinking in object-oriented programming and may increase the difficulty to maintain the program.

NotComplex: This code smell characterises classes performing “atomic”functionality, with little complexity.

OneChildClass: This code smell occurs when a class does not have child class.

ParentClassProvidesProtected: This code smell occurs when a subclass does not use attributes and/or methods protected inherited by a parent.

RareOverriding: This code smell occurs when a class rarely overrides inherited attributes and/or methods.

TwoInheritance: This odor characterises a hierarchy with a depth greater than two.

11



B Correlation between smells

Table 10. Correlation between smells (the table indicates t he number of releases for which the
Spearman rank correlation is higher than 0.8)

Smell 1 Smell 2 Releases
AZUREUS

ParentClassProvidesProtectedDetectionParentClassProvidesProtectedNotAbstractNotAbstract 9
NotClassGlobalVariableNotClassGlobalVariable ClassGlobalVariableClassGlobalVariable 9
RareOverridingDetectionRareOverriding NotAbstractNotAbstract 9
RareOverridingDetectionRareOverriding ParentClassProvidesProtectedDetectionParentClassProvidesProtected 9

ECLIPSE

NotClassGlobalVariableNotClassGlobalVariable ClassGlobalVariableClassGlobalVariable 13

12



C Detailled Number of Code Smells per Releases

Smells Number of Smells per Azureus Release
3.1.0.0 3.1.1.0 4.0.0.0 4.0.0.2 4.0.0.4 4.1.0.0 4.1.0.2 4.1.0.4 4.2.0.0

AbstractClassAbstractClass 111 116 116 115 116 119 119 119 125
ChildClassDetectionChildClass 581 601 589 586 588 575 575 576 581

ClassGlobalVariableClassGlobalVariable 247 250 158 159 158 157 156 157 159
ClassOneMethodClassOneMethod 378 389 418 413 410 330 330 330 353

ComplexClassOnlyDetectionComplexClassOnly 308 310 303 303 303 310 310 310 318
ControllerClassDetectionControllerClass 262 262 273 273 273 278 278 278 292

DataClassDataClass 489 480 488 488 492 493 493 493 497
FewMethodsDetectionFewMethods 303 304 284 284 289 229 229 229 233

FieldPrivateFieldPrivate 769 811 769 766 772 788 788 788 801
FieldPublicFieldPublic 249 261 283 282 282 283 282 283 285

FunctionClassDetectionFunctionClass 13 13 14 14 14 14 14 14 14
HasChildrenDetectionHasChildren 203 211 221 220 221 223 223 223 223

LargeClassDetectionLargeClass 167 170 178 177 177 187 187 187 191
LargeClassOnlyDetectionLargeClassOnly 167 170 178 177 177 187 187 187 191

LongMethodClassDetectionLongMethodClass 449 456 481 481 479 482 481 482 491
LongMethodDetectionLongMethod 322 335 344 344 350 352 352 352 358

LongParameterListClassDetectionLongParameterListClass 271 276 285 285 285 289 289 289 294
LowCohesionDetectionLowCohesion 18 19 25 21 21 69 69 69 69

LowCohesionOnlyDetectionLowCohesionOnly 18 19 25 21 21 69 69 69 69
ManyAttributesDetectionManyAttributes 206 211 224 223 223 229 229 229 230

MessageChainsClassDetectionMessageChainsClass 663 752 791 787 780 828 828 829 843
MethodNoParameterDetectionMethodNoParameter 83 79 81 82 82 76 76 76 79

MultipleInterfaceMultipleInterface 57 55 64 64 64 65 65 65 67
NoInheritanceDetectionNoInheritance 1380 1379 1407 1404 1413 1434 1434 1435 1475

NoPolymorphismNoPolymorphism 1719 1756 1811 1798 1805 1828 1828 1828 1866
NotAbstractNotAbstract 2096 2158 2242 2229 2236 2259 2259 2260 2300

NotClassGlobalVariableNotClassGlobalVariable 247 250 158 159 158 157 156 157 159
NotComplexClassDetectionNotComplexClass 1260 1277 1352 1338 1341 1354 1354 1354 1390

NotComplexDetectionNotComplex 891 889 940 930 932 941 941 942 972
OneChildClassDetectionOneChildClass 87 89 98 98 98 101 101 101 99

ParentClassProvidesProtectedDetectionParentClassProvidesProtected2207 2274 2358 2344 2352 2378 2378 2379 2425
RareOverridingDetectionRareOverriding 2034 2100 2180 2166 2170 2205 2205 2206 2247
TwoInheritanceDetectionTwoInheritance 827 895 951 940 939 944 944 944 950

TOTAL 19082 19617 20089 19971 20021 20233 20229 20240 20646

Table 11. Summary of the numbers of smells in the analysed rel eases of Azureus.

13



D Detailled Logistic Regression Results

This appendix provides tables with more details on the results of applying logistic regression for the correlations between changes and kinds of smells.

14



Smells Number of Smells per Eclipse Release
1.0 2.0 2.1.1 2.1.2 2.1.3 3.0 3.0.1 3.0.2 3.2 3.2.1 3.2.2 3.3 3.3.1

AbstractClassAbstractClass 370 487 539 539 539 772 772 772 1141 1141 1143 1284 1284
ChildClassDetectionChildClass 949 1233 1468 1467 1468 2055 2056 2057 2955 2957 2959 3352 3358

ClassGlobalVariableClassGlobalVariable 330 478 615 617 618 975 980 980 1605 1613 1613 1842 1843
ClassOneMethodClassOneMethod 301 453 557 557 557 769 768 768 1031 1031 1030 1161 1162

ComplexClassOnlyDetectionComplexClassOnly 460 614 716 719 719 1007 1004 1001 1517 1516 1514 1854 1856
ComplexClassComplexClassOnly 56 0 0 0 0 0 0 0 0 0 0 0 0

ComplexClassLargeClassOnly 28 0 0 0 0 0 0 0 0 0 0 0 0
ControllerClassDetectionControllerClass 234 214 282 282 282 491 493 493 683 683 684 816 816

DataClassDataClass 733 945 1113 1114 1115 1652 1651 1650 2276 2280 2285 2485 2486
FewMethodsDetectionFewMethods 238 299 416 416 416 493 483 483 614 616 614 665 666

FieldPrivateFieldPrivate 1162 1934 2414 2414 2414 3133 3142 3144 4315 4326 4331 4702 4709
FieldPublicFieldPublic 382 412 448 450 454 1466 1470 1470 2196 2197 2198 2396 2400

FunctionClassDetectionFunctionClass 51 68 73 73 73 87 87 87 170 170 170 196 196
HasChildrenDetectionHasChildren 631 857 936 936 936 1232 1233 1232 1768 1768 1770 1964 1964

LargeClassDetectionLargeClass 218 326 391 392 393 571 569 569 915 918 918 1041 1041
LargeClassOnlyDetectionLargeClassOnly 218 326 391 392 393 571 569 569 915 918 918 1041 1041

LongMethodClassDetectionLongMethodClass 958 1336 1611 1610 1612 2154 2157 2159 3026 3029 3029 3568 3577
LongMethodDetectionLongMethod 680 920 1122 1121 1116 1495 1495 1497 2147 2143 2144 2497 2506

LongParameterListClassDetectionLongParameterListClass 324 598 693 694 695 979 980 981 1130 1134 1136 1339 1341
LowCohesionDetectionLowCohesion 59 95 114 114 114 148 152 152 151 151 154 155 155

LowCohesionOnlyDetectionLowCohesionOnly 59 95 114 114 114 148 152 152 151 151 154 155 155
ManyAttributesDetectionManyAttributes 369 420 518 519 519 664 665 665 1003 1009 1010 1127 1128

MessageChainsClassDetectionMessageChainsClass 1043 1438 1558 1558 1559 1803 1816 1815 2673 2693 2694 3038 3041
MethodNoParameterDetectionMethodNoParameter 180 209 236 237 237 361 362 362 667 670 673 758 758

MultipleInterfaceMultipleInterface 67 43 38 38 38 68 68 68 93 94 95 111 112
NoInheritanceDetectionNoInheritance 1884 2443 3213 3215 3217 4725 4732 4733 6305 6319 6321 6876 6881

NoPolymorphismNoPolymorphism 3027 4022 4786 4787 4787 6575 6581 6582 9096 9108 9113 10052 10053
NotAbstractNotAbstract 3411 4567 5533 5535 5538 7534 7542 7543 10311 10329 10334 11359 11364

NotClassGlobalVariableNotClassGlobalVariable 330 478 615 617 618 975 980 980 1605 1613 1613 1842 1843
NotComplexClassDetectionNotComplexClass 2048 2699 3231 3232 3232 4337 4321 4320 5783 5791 5802 6216 6211

NotComplexDetectionNotComplex 1236 1592 1907 1908 1909 2605 2597 2597 3449 3452 3459 3734 3731
OneChildClassDetectionOneChildClass 237 333 371 371 371 493 494 493 735 735 735 834 834

ParentClassProvidesProtectedDetectionParentClassProvidesProtected3781 5054 6072 6074 6077 8306 8314 8315 11452 11470 11477 12642 12647
RareOverridingDetectionRareOverriding 2114 2974 3716 3714 3718 5815 5821 5825 8302 8314 8320 9272 9275
TwoInheritanceDetectionTwoInheritance 1899 2616 2865 2865 2866 3587 3588 3588 5166 5170 5175 5801 5802

TOTAL 30067 40578 48672 48691 48714 68046 68094 68102 95346 95509 95585 106175 106236

Table 12. Summary of the numbers of smells in the analysed rel eases of Eclipse.

1
5



Smells 1.
0

2.
0

2.
1.

1

2.
1.

2

2.
1.

3

3.
0

3.
0.

1

3.
0.

2

3.
2

3.
2.

1

3.
2.

2

3.
3

3.
3.

1

AbstractClassAbstractClass 0.68 0.53 0.13 0.27 0.17 0.78 0.81 0.93 0.10 0.03 0.09 0.95 0.93
ChildClassDetectionChildClass 0.08 0.07 0.49 0.57 0.09 0.01 0.39 0.94 < 0.01 0.04 < 0.01 0.01 < 0.01
ClassGlobalVariableClassGlobalVariable 0.04 0.63 0.46 0.15 0.06 0.06 0.98 0.98 0.12 0.12 0.10 0.01 0.40
ClassOneMethodClassOneMethod 0.07 0.92 0.19 0.01 0.38 < 0.01 0.76 0.41 0.76 0.32 0.46 0.03 0.02
ComplexClassOnlyDetectionComplexClassOnly 0.69 0.10 < 0.01 < 0.01 0.07 < 0.01 0.37 0.99 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
ControllerClassDetectionControllerClass < 0.01 0.88 0.01 0.84 0.44 0.39 < 0.01 < 0.01 0.53 0.82 0.78 0.08 0.05
DataClassDataClass 0.45 0.88 0.01 0.64 0.09 0.06 0.70 0.76 < 0.01 < 0.01 0.83 0.37 < 0.01
FewMethodsDetectionFewMethods 0.99 < 0.01 0.10 0.30 0.62 0.16 0.19 0.28 0.30 0.31 0.63 0.06 0.04
FieldPrivateFieldPrivate < 0.01 < 0.01 < 0.01 < 0.01 0.21 0.82 0.10 0.37 0.09 0.18 0.02 0.08 < 0.01
FieldPublicFieldPublic 0.04 < 0.01 0.69 < 0.01 < 0.01 < 0.01 < 0.01 0.01 0.46 0.30 0.91 0.18 < 0.01
FunctionClassDetectionFunctionClass 0.74 0.40 0.42 0.31 0.57< 0.01 0.73 0.22 0.79 0.30 0.92 0.67 0.90
HasChildrenDetectionHasChildren < 0.01 < 0.01 0.02 < 0.01 0.02 0.02 < 0.01 < 0.01 0.07 0.01 < 0.01 0.09 < 0.01
LargeClassDetectionLargeClass 0.04 0.51 0.88 0.76 0.58 0.62 < 0.01 < 0.01 < 0.01 0.03 0.01 0.02 0.01
LargeClassOnlyDetectionLargeClassOnly – – – – – – – – – – – – –
LongMethodClassDetectionLongMethodClass 0.05 0.01 0.02 0.04 0.58 0.29 0.13 0.67 0.03 0.11 0.36 0.04 0.82
LongMethodDetectionLongMethod 0.03 < 0.01 0.57 0.01 0.13 0.60 0.60 0.16 0.18 0.19 0.14 0.13 0.09
LongParameterListClassDetectionLongParameterListClass 0.06 < 0.01 0.06 0.01 0.12 < 0.01 < 0.01 < 0.01 0.60 0.01 0.47 0.09 0.33
LowCohesionDetectionLowCohesion 0.09 0.29 0.02 0.51 < 0.01 0.01 < 0.01 0.23 0.76 0.05 0.35 0.81 0.06
LowCohesionOnlyDetectionLowCohesionOnly – – – – – – – – – – – – –
ManyAttributesDetectionManyAttributes < 0.01 0.22 0.24 0.10 0.02 0.01 < 0.01 < 0.01 0.10 < 0.01 < 0.01 < 0.01 0.01
MessageChainsClassDetectionMessageChainsClass 0.03 0.23 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.02 0.32 < 0.01 < 0.01 0.05 < 0.01
MethodNoParameterDetectionMethodNoParameter < 0.01 < 0.01 < 0.01 < 0.01 0.08 < 0.01 < 0.01 < 0.01 0.10 0.87 0.30 < 0.01 0.86
MultipleInterfaceMultipleInterface 0.21 0.78 0.08 0.04 0.87 0.03 0.04 0.01 0.25 0.31 0.49 0.78 < 0.01
NoInheritanceDetectionNoInheritance 0.84 0.68 0.65 0.58 0.11 0.62 0.98 0.93 0.55 0.33 0.22 0.57 0.99
NoPolymorphismNoPolymorphism 0.32 0.38 0.57 0.51 0.02 0.27 0.30 0.03 0.77 0.60 0.65 0.02 0.20
NotAbstractNotAbstract 0.47 0.80 0.05 0.18 0.31 0.84 0.97 0.93 0.13 0.04 0.05 0.95 0.94
NotClassGlobalVariableNotClassGlobalVariable – – – – – – – – – – – – –
NotComplexClassDetectionNotComplexClass 0.83 0.87 < 0.01 < 0.01 < 0.01 < 0.01 0.73 0.07 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
NotComplexDetectionNotComplex 0.59 < 0.01 < 0.01 0.02 < 0.01 < 0.01 0.33 0.07 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
OneChildClassDetectionOneChildClass 0.04 0.83 0.10 0.71 0.31 0.57 0.99 0.40 0.30 0.44 0.45 0.66 0.01
ParentClassProvidesProtectedDetectionParentClassProvidesProtected – – – – – – – – – – – 0.95 0.93
RareOverridingDetectionRareOverriding 0.01 0.88 0.09 < 0.01 < 0.01 0.06 0.46 0.88 0.95 0.13 0.13 0.03 0.41
TwoInheritanceDetectionTwoInheritance 0.80 0.76 0.78 0.63 0.17 0.59 0.62 0.93 0.85 0.43 0.22 0.60 0.74

Table 13. Eclipse: summary of logistic regression

1
6



Smells 3.
1.

0.
0

3.
1.

1.
0

4.
0.

0.
0

4.
0.

0.
2

4.
0.

0.
4

4.
1.

0.
0

4.
1.

0.
2

4.
1.

0.
4

4.
2.

0.
0

AbstractClassAbstractClass < 0.01 < 0.01 < 0.01 0.03 0.01 0.86 0.71 0.99 0.12
ChildClassDetectionChildClass 0.55 0.01 0.92 0.47 0.51 0.39 0.01 < 0.01 0.81
ClassGlobalVariableClassGlobalVariable 0.53 < 0.01 0.40 0.50 < 0.01 0.76 0.26 0.90 0.41
ClassOneMethodClassOneMethod 0.70 0.11 0.99 0.28 < 0.01 0.67 0.16 0.49 0.60
ComplexClassOnlyDetectionComplexClassOnly 0.03 < 0.01 0.40 0.06 0.40 0.54 0.58 0.44 0.56
ControllerClassDetectionControllerClass < 0.01 0.04 0.66 0.43 0.16 0.77 0.77 0.56 0.98
DataClassDataClass < 0.01 < 0.01 0.97 0.06 < 0.01 0.96 0.01 0.15 0.98
FewMethodsDetectionFewMethods < 0.01 0.46 0.55 0.58 < 0.01 0.31 0.47 0.59 0.13
FieldPrivateFieldPrivate < 0.01 0.07 0.74 0.43 0.23 0.32 0.57 0.16 0.68
FieldPublicFieldPublic < 0.01 0.22 0.06 0.98 0.19 0.68 < 0.01 0.12 0.41
FunctionClassDetectionFunctionClass 0.74 0.67 < 0.01 < 0.01 0.40 0.99 0.09 0.16 1.00
HasChildrenDetectionHasChildren 0.41 0.65 0.08 0.04 0.91 0.40 0.49 0.96 0.66
LargeClassDetectionLargeClass 0.32 < 0.01 0.06 0.01 < 0.01 0.03 0.05 0.02 0.05
LargeClassOnlyDetectionLargeClassOnly – – – – – – – – –
LongMethodClassDetectionLongMethodClass 0.56 0.28 0.28 0.92 0.46 0.22 0.08 0.94 0.59
LongMethodDetectionLongMethod 0.99 0.45 0.45 0.95 0.44 0.30 0.38 0.56 0.74
LongParameterListClassDetectionLongParameterListClass 0.20 < 0.01 0.16 0.24 0.17 0.79 0.39 0.70 0.31
LowCohesionDetectionLowCohesion 0.97 0.98 0.05 0.61 0.05 0.99 0.98 0.98 0.99
LowCohesionOnlyDetectionLowCohesionOnly – – – – – – – – –
ManyAttributesDetectionManyAttributes 0.62 0.24 0.30 0.30 0.31 0.46 0.16 0.91 0.58
MessageChainsClassDetectionMessageChainsClass < 0.01 0.49 < 0.01 0.08 0.21 0.33 < 0.01 < 0.01 0.61
MethodNoParameterDetectionMethodNoParameter 0.04 0.50 < 0.01 0.86 0.45 0.98 0.16 0.51 0.99
MultipleInterfaceMultipleInterface 0.81 < 0.01 < 0.01 0.06 < 0.01 0.98 0.29 0.01 0.35
NoInheritanceDetectionNoInheritance < 0.01 < 0.01 0.65 0.09 < 0.01 0.73 0.05 0.79 0.76
NoPolymorphismNoPolymorphism < 0.01 0.54 0.88 0.63 0.89 0.20 0.01 0.87 0.04
NotAbstractNotAbstract < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.68 0.09 0.01 0.01
NotClassGlobalVariableNotClassGlobalVariable – – – – – – – – –
NotComplexClassDetectionNotComplexClass 0.02 0.76 0.85 0.85 0.12 0.81 0.94 0.36 0.38
NotComplexDetectionNotComplex 0.15 < 0.01 < 0.01 0.75 0.14 0.14 0.22 0.76 0.59
OneChildClassDetectionOneChildClass 0.18 0.34 0.80 0.01 0.39 0.84 0.23 0.26 0.44
ParentClassProvidesProtectedDetectionParentClassProvidesProtected – – – – – – – – –
RareOverridingDetectionRareOverriding 0.06 0.20 0.17 0.17 0.02 0.20 0.53 0.30 0.69
TwoInheritanceDetectionTwoInheritance – – – – – – – – –

Table 14. Azureus: summary of logistic regression

1
7


